The present invention relates to methods and devices for stimulating the mucous membranes of the bronchial tubes to assist with opening the airway passages for less labored breathing, reduced stressful inhalation and exhalation, and greater oxygen intake.
The present invention is a vest with attached sonic transducers configured to deliver electro-sonic treatment to the upper and lower sections of the wearer's thoracic cavity and subdermal layers of the chest wall and the back-chest cavity. The electro-sonic stimulation treatment will serve as sonic compressions to break-up or release the mucous secretions that are blocking the bronchial tubes. The present invention moves the treatment of respiratory congestion from percussions, compressions, and kinetic disruptions, to electro-sonic stimulation through frequency oscillation.
The present invention is directed to a pulmonary vest that is worn as a regular part of the attire, either directly on the skin or as an outer garment. The pulmonary vest of the invention includes an array of sonic transducers, numbered, sized, and arranged depending on the amount and location(s) of sonic stimulation desired, directed to the affected bronchial cavities. The array transducers will provide an overlapping wave form of the affect areas of the thoracic region.
Each transducer will emit sound at a frequency in the range of about 100 Hz to about 400 Hz. According to a preferred embodiment, each transducer will emit sound at a frequency in the range of about 200 Hz to about 240 Hz. According to some embodiments, each transducer may emit sound at a frequency that is the same or different from the frequency of sound emitted from other transducers. And according to a most preferred embodiment, each transducers will emit sound at a frequency of about 220 Hz. The transducers will be preferably covered by a thin membrane to protect the outer speaker head as it is directed toward the thoracic region of the affected area. During activation of the transducers, they will emit a sonic burst lasting about 10 to 50 milliseconds, repeated at a rate of about one to about 4 bursts per second. The preferred sonic burst is a 30 millisecond burst. This has been shown to affect larger secretions of mucous from the lungs.
The pulmonary vest according to the invention may also have a user interface configured to allow the user to control the frequency modulation within predetermine safety and effectiveness limits based on the distance to be penetrated by the sonic frequency oscillation, depending on body type and/or layers of clothing, thereby eliminating any risk to tissue, organs, or hearing, while still providing effective treatment. Automatic control and safety mechanisms may also be provided, programmed into the sonic oscillators to ensure safety.
According to a preferred embodiment of the invention, the sonic transducers will be secured to the vest with one or more thoracic transducer stabilizers. The thoracic transducer stabilizer will preferably be a transparent pouch or box made of semi-rigid plastic, for example, of the type used for clamshell packaging. The thoracic transducer stabilizers are configured to be attached to the pulmonary vest by stitching, hook and loop (Velcro), or other convenient means.
The pulmonary vest according to the invention will also preferably contain one or more pockets or pouches to hole a rechargeable battery pack to provide for continuous operation, as well as the user control interface.
The following reference numerals are used to identify various features of the invention depicted in the figures:
According to a further embodiment of the invention, the sonic transducers 13 may be provided on both chest and back portions of the vest 1, see e.g.,
Each transducer will emit sound at a frequency in the range of about 100 Hz to about 400 Hz. According to a preferred embodiment, each transducer will emit a sonic burst at a frequency in the range of about 200 Hz to about 240 Hz. According to some embodiments, each transducer may emit sound at a frequency that is the same or different from the frequency of sound emitted from other transducers. And according to a most preferred embodiment, each transducers will emit sound at a frequency of about 220 Hz. The duration of each sonic burst may be about 10 milliseconds to about 50 milliseconds, and preferably about 30 milliseconds.
Number | Date | Country | |
---|---|---|---|
62778609 | Dec 2018 | US |