The present invention relates generally to a pulsating high pressure air and water nozzle.
Industrial vacuum equipment has dozens of wet and dry uses such as locating underground utilities (potholing), hydro excavation, air excavation and vacuum excavation. In addition, the equipment can be used for directional drilling slurry removal, industrial clean-up, waste clean-up, lateral and storm drain clean-out, oil spill clean-up and other natural disaster clean-up applications, signs and headstone setting, for example.
Often times high pressure air and water nozzles can be used in conjunction with the vacuum equipment to assist in dislodging material for collection by the vacuum equipment. For example, there are pressure washers that include a complement of different sized nozzles. Some nozzles cause the water jet to be discharged in a triangular plane such as a fan pattern, while others discharge a thin jet of water, which spirals around rapidly in a cone pattern. Other prior art nozzles use a rotor within a chamber that is susceptible to being easily broken, clogged and is difficult to clean.
Most nozzles attach directly to some type of wand or gun. The pressure washer adds its own power to create higher pressure and velocity. However, these prior art pressure washers typically operate at relatively low flow rates and pressures than required for industrial applications such as part cleaning, hydro-excavation, and boring.
Specialized industrial nozzles that have been developed to handle high flow rates do not generate a dynamic and rotating flow pattern. For example, high pressure nozzles that are used for cleaning industrial parts, deburring industrial parts and the like typically discharge at pressures of several thousand pounds per square inch (psi). A shortcoming of these previously known nozzles, however, is that the nozzles are of a fixed geometry and do not generate a dynamic flow pattern. In addition, when the nozzles are switched from one type of nozzle for one application to a different nozzle, it is necessary to employ cumbersome fluid couplings to ensure fluid tight connections with the nozzle. Another shortcoming of the prior art is the inefficiency and difficulty to excavate using a vacuum hose in hard subsurface conditions. Accordingly, what is needed is a pulsating high pressure air and water nozzle that is efficient in all subsurface conditions to help dislodge material for collection by vacuum equipment.
The following presents a simplified summary of one or more embodiments in order to provide a basic understanding of some aspects of such embodiments. This summary is not an extensive overview of the one or more embodiments, and is intended to neither identify key or critical elements of the embodiments nor delineate the scope of such embodiments. Its sole purpose is to present some concepts of the described embodiments in a simplified form as a prelude to the more detailed description that is presented later.
In a particular embodiment, a pulsating high pressure air and water nozzle is disclosed. The nozzle includes an impeller adapted to rotate about an axis, a housing adapted to secure the impeller therein, and a supply conduit secured to the housing. The supply conduit is orientated to direct a stream of pressurized fluid to impact the impeller to cause the impeller to rotate, and a discharge port secured to the housing adapted to discharge a pulsating stream of fluid directly from the housing. The impeller further includes a plurality of radial spaced vanes secured to a hub, where a cavity is disposed between each vane of the plurality of vanes. Each cavity is adapted to collect fluid from the supply port and to transport the fluid around an interior of the housing to the discharge port as the impeller rotates. The plurality of vanes is adapted to intermittently block the discharge port as the impeller rotates. In addition, the nozzle includes a cover adapted to be removably secured to the housing to access an inside of the housing and the impeller. The impeller is adapted to be removed from the housing and replaced with a desired new impeller by removing the cover. Further, the nozzle includes a top stud projecting from an upper surface of the hub, and a bottom stud projecting from a lower surface of the hub, where the top stud and the bottom stud are each adapted to engage a respective countersunk conical receptacle in the housing for rotation of the impeller. A gasket maintains a watertight connection between the cover and the housing. The pressurized fluid may be water, air, or any combination thereof.
In another particular embodiment, the nozzle includes an impeller adapted to rotate about an axis, an annular housing adapted to secure the impeller therein, a supply aperture, where the supply aperture is orientated to direct a stream of pressurized fluid to impact the impeller to cause the impeller to rotate, a discharge port secured to the housing and adapted to discharge a pulsating stream of fluid. The impeller includes a plurality of radial spaced vanes, where the plurality of vanes is adapted to intermittently block the discharge port as the impeller rotates. A cavity is disposed between each vane of the plurality of vanes. In addition, the annular housing includes a threaded access opening and a threaded cover adapted to engage the threaded access opening for removably securing the cover to the housing. The impeller is adapted to be removed from the housing and replaced with a desired replacement impeller by removing the cover. Each vane of the impeller may be triangular shaped to form a cavity between each vane.
In another particular embodiment, a pulsating nozzle is disclosed that includes a housing to secure an impeller, where the impeller is adapted to intermittently interrupt a stream of pressurized fluid to impart a pulsating effect when the fluid is discharged from the housing. A supply port directs the stream to the impeller to cause the impeller to rotate within the housing. The nozzle also includes a discharge port for the fluid to exit the housing when discharged. The impeller is adapted to intermittently block at least a portion of the discharge port when rotating and the impeller is adapted to be removed and replaced. The nozzle is adapted to be used with high pressure fluid that may have a pressure of more than 1,500 pounds per square inch.
To the accomplishment of the foregoing and related ends, one or more embodiments comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative aspects and are indicative of but a few of the various ways in which the principles of the embodiments may be employed. Other advantages and novel features will become apparent from the following detailed description when considered in conjunction with the drawings and the disclosed embodiments are intended to include all such aspects and their equivalents.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments or designs.
Referring to
As shown in
Referring now to
The cover 112 is adapted to be removably secured to the housing 102 to access an inside of the housing 102 and the impeller 120. An O-ring or gasket 128 may be used to maintain a watertight connection between the cover 112 and the housing 102. The housing 102 may include a threaded access opening 134. Likewise, the cover 112 may have threading 136 adapted to engage the threaded access opening 134 for removably securing the cover 112 to the housing 102. Alternatively, the cover 112 may not be adapted to be removed and sealed permanently to the housing 102.
In a particular embodiment, the impeller 120 is adapted to be easily removed from the housing 102 and replaced with a desired new impeller by removing the cover 112. The shape or size of the impeller 120 will affect the pulsating stream of fluid. For example, each vane 122 may triangular shaped to form the cavity 124 between each vane 122. The vanes 122 may be rectangular, curved, or any combination thereof. In addition, the number of vanes 122 may be adjusted to affect the discharge steam. For example, more vanes 122 will impart quicker, smaller pulses to the stream of fluid. Whereas less vanes 122 will impart less impulses per revolution of the impeller 120. Similarly, adjusting the size of the cavities 124 will affect the size (i.e., flow) of the impulses of fluid. For example, a larger section of cavity 124 will generate more volume to each impulse of fluid per revolution of the impeller 120 and a smaller cavity 124 will generate a smaller impulse flow per revolution of the impeller 120.
The impeller 120 may be secured in the housing using different means. For example, the impeller 120 may have a top stud projecting from an upper surface of a central part of the impeller 120 and a bottom stud projecting from a lower surface of the impeller 120. The bottom stud is similar to the top stud 126. Both the top stud and the bottom stud are each adapted to engage a respective countersunk conical receptacle 130, 132 for rotation of the impeller 120. In particular, the top stud is adapted to rotate within a conical receptacle 130 that is formed within the cover 112 and the bottom stud is adapted to rotate within a conical receptacle 132 that is formed within the housing 102. Thus, the impeller 120 has two bearing points about which the impeller 120 may freely rotate. The impeller 120 is adapted to intermittently interrupt a stream of pressurized fluid to impart a pulsating effect when the fluid is discharged from the housing 102. The impeller 120 is adapted to intermittently block at least a portion of the discharge port 106 when rotating. The particular application will determine the configuration of the impeller 120. The impeller 120 can be easily removed from the housing 102 and replaced. The pressure of the fluid entering the supply port may be more than 1,500 pounds per square inch.
The illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The illustrations are not intended to serve as a complete description of all of the elements and features of apparatus and systems that utilize the structures or methods described herein. Many other embodiments may be apparent to those of skill in the art upon reviewing the disclosure. Other embodiments may be utilized and derived from the disclosure, such that structural and logical substitutions and changes may be made without departing from the scope of the disclosure. Accordingly, the disclosure and the figures are to be regarded as illustrative rather than restrictive.
The Abstract of the Disclosure is provided to comply with 37 C.F.R. § 1.52(b) and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features may be grouped together or described in a single embodiment for the purpose of streamlining the disclosure. This disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter may be directed to less than all of the features of any of the disclosed embodiments. Thus, the following claims are incorporated into the Detailed Description, with each claim standing on its own as defining separately claimed subject matter.
Number | Name | Date | Kind |
---|---|---|---|
1906382 | Keys | Nov 1931 | A |
2198021 | Wood | Apr 1940 | A |
2639601 | Miller | May 1953 | A |
3473736 | Heitzman | Oct 1969 | A |
3864064 | Gannaway | Feb 1975 | A |
3963179 | Tomaro | Jun 1976 | A |
4079891 | Kwan | Mar 1978 | A |
4111278 | Bergman | Sep 1978 | A |
4119238 | Ja'Afar | Oct 1978 | A |
4203550 | On | May 1980 | A |
4209132 | Kwan | Jun 1980 | A |
4334633 | Piegza | Jun 1982 | A |
4744698 | Dallimer | May 1988 | A |
4760656 | East | Aug 1988 | A |
5092963 | Barker | Mar 1992 | A |
5169072 | Gulyas | Dec 1992 | A |
5191993 | Wanger | Mar 1993 | A |
5196654 | Diflora | Mar 1993 | A |
5248092 | Rankin | Sep 1993 | A |
5500976 | Rohrbacher | Mar 1996 | A |
5515625 | Keigley | May 1996 | A |
5573371 | Kieffer | Nov 1996 | A |
5862985 | Neibrook et al. | Jan 1999 | A |
5887667 | Van Zante | Mar 1999 | A |
5996731 | Czabala | Dec 1999 | A |
D423521 | Walter | Apr 2000 | S |
6360458 | Dolister | Mar 2002 | B2 |
6397967 | McIiwraith | Jun 2002 | B1 |
6499934 | Kaczmarski | Dec 2002 | B1 |
6533064 | Kim | Mar 2003 | B1 |
6550406 | Bass | Apr 2003 | B2 |
6604304 | Slabach | Aug 2003 | B1 |
6988568 | Buckner | Jan 2006 | B2 |
7484322 | Maybury, Jr. | Feb 2009 | B2 |
7837050 | Maybury, Jr. | Nov 2010 | B2 |
8066140 | Young | Nov 2011 | B1 |
8336231 | Marbury | Dec 2012 | B2 |
20020005877 | Silverbrook | Jan 2002 | A1 |
20060032095 | Buckner | Feb 2006 | A1 |
20060117612 | Maybury, Jr. | Jun 2006 | A1 |
20060182591 | Hackett | Aug 2006 | A1 |
20100320204 | Maybury, Jr. | Dec 2010 | A1 |
20110088289 | Maybury, Jr. | Apr 2011 | A1 |
20120181353 | Zhou et al. | Jul 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20140042246 A1 | Feb 2014 | US |