The present invention relates to a pulse apportionment method in speech coding.
Typically, speech coding makes use of vocal tract modeling to reconstruct or synthesize the speech signal so that it resembles as close to the original as possible. Such speech coding includes adaptive multi rate wideband (AMR-WB) speech coding which is used in the 3GPP system (see Non-Patent Document 1). This AMR-WB speech coding was also selected and approved by the ITU-T as ITU-T recommendation G.722.2 (Non-Patent Document 2). Hereinafter, a case will be described as an example where AMR-WB speech coding at a bit rate of 23.85 kbit/s is used.
One of the important blocks of AMR-WB speech coding is a fixed codebook search (
Presently, ITU-T recommendation G.722.2 supports AMR-WB speech coding for monaural signals, but does not support AMR-WB speech coding for stereo speech signals.
With development of a wide transmission band in mobile communication and IP communication and diversification of services in such communications, high speech quality and high-fidelity speech communication are demanded. For example, from now on, it is expected to increase demand of communication in a hands free video telephone service, speech communication in video conference, multi-point speech communication where a plurality of callers hold a conversation simultaneously at multiple locations and speech communication capable of transmitting the sound environment of the surroundings with high fidelity. In this case, it is desired to implement speech communication using stereo speech that has high fidelity compared to monaural signals and that makes it possible to identify the locations of a plurality of callers. To implement speech communication using stereo speech, coding of stereo speech signals is essential. Methods of coding stereo speech signals include independently coding a speech signal of each channel (dual-monaural coding).
Non-Patent Document 2: “Wideband Coding of Speech at Around 16 kbit/s Using Adaptive Multi-Rate Wideband (AMR-WB)”, Geneva, ITU-T Recommendation G.722.2 (2003-07)
If the stereo speech signal is simply subjected to dual-monaural coding using AMR-WB speech coding, the above-described fixed codebook search has to be performed on the speech signal of each channel, which is not preferable in terms of coding efficiency and processing efficiency.
It is therefore an object of the present invention to provide a pulse apportionment method that enables efficient coding of stereo speech signals.
The pulse apportionment method of the present invention is used in a fixed codebook search in speech coding for a stereo signal, and includes determining the number of pulses to be apportioned to channels of the stereo signal according to characteristics of the channels and similarity between the channels.
According to the present invention, it is possible to efficiently encode stereo speech signals.
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the following description, AMR-WB speech coding will be described as an example. Further, in the following description, embodiments will be described using mode 8 out of AMR-WB speech coding modes, but the embodiments can be applied to other coding modes.
In mode 8 of AMR-WB speech coding, there are twenty four pulses in a fixed codebook vector (innovation vector). As shown in
In this embodiment, based on similarity of the input stereo signal between the channels and periodicity and the degree of stationarity of each channel, the number of pulses for each channel to be apportioned is determined, and the required number of pulses is apportioned to each channel. After the number of pulses to be apportioned to each channel is determined, a standard pulse search similar to AMR-WB speech coding is carried out to determine pulse positions for each channel. These pulses are encoded as a set of codewords and transmitted as a codebook index as one of the parameters in the speech bitstream.
First, in ST (step) 11, a stereo signal is subjected to preprocessing including down-sampling and processing of applying a high-pass filter and pre-emphasis filter.
In ST12, LPC analysis is applied to the pre-processed signal to obtain LPC parameters for the L channel (left channel) and the R channel (right channel) of the stereo signal. These LPC parameters are converted to immittance spectrum pair (ISP) and vector quantized for each channel.
In ST13, an open loop pitch lag is estimated twice per frame for each channel.
In ST14, using this estimated pitch lag (estimated pitch lag), an adaptive codebook search is performed using a closed loop pitch searched around the estimated pitch lag for every subframe.
In ST15, the fixed codebook search with pulse apportionment can be applied using the adaptive codebook vector to obtain a fixed codebook vector for each channel.
In ST16, the filter memory and some sample data are updated for a computation of the next subframe.
The fixed codebook search with pulse apportionment is the same as what is shown in the above-described Non-Patent Document 1.
Next,
In ST21, the L channel and the R channel of the stereo signal are compared for each subframe to determine the similarity of the signal characteristic between the two channels.
In ST22, the stereo signal is classified, and characteristic of the signal is determined.
In ST23, the required number of pulses is apportioned to the L channel and the R channel based on the similarity between the channels and characteristic of the stereo signal.
In ST24, a pulse search of AMR-WB speech coding is carried out, and pulse positions for each channel are determined.
In ST25, the pulses determined in ST24 are encoded as a set of codewords, and transmitted to a speech decoding apparatus as a codebook index which is one of parameters in the speech bitstream.
Next, the processing flow shown in
In ST301, the L channel and the R channel of each subframe are compared. Through this comparison, the similarity of the signal characteristic between the two channels (the degree of similarity between the two channels) is determined before the pulse apportionment or allocation process. In determination of the similarity, it is possible to utilize cross-correlation, comparison of signal envelopes in a time domain, comparison of spectrum signals or spectrum energies in a frequency domain, mid-side computation, and the like.
In ST302, if the L channel and the R channel are very similar (for example, if the cross-correlation value is larger than a threshold value) or if it is determined that the L channel and the R channel are identical (that is, if they are monaural signals), both channels will use a common set of pulses. That is, in ST303, the number of pulses for the L channel Num_Pulse (L) is set to P, and the number of pulses for the R channel Num_Pulse (R) is set to 0, or, inversely, the number of pulses for the L channel Num_Pulse (L) is set to 0, and the number of pulses for the R channel Num_Pulse (R) is set to P. For example, P is set to 24 in the case of AMR-WB speech coding mode 8.
In ST302, if the L channel and the R channel are dissimilar, (for example, if the cross-correlation value is less than the threshold value), in ST304, the classification of the signal is determined, and it is determined whether a “stationary voiced” signal is present in the L channel or the R channel. The signal of the L channel or R channel is classified as “stationary voiced” if it is periodic and stationary while the signal is classified as another type of signal if it is non-periodic or non-stationary signal. If either the L channel or the R channel is “stationary voiced”, the flow proceeds to ST305, and if neither the L channel nor the R channel is “stationary voiced”, the flow proceeds to ST310. In addition, when it is determined whether a signal is “stationary voiced” or not, it is possible to utilize a computation of an autocorrelation value using an autocorrelation method, a pitch prediction gain and an adaptive codebook gain. Further, it is possible to determine whether a signal is “stationary voiced” or not using an energy level, signal level, or the like of each channel.
In ST305, if it is determined that both the L channel and the R channel are classified as “stationary voiced” (stationary and periodic), both channels will have sets of pulses. That is, in such a case, in ST306, P pulses (P=24) will be distributed between the two channels so that the number of pulses for the L channel Num_Pulse (L) is set to K1P and the number of pulses for the R channel NUM_Pulse (R) is set to (1−K1)P. An example value for K1 is ½ which will apportion or allocate an equal number of pulses to both channels.
In addition, in
In ST305, if it is determined that one of the channels is “stationary voiced,” while the other channel is not “stationary voiced,” the number of apportioned pulses P is not equal between the both channels. In this case, the number of pulses to be apportioned is determined based on which channel requires more pulses. Typically, fewer pulses are required by the “stationary voiced” channel, and thus fewer pulses will be apportioned to the “stationary voiced” channel. This is because, for the channel classified as “stationary voiced,” an adaptive codebook can work effectively to produce an excitation signal, and therefore fewer pulses are required for the fixed codebook search.
That is, in ST307, if it is determined that the L channel is “stationary voiced” and the R channel is not “stationary voiced,” fewer pulses are required by the L channel, and thus fewer pulses will be apportioned to the L channel compared to the R channel. That is, in ST308, P (P=24) pulses will be distributed to the L channel and the R channel so that the number of pulses for the L channel Num_Pulse (L) is set to K2P and the number of pulses for the R channel Num_Pulse (R) is set to (1−K2)P. An example value for K2 is ⅓. By this means, eight pulses are apportioned to the L channel, sixteen pulses are apportioned to the R channel, and fewer pulses are apportioned to the L channel compared to the R channel.
On the other hand, in ST307, if it is determined that the L channel is not “stationary voiced” type while the R channel is “stationary voiced,” fewer pulses are apportioned to the R channel compared to the L channel.
That is, in ST309, P (P=24) pulses will be distributed to the L channel and the R channel so that the number of pulses for the L channel Num_Pulse (L) is set to (1−K2)P and the number of pulses for the R channel Num_Pulse (R) is set to K2P. An example value for K2 is ⅓ as in the case described above. By this means, eight pulses are apportioned to the R channel, sixteen pulses are apportioned to the L channel, and fewer pulses are apportioned to the R channel compared to the L channel.
In ST304, if neither the L channel nor the R channel is “stationary voiced,” the distribution of the pulses will have to depend on the maximum autocorrelation factor (MAF) of each channel. MAF is defined by equation 1. In equation 1, x(n) (n=0, . . . , N−1) is an input signal in a calculation target segment of MAF for a coding target subframe of the L channel or the R channel, N is a segment length of the calculation target segment (the number of samples), and τ is a delay. In addition, it is possible to use an LPC residual signal obtained using an LPC inverse filter in place of the input signal, as x(n).
[1]
If the MAF of the L channel is greater than the MAF of the R channel in ST310, in ST312, P (P=24) pulses will be distributed to the L channel and the R channel so that the number of pulses for the R channel Num_Pulse (R) is set to K2P and the number of pulses for the L channel Num_Pulse (L) is set to (1−K2)P, as in ST308. An example value for K2 is ⅓. Eight pulses are apportioned to the L channel, and sixteen pulses are apportioned to the R channel. That is, fewer pulses are apportioned to the L channel compared to the R channel. Therefore, the pulse apportionment type is type 2 (
On the other hand, if the MAF of the R channel is greater than the MAF of the L channel in ST310, in ST311, P (P=24) pulses will be distributed to the L channel and the R channel so that the number of pulses for the R channel Num_Pulse (R) is set to K2P and the number of pulses for the L channel Num_Pulse (L) is set to (1−K2)P, as in ST308. An example value for K2 is ⅓. Eight pulses are apportioned to the R channel, sixteen pulses are apportioned to the L channel. That is, fewer pulses are apportioned to the R channel compared to the L channel. Therefore, the pulse apportionment type is type 3 (
After the number of pulses apportioned to each channel is determined in ST303, ST306, ST308, ST309, ST311 and ST312, a pulse position is searched for each channel in ST313.
After the pulse positions of both the L channel and the R channel are searched, a set of codewords is generated using the pulses searched in ST314, and the codebook index for each channel is generated in ST315.
In addition, when neither the L channel nor the R channel is “stationary voiced” in ST304, the pulse apportionment can be determined so that an equal number of pulses is always apportioned to each channel, instead of being determined based on a MAF of each channel as described above.
Here, if the pulse apportionment uses the apportionment method for fixed K1 and K2, the number of pulses to be apportioned to each channel is uniquely determined according to four types (types 0 to 3) of the pulse apportionment, and therefore two bits are sufficient for reporting the number of pulses apportioned to each channel to the speech decoding side, as shown in
In ST701, the codebook index which is the quantized form of pulse data is extracted from a bitstream. Further, the above-described two-bit information indicating the type of pulse apportionment is extracted from the bitstream.
In ST702, the type of pulse apportionment is determined based on the two-bit information extracted from the bitstream with reference to the table shown in
In ST703, if the type of pulse apportionment is type 0, the flow proceeds to ST704, and if the type is types 1 to 3, the flow proceeds to ST707.
If the type of pulse apportionment is type 0, both channels use the same codebook. That is, in ST704, P=24 pulses will be all apportioned to one channel determined in advance (a predefined channel), and, in ST705, P=24 pulses for the predefined channel are decoded. In ST706, the pulses decoded in ST705 are then copied to the other channel.
On the other hand, if the type of pulse apportionment is types 1 to 3, the number of pulses for each channel is set according to the type. That is, if type 1 is detected, twelve pulses are set to the L channel and the R channel, respectively, if type 2 is detected, eight pulses are set to the L channel and sixteen pulses are set to the R channel, and, if type 3 is detected, sixteen pulses are set to the L channel and eight pulses are set to the R channel.
Here, it is assumed that the predefined channel is the L channel. The number of pulses PL for the L channel is set in ST707, and the number of pulses PR for the R channel is set in ST708. PL pulses are decoded as the codebook data for the L channel in ST709, and PR pulses are decoded as the codebook data for the R channel in ST710.
In addition, when the predefined channel is the R channel, the order of the processing flow is ST708, ST707, ST710 and ST709.
In this way, according to this embodiment, the number of pulses to be apportioned is determined based on the similarity between the channels and characteristic (the periodicity and the degree of stationarity) of each channel. Therefore, it is possible to apportion the optimum number of pulses to each channel.
In this embodiment, K1 and K2 are determined based on the characteristic of the speech signal, and the pulse apportionment between the channels is adaptively changed. The pulse apportionment ratio between the channels can be obtained based on the periodicity and the MAF of the speech signal of each channel.
For example, if both the L channel and the R channel are “stationary voiced,” K1 is obtained from equation 2.
[2]
In equation 2, τL and τR are a pitch period of the L channel and a pitch period of the R channel, respectively, and α1 is a coefficient for fine adjustment of K1. According to equation 2, it is possible to apportion more pulses to the channel which has the shorter pitch period, that is, the channel which has the higher pitch frequency.
Further, if one channel is “stationary voiced” while the other channel is not, K2 is obtained from equation 3.
[3]
In equation 3, Cuv is the MAF of the channel which is not “stationary voiced”, CL and CR are a MAF of the L channel and a MAF of the R channel, respectively, and α2 is a coefficient for fine adjustment of K2. According to equation 3, it is possible to apportion fewer pulses to the channel which is classified as “stationary voiced”.
In addition, in equation 3, β is a parameter for ensuring that the “stationary voiced” channel has a minimum number of pulses, and defined by equation 4.
[4]
In equation 4, L is the number of samples in a frame, τch is the pitch period of the “stationary voiced” channel, and P is the total number of pulses in a subframe. Ratio L/τch basically computes the number of periods in a frame. For example, a value of 256 for L and 77 for τch will produce a result of ratio L/τch (the number of periods in a frame) of 4. By this means, there is at least one pulse in each pitch period.
The values of K1 and K2 obtained according to equations 2 to 4 are used to determine the number of pulses to be apportioned to the L channel and the R channel. The pulses apportioned to the L channel and the R channel can be minimum value MIN_PULSE and maximum value MAX_PULSE that fulfill the condition of equations 5 and 6.
[5]
MIN_PULSE≦Num_Pulse(channel)≦MAX_PULSE (5)
[6]
Num_Pulse(L)+Num_Pulse(R)=TOTAL_PULSE (6)
In equations 5 and 6, MIN_PULSE and MAX_PULSE are the minimum and maximum numbers of pulses that can be apportioned to a particular channel per subframe, and TOTAL_PULSE is the total number of pulses that can be apportioned to both channels per subframe. Typical values of MIN_PULSE, MAX_PULSE and TOTAL_PULSE are 4, 20 and 24, respectively. The computed number of pulses may be rounded to the nearest multiple of 1, 2 or 4.
When the number of pulses apportioned to each channel is adaptively changed, it is necessary to report the number of pulses apportioned to each channel to the speech decoding side. However, the number of pulses apportioned to one channel can be derived by subtracting the number of pulses apportioned to the other channel from the total number of pulses of both channels, and therefore either one channel is determined as a predefined channel, and it is only necessary to report the number of pulses apportioned to the predefined channel. For example, if the L channel is set as the predefined channel, the number of pulses for the L channel Num_Pulse (L) is reported, and the number of pulses for the R channel Num_Pulse (R) is obtained from equation 7.
[7]
Num_Pulse(R)=TOTAL_PULSE−Num_Pulse(L) (7)
A method of reporting the number of pulses for the predefined channel is described as follows.
If the number of pulses for each channel is a multiple of 4, there are five possibilities as 4, 8, 12, 16 and 20. In such a case, only three bits are required to classify the number of pulses of these five possibilities. If the number of pulses for each channel is a multiple of 2, there are nine possibilities as 4, 6, 8, 10, 12, 14, 16, 18 and 20. In such a case, four bits are required to classify the number of pulses of these nine possibilities. However, if the number of pulses for each channel is in steps of one pulse from four to twenty pulses, five bits will be required to classify the number of pulses of the seventeen possibilities. These numbers of pulses can be in the form of the table shown in
In ST901, the codebook index which is a quantized form of the pulse data is extracted from the bitstream. Further, the codewords (three to five bits) indicating the number of pulses are extracted from the bitstream.
In ST902, the number of pulses for the predefined channel is determined based on the codewords indicating the number of pulses with reference to the table shown in the above
In ST903, the number of pulses for the other channel—the R channel—is calculated according to equation 7.
In ST904, if it is detected that one of the channels has zero pulse, the flow proceeds to ST905, and, in other cases, the flow proceeds to ST907.
If it is detected that one of the channels has zero pulse, both channels use the same codebook. That is, in ST905, all P=24 pulses are set for the predefined channel, and P=24 pulses are decoded for the predefined channel. In ST906, the pulses decoded in ST905 are copied to the other channel.
On the other hand, in ST907, the number of pulses PL for the L channel (predefined channel) is set with reference to the table shown in the above
If the predefined channel is the R channel, the order of the processing flow is ST908 and ST907.
In this way, according to this embodiment, K1 and K2 are determined based on the characteristic of the speech signal, and the pulse apportionment between the channels is adaptively changed, so that it is possible to distribute the numbers of pulses between the channels more flexibly and accurately.
In the above-described embodiments, the case has been described where the total number of pulses apportioned to the channels is fixed (in the above-described embodiments, fixed at P=24), but the total number of pulses apportioned to the channels may be changed according to the similarity between the channels and the characteristic (the periodicity and the degree of stationarity) of each channel. For example, in Embodiment 1, if the pulse apportionment type is “type 0”, that is, if the L channel and the R channel are very similar (for example, if the cross-correlation value is larger than a threshold value), or if the L channel and the R channel are identical (that is, they are monaural signals), fewer pulses may be apportioned to either the R channel or the L channel than the total number of pulses apportioned in other types (in the above-described embodiments, P=24). By this means, it is possible to further improve transmission efficiency.
Furthermore, the processing flow according to the above-described embodiments can be implemented in the speech encoding apparatus and speech decoding apparatus. Further, the speech encoding apparatus and speech decoding apparatus can be provided to radio communication apparatuses such as radio communication mobile station apparatuses and radio communication base station apparatuses used in the mobile communication system.
The processing flow according to the above-described embodiments may typically be implemented as an LSI constituted by an integrated circuit. These may be individual chips or partially or totally contained on a single chip.
“LSI” is adopted here but this may also be referred to as “IC”, “system LSI”, “super LSI”, or “ultra LSI” depending on differing extents of integration.
Further, the method of circuit integration is not limited to LSI's, and implementation using dedicated circuitry or general purpose processors is also possible. After LSI manufacture, utilization of an FPGA (Field Programmable Gate Array) or a reconfigurable processor where connections and settings of circuit cells within an LSI can be reconfigured is also possible.
Further, if integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Application in biotechnology is also possible.
The present application is based on Japanese Patent Application No. 2005-034984, filed on Feb. 10, 2005, entire content of which is expressly incorporated by reference herein.
The present invention can be applied to communication apparatuses in mobile communication systems and packet communication systems in which internet protocol is used.
Number | Date | Country | Kind |
---|---|---|---|
2005-034984 | Feb 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/302258 | 2/9/2006 | WO | 00 | 8/9/2007 |