The present invention relates to a device and a method for generating pressure pulses in an impulse machine, preferably used in a rock drill machine, wherein a rod made of a magnetostrictive material periodically generates pressure pulses in a liquid, whereby the repetitively recurrent pressure pulses act on an impulse piston to exert impulses on a bore string.
In prior art technology a pressure pulse is generated in a striking mechanism by utilizing a reciprocating striking piston, which at the end of a piston movement hits a rear end of a drill steel. By this, a pressure pulse propagating through the drill steel towards the material being machined is generated. Herein, the concept drill steel also denotes a bore string, which in turn may be composed of one or more connected drill rods or drill tubes, in its foremost end usually provided with a drill bit. The oscillating movement, which the reciprocating striking piston performs, is usually generated by a pressure medium provided in a pressure chamber to periodically exert a high pressure on the piston, whereby said high pressure makes the piston to move axially and in turn exert strikes on the rear end of the drill steel or on an adapter arranged for this purpose on the drill steel, to which the adapter is coupled. For the creation of the periodically alternating pressure, a pump is used for the generation of a high pressure in a hydraulic liquid. A slide controls a flow of the pressurized hydraulic liquid to exert the periodical pressure actively acting on the striking piston.
An example of prior art in the field can be found by reference to document WO2005/080051 A1. On use of such conventional technology the possibilities to control the parameters of the pressure pulses, such as frequency, pulse width etc. are limited.
An alternative example of prior art to accomplish pressure pulses acting on the drill steel by use of the striking mechanism can be found by reference to document WO2004/060617. In this document it is stated that, instead of using a striking piston moving backwards and forwards under the influence of a pressure medium, another type of element can be used to create the desired pressure pulses. It is stated that such an alternative, as an example, is a material based on the magnetostrictive effect generating the pressure pulses, i.e. the striking piston normally performing strikes on the drill steel, or its equivalence, is exchanged by a corresponding rod made from a magnetostrictive material. In said document and other documents disclosing corresponding technology, it is then being referred to a striking mechanism, wherein a rod made from a magnetostrictive material transfers pressure pulses to the drill steel directly by bearing against the shank of the drill steel. A rod of a magnetostrictive material, such as e.g. terfenol, withstands very small tension load, as it is a brittle material, whereby problems arise if the rod is used, for example, in connection with direct mechanical strikes.
An object of the present invention is to provide a solution to the drawbacks of the prior art.
According to one aspect of the present invention a device characterized according to the enclosed claim 1 is presented.
According to a further aspect of the invention a method characterized according to the enclosed independent method claim is presented.
Further embodiments of the invention are disclosed in the dependent claims.
According to one aspect of the invention there is an object to create pressure pulses in a pulse machine utilizing magnetostrictive materials. One example of such a material is Terfenol-d. Magnetostrictive materials change their shape in the presence of magnetic fields, wherein a certain part of the energy of the magnetic field is transformed to mechanical energy being consumed at the reshape of the material. The, so called, coupling factor, that is the efficiency, between magnetic and mechanical energy is about 75%. By having the mechanical shape shift of the magnetostrictive material acting on a liquid in a liquid content, e.g. water or oil, pressure pulses can be created. These pressure pulses are finally used to generate mechanical pressure pulses in a drill steel.
Some of the advantages with a generation of pressure pulses for use in a pulse machine of the type as characterized in the invention are:
pulse control/pulse forming of electrical pulses can be used for the control of the pressure pulses,
a pulse machine of the type described will be significantly more silent than a corresponding striking mechanism of the conventional type,
the efficiency becomes high,
by control of the strikes, a possibility to attain an active damping is achieved (as an example, there is a possibility to control the length of the magnetostrictive rod to regulate a counter pressure behind the impulse piston),
the striking mechanism is electrically operated.
A number of embodiments of the invention are described in the following with the support of the enclosed drawings.
In
To the right in
Between the pulse cylinder 1 and the actuator 5 a conduit 9 is extended, whereby the hydraulic fluid 2 in the pulse cylinder 1 and the hydraulic fluid 2 in the working cylinder of the actuator 5 can communicate which each other.
When an electric current pulse is sent through the coil 8 a magnetic field is generated, in a known way, in the coil, whereby a powerful magnetic flux acts along the magnetostrictive rod 7. From the influence of the magnetic flux a change of the shape of the magnetostrictive rod 7 arises, so that it, e.g., expands axially at an increasing magnetic field and contracts axially at decreasing magnetic field. Hence, when such an electric current pulse, during increasing energy of the pulse, is conveyed to the coil 8, the length of the magnetostrictive rod 7 increases, whereby a hydraulic pressure pulse is created in the fluid 2. Said hydraulic pressure pulse is propagated via the conduit 9 to the pulse cylinder 1, where the hydraulic pressure pulse hits the head 4 of the impulse piston 3, whereby a mechanical pressure pulse is generated in the impulse piston 3, a pressure pulse which in its axial direction acts on a drill steel, or a drill steel connected to the impulse piston, bearing against the impulse piston. An adapter for the drill steel may exist between the impulse piston and the drill steel. In a corresponding way, when the energy of the current pulse decreases, the length of the magnetostrictive rod 7 becomes reduced. However, at the same time the impulse piston 3 has become influenced by a recoil force due to mechanical pressure pulse conveyed to the drill steel, which implies that the pulse time of the current pulse has to be adapted to the recoil force and the capability of the hydraulic fluid to fill up the space ahead of the rod 7 inside the working cylinder 6 without cavities forming in the fluid 2 at the return of the impulse piston 3 after an accomplished transferred mechanical pressure pulse.
Current pulses are supplied by use of power electronics, which are not further discussed here as such technology is well known in the art. As one example of power electronics for controlling periodically activated rods of a magnetostrictive material, it is herein referred to the electrical drive system in document U.S. Pat. No. 4,927,334.
In
A further possibility to reduce the size and required power of the drive system, without utilizing many actuators, is to construct a system with, say, two actuators, a first actuator 5a and a second actuator 5b, wherein these have different lengths of hydraulic conduits 9a and 9b and further to provide the system with two operating positions, wherein these operating positions are shifted by means of a valve. In a first operating position both said different hydraulic conduits 9a and 9b are extended with a length, which implies that a first and a second electric drive pulse to the first 5a and the second 5b actuator, respectively, generate corresponding first and second hydraulic pressure pulses, which reach the pulse cylinder 1 at the same point of time. After this, the valve is shifted to a second operating position, wherein the extended length of the hydraulic conduits are disconnected, whereupon a third and a fourth electric drive pulse are arranged so that their corresponding third and fourth hydraulic pressure pulses arrive at the pulse cylinder I at the same point of time and, furthermore, at the same point of time as when the first and second hydraulic pressure pulses, being generated by the first and second electric drive pulses from the drive system, arrive at the pulse cylinder 1. Through this arrangement four hydraulic pressure pulses can arrive at the impulse piston 3 in the pulse cylinder at the same point of time, although only two actuators 5a and 5b are available and where four electric drive pulses of lower power are generated than what would be required to accomplish a corresponding hydraulic pressure force on the impulse piston 3 with four actuators without the described control and the shift between two operating positions. By this, powerful hydraulic pressure pulses can be accomplished using a limited power electronics structure with respect to power required.
In order to, as previously stated, avoid cavitations in the system, i.e. a formation of gas bubbles in the hydraulic fluid, non-return valves can be installed according to
In
In the figures the seal 7c, which as mentioned seals the space ahead of the magnetostrictive rod 7 in the working cylinder 5 against a space along the envelope surface of said rod is shown. The seal 7c is arranged such that the axial change of length of the magnetostrictive rod 7 shall provide for an optimal change of volume of the space ahead of the rod 7 at the change of length.
Number | Date | Country | Kind |
---|---|---|---|
0602435-0 | Nov 2006 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2007/050818 | 11/5/2007 | WO | 00 | 4/29/2009 |