Pulse oximeter access apparatus and method

Information

  • Patent Grant
  • 10531835
  • Patent Number
    10,531,835
  • Date Filed
    Friday, August 25, 2017
    6 years ago
  • Date Issued
    Tuesday, January 14, 2020
    4 years ago
Abstract
Access is provided to certain pulse oximetry systems utilizing a keyed sensor and a corresponding locked sensor port of a restricted access monitor. In such systems, the keyed sensor has a key comprising a memory element, and the monitor has a memory reader associated with the sensor port. The monitor is configured to function only when the key is in communications with the locked sensor port, and the memory reader is able to retrieve predetermined data from the memory element. The monitor is accessed by providing the key separate from the keyed sensor, integrating the key into an adapter cable, and connecting the adapter cable between the sensor port and an unkeyed sensor so that the monitor functions with the unkeyed sensor.
Description
BACKGROUND OF THE INVENTION

Pulse oximeters have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care units, general wards and home care by providing early detection of decreases in the arterial oxygen supply, reducing the risk of accidental death and injury. FIG. 1 illustrates a pulse oximetry system 100 having a sensor 110 applied to a patient 10, a monitor 160, and a patient cable 140 connecting the sensor 110 and the monitor 160. The sensor 110 has a sensor body 111 that houses emitters and a detector and is attached to a patient at a selected fleshy medium site, such as a fingertip or ear lobe. The emitters are positioned to project light of at least two wavelengths through the blood vessels and capillaries of the fleshy medium. The detector is positioned so as to detect the emitted light after absorption by the fleshy medium, including hemoglobin and other constituents of pulsatile blood flowing within the fleshy medium, and generate at least first and second intensity signals in response. The sensor 110 has a patient cable connector 114 and may have an integrated sensor cable 112. The sensor 110 may be a disposable adhesive sensor for use on a single patient or a reusable clip-on sensor for use on multiple patients.


As shown in FIG. 1, the monitor 160, which may be a standalone device or may be incorporated as a module or built-in portion of a multiparameter patient monitoring system, computes at least one physiological parameter responsive to magnitudes of the intensity signals. A monitor 160 typically provides a numerical readout of the patient's oxygen saturation 164, a numerical readout of pulse rate 166, and a display the patient's plethysmograph 168, which provides a visual display of the patient's pulse contour and pulse rate. The monitor 160 has a sensor port 162 that transmits emitter drive signals to the sensor 110 and receives the detector intensity signals from the sensor 110. The patient cable 140 provides the electrical and mechanical connection and communications link between the sensor port 162 and the sensor 110. The patient cable 140 has a sensor connector 142 that connects to the patient cable connector 114 and a monitor connector 144 that connects to the sensor port 162.


Pulse oximeters have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care units, general wards and home care by providing early detection of decreases in the arterial oxygen supply, reducing the risk of accidental death and injury. FIG. 1 illustrates a pulse oximetry system 100 having a sensor 110 applied to a patient 10, a monitor 160, and a patient cable 140 connecting the sensor 110 and the monitor 160. The sensor 110 has a sensor body 111 that houses emitters and a detector and is attached to a patient at a selected fleshy medium site, such as a fingertip or ear lobe. The emitters are positioned to project light of at least two wavelengths through the blood vessels and capillaries of the fleshy medium. The detector is positioned so as to detect the emitted light after absorption by the fleshy medium, including hemoglobin and other constituents of pulsatile blood flowing within the fleshy medium, and generate at least first and second intensity signals in response. The sensor 110 has a patient cable connector 114 and may have an integrated sensor cable 112. The sensor 110 may be a disposable adhesive sensor for use on a single patient or a reusable clip-on sensor for use on multiple patients.


As shown in FIG. 1, the monitor 160, which may be a standalone device or may be incorporated as a module or built-in portion of a multiparameter patient monitoring system, computes at least one physiological parameter responsive to magnitudes of the intensity signals. A monitor 160 typically provides a numerical readout of the patient's oxygen saturation 164, a numerical readout of pulse rate 166, and a display the patient's plethysmograph 168, which provides a visual display of the patient's pulse contour and pulse rate. The monitor 160 has a sensor port 162 that transmits emitter drive signals to the sensor 110 and receives the detector intensity signals from the sensor 110. The patient cable 140 provides the electrical and mechanical connection and communications link between the sensor port 162 and the sensor 110. The patient cable 140 has a sensor connector 142 that connects to the patient cable connector 114 and a monitor connector 144 that connects to the sensor port 162.


SUMMARY OF THE INVENTION


FIG. 2 illustrates a restricted access pulse oximetry system 200 having a keyed sensor 210 and a restricted access monitor 260. The keyed sensor 210 and restricted access monitor 260 are designed so that the monitor 260 will only function with a specific sensor or family of sensors from a specific manufacturer or licensed vendors. Upon power up, the sensor port 262 is locked. That is, the monitor 260 will not function until it reads the correct information from the sensor port 262. In particular, a patient cable connector 214 has a memory device. The memory device and the data stored in the memory device act as a key. The sensor port 262 and a memory reader in the monitor associated with the sensor port 262 act as a lock. When the keyed patient cable connector 214 is in communications with the locked sensor port 262 via a patient cable 240, the memory reader can access the data stored in the memory device. If the stored data matches predetermined access data, the monitor unlocks the sensor port 262, i.e. properly functions with a sensor attached to the sensor port 262. A memory device commonly used for storing manufacturer and product information is the DS2502 from Dallas Semiconductor, which has a 1 kbit memory that is accessed through a single pin that provides data input, data output and power. Once the sensor port 262 is unlocked, the sensor 210, patient cable 240, sensor port 262 and monitor 260 function as described with respect to FIG. 1, above.


One aspect of a pulse oximeter access method is used in conjunction with a pulse oximetry system comprising a keyed sensor and a corresponding locked sensor port of a restricted access monitor. The keyed sensor has a key comprising a memory element. The monitor has a memory reader associated with the sensor port. The monitor is configured to function only when the key is in communications with the locked sensor port and the memory reader is able to retrieve predetermined data from the memory element. The access method comprises the steps of providing the key separate from the keyed sensor, integrating the key into an adapter cable, and connecting the adapter cable between the sensor port and an unkeyed sensor so that the monitor functions with the unkeyed sensor.


Another aspect of a pulse oximeter access apparatus comprises a sensor having emitters adapted to transmit light of at least first and second wavelengths into a fleshy medium and a light sensitive detector adapted to generate at least first and second intensity signals by detecting the light after absorption by constituents of pulsatile blood flowing within the fleshy medium. A monitor is configured to non-invasively measure one or more physiological parameters responsive to magnitudes of the intensity signals. A key contains access information. A sensor port is configured to communicate emitter drive signals from the monitor to the sensor, intensity signals from the sensor to the monitor, and the access information from the key to the monitor. A lock associated with the sensor port is adapted to read the access information from the key and to enable the monitor to provide measurements of the physiological parameters in response to the access information. An adapter cable containing the key is configured to provide a communications link between the sensor and the sensor port.


A further aspect of a pulse oximeter access apparatus comprises a sensor means for providing a physiological signal to a monitor and a key means for providing access to a locked sensor port portion of the monitor. An adapter cable means containing the key means provides communications between the sensor and the sensor port.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a prior art pulse oximetry system;



FIG. 2 is a perspective view of a prior art pulse oximetry system having a restricted access monitor with a locked sensor port;



FIG. 3 is a perspective view of a pulse oximeter access apparatus;



FIG. 4 is a flow diagram of a pulse oximeter access method;



FIGS. 5-6 are perspective views of a keyed sensor and a keyless adapter cable, respectively, illustrating lock removal and reattachment; and



FIGS. 7-8 are perspective views of a keyed adapter cable and an attached keyless sensor, respectively.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 3 illustrates a pulse oximeter access apparatus 300 having a keyless sensor 810, a keyed adapter cable 700 and a patient cable 240 that advantageously interconnect so as to allow the keyless sensor 810 to function with a restricted access monitor 260 having a locked sensor port 262. The keyed adapter cable 700 has a keyed connector 214 at one end, which mates with a sensor connector 242 of a patient cable 240, and a sensor connector 714 at the opposite end, which mates with a patient cable connector 814 of the keyless sensor 810. The monitor connector 244 mates with the sensor port 262, providing communications between the keyless sensor 810 and the sensor port 262 and between a memory element in the keyed connector 214 and a memory reader within the monitor 260. The sensor connector 714 of the keyed adapter cable 700 can be any of a number of connectors that mate with any of a number of patient cable connectors 814. Further, a family of keyed adapter cables 700 can be configured, each with a different sensor connector 714 compatible with a different keyless sensor 810 or family of keyless sensors 810.



FIG. 4 illustrates a pulse oximeter access method 400 for creating and utilizing a keyed adapter cable 700 (FIGS. 3, 7). In an initial step, a sensor port key is provided by purchasing 410 a keyed sensor configured for a particular restricted access monitor 260 (FIG. 2) and removing 420 the associated keyed connector 214 (FIG. 2), as described in further detail with respect to FIG. 5, below. Further steps include providing 430 a keyless adapter cable 600 (FIG. 6), and attaching 440 the keyed connector 214 (FIG. 2) to one end to make the keyed adapter cable 700 (FIG. 7), as described in further detail with respect to FIGS. 6-7, below. Additional steps include connecting 450 a keyless sensor 810 (FIG. 8) to the keyed adapter cable, and accessing 460 the restricted access monitor with the resulting adapted sensor 800 (FIG. 8), as described in further detail with respect to FIG. 3, above, and FIG. 8, below.



FIGS. 5-6 illustrate obtaining a sensor key from a keyed sensor 210 (FIG. 5) and using the key in the construction of a keyed adapter cable 700 (FIG. 7). As shown in FIG. 5, the keyed connector 214 is removed from a keyed sensor 210, such as by cutting the sensor cable 212 so as to leave sufficient wire for reattachment. As shown in FIG. 6, a keyless adapter cable 600 is provided having a cable 720 with a sensor connector 714 attached to a first end and with unconnected wires 610 at a second end. The removed keyed connector 214 is spliced or otherwise attached to the second end by any of various well-known methods, such as soldering or crimping followed by heat-shrink insulation to name a few techniques.


Construction of a keyed adapter cable 700 (FIG. 7) is described above with respect to removal and reattachment of a keyed connector 214. In an alternative embodiment, the key or memory element itself is removed from the keyed connector 214 of a keyed sensor 210 (FIG. 5) and embedded into or otherwise integrated into or incorporated with either one or both connectors of an otherwise keyless adapter cable 600 to construct the keyed adapter cable 700 (FIG. 7). In yet another embodiment, an equivalent memory element is purchased, developed or otherwise obtained and programmed with access data compatible with the memory element of the keyed sensor 210 (FIG. 5) and embedded into or otherwise integrated into or incorporated with either one or both connectors of an otherwise keyless adapter cable 600 to construct the keyed adapter cable 700 (FIG. 7).



FIG. 7 illustrates a keyed adapter cable 700 having a sensor connector 714, a keyed connector 214 and a cable 720 interconnecting the sensor connector 714 and keyed connector 214. The sensor connector 714 is configured to connect to a sensor patient cable connector 814 (FIG. 8), and the keyed connector 214 is configured to connect to a patient cable sensor connector 242 (FIG. 3). The keyed connector 214 has a memory element that is readable by a restricted access monitor 260 (FIG. 3) so as to unlock a locked sensor port 262 (FIG. 3), as described above.



FIG. 8 illustrates an adapted sensor 800 having a keyed adapter cable 700 attached to a keyless sensor 810. The sensor connector 714 of the keyed adapter cable 700 is mated to the patient cable connector 814 of the keyless sensor 810. The resulting adapted sensor 800 is configured to function with a restricted access monitor 260 (FIG. 3) in an equivalent manner as a keyed sensor 210 (FIG. 2). In particular, the keyed connector 214 mates with a patient cable 240 (FIG. 3), which mates with a locked sensor port 262 (FIG. 3) of a restricted access monitor 260 (FIG. 3) so that monitor 260 (FIG. 3) functions with the keyless sensor 810, as described above with respect to FIG. 3.


A keyed adapter cable is described above with respect to an adapter between a keyless sensor 810 and a patient cable 240 (FIG. 3). Such an embodiment is particularly advantageous for utilization of a keyed connector 214 removed from a keyed sensor 210 (FIG. 5). In an alternative embodiment, the patient cable 240 (FIG. 3) itself is utilized as a keyed adapter cable between a keyless sensor 810 and a locked sensor port 262 (FIG. 3). In particular, a memory element containing access data is removed from a keyed sensor 210 (FIG. 5) or a memory element is purchased, developed or otherwise obtained and programmed with compatible access data. The memory element is embedded into or otherwise integrated into or incorporated with either one or both connectors of an otherwise keyless patient cable 240 (FIG. 3) to construct a keyed adapter cable.


A pulse oximeter access apparatus and method has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in art will appreciate many variations and modifications.

Claims
  • 1. A method of utilizing a memory device, the memory device storing access information usable to unlock otherwise unavailable processing by a patient monitor so that the patient monitor processes a signal output by a noninvasive optical sensor to determine a physiological parameter of a patient monitored by the noninvasive optical sensor, the method comprising: acquiring a first sensor apparatus comprising a first noninvasive optical sensor and a memory device, the first noninvasive optical sensor comprising a first detector configured to output a first signal responsive to attenuation of light by tissue of a patient, the memory device storing access information usable to unlock otherwise unavailable processing of the first signal by a patient monitor, the patient monitor being configured to lock processing of the first signal by the patient monitor unless the access information is received by the patient monitor;removing the memory device from the first sensor apparatus so that electrical communication between the memory device and the first sensor apparatus is severed; andsubsequent to said removing the memory device from the first sensor apparatus, attaching the memory device to an assembly configured to support the memory device and couple to a second sensor apparatus comprising a second noninvasive optical sensor, the second noninvasive optical sensor comprising a second detector configured to output a second signal responsive to attenuation of light by the tissue, the second sensor apparatus together with the assembly being configured to communicate the access information to the patient monitor without the first noninvasive optical sensor and being usable to unlock otherwise unavailable processing of the second signal by the patient monitor, the patient monitor being configured to lock processing of the second signal by the patient monitor unless the access information is received by the patient monitor.
  • 2. The method of claim 1, wherein said attaching the memory device to the assembly comprises soldering the memory device to the assembly.
  • 3. The method of claim 1, wherein said attaching the memory device to the assembly comprises crimping the memory device to the assembly.
  • 4. The method of claim 1, wherein said attaching the memory device to the assembly comprises embedding the memory device inside the assembly.
  • 5. The method of claim 1, wherein the assembly comprises a cable.
  • 6. The method of claim 1, wherein the assembly comprises a connector.
  • 7. The method of claim 1, further comprising coupling a connector interface of the second sensor apparatus to a corresponding interface of the assembly.
  • 8. The method of claim 1, further comprising connecting the patient monitor to the assembly so that the second sensor apparatus together with the memory device communicates the access information to the patient monitor to unlock processing of the second signal by the patient monitor.
  • 9. The method of claim 8, further comprising communicating the second signal from the second sensor apparatus to the patient monitor through the assembly.
  • 10. The method of claim 1, further comprising: receiving, with the patient monitor, the access information from the memory device; andin response to receiving the access information from the memory device, determining, with the patient monitor, to process the second signal from the second noninvasive optical sensor and subsequently processing the second signal to determine a physiological parameter of the patient.
  • 11. The method of claim 1, wherein the access information is predetermined.
REFERENCE TO RELATED APPLICATIONS

The present application claims priority benefit under 35 U.S.C. § 120 to, and is a continuation of U.S. patent application Ser. No. 14/790,454, filed Jul. 2, 2015 entitled “Pulse Oximeter Access Apparatus and Method,” which claims priority benefit under 35 U.S.C. § 120 to, and is a continuation of U.S. patent application Ser. No. 12/360,830, filed Jan. 27, 2009 entitled “Pulse Oximeter Access Apparatus and Method,” which claims priority benefit under 35 U.S.C. § 120 to, and is a continuation of U.S. patent application Ser. No. 10/981,186, filed Nov. 4, 2004 entitled “Pulse Oximeter Access Apparatus and Method,” now U.S. Pat. No. 7,482,729, which claims priority benefit under 35 U.S.C. § 119(e) from U.S. Provisional Application No. 60/517,954, filed Nov. 5, 2003, entitled “Pulse Oximeter Access Apparatus and Method.” The present application also incorporates the foregoing disclosures herein by reference.

US Referenced Citations (220)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Polczynski Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5685299 Diab et al. Nov 1997 A
5720293 Quinn et al. Feb 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5807247 Merchant et al. Sep 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6124597 Shehada Sep 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6321100 Parker Nov 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6490466 Fein et al. Dec 2002 B1
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali et al. Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6708049 Berson et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7067893 Mills et al. Jun 2006 B2
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
7132641 Schulz et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab May 2007 B2
7215986 Diab May 2007 B2
7221971 Diab May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254431 Al-Ali Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
Related Publications (1)
Number Date Country
20180028124 A1 Feb 2018 US
Provisional Applications (1)
Number Date Country
60517954 Nov 2003 US
Continuations (3)
Number Date Country
Parent 14790454 Jul 2015 US
Child 15686756 US
Parent 12360830 Jan 2009 US
Child 14790454 US
Parent 10981186 Nov 2004 US
Child 12360830 US