Pulse oximeter sensor with piece-wise function

Information

  • Patent Grant
  • 8224412
  • Patent Number
    8,224,412
  • Date Filed
    Tuesday, January 12, 2010
    14 years ago
  • Date Issued
    Tuesday, July 17, 2012
    11 years ago
Abstract
A memory in a sensor is used to store multiple coefficients for a physiological parameter. In one embodiment, not only are the sensor's specific calibration coefficients stored in a memory in the sensor for the formula to determine oxygen saturation, but multiple sets of coefficients are stored. The multiple sets apply to different ranges of saturation values to provide a better fit to occur by breaking the R to SpO2 relationship up into different pieces, each described by a different function. The different functions can also be according to different formulas for determining oxygen saturation.
Description
BACKGROUND OF THE INVENTION

The present invention relates to oximeter sensors having a memory.


Pulse oximetry is typically used to measure various blood flow characteristics including, but not limited to, the blood-oxygen saturation of hemoglobin in arterial blood, and the rate of blood pulsations corresponding to a heart rate of a patient. Measurement of these characteristics has been accomplished by use of a non-invasive sensor which passes light through a portion of the patient's tissue where blood perfuses the tissue, and photoelectrically senses the absorption of light in such tissue. The amount of light absorbed is then used to calculate the amount of blood constituent being measured.


The light passed through the tissue is selected to be of one or more wavelengths that are absorbed by the blood in an amount representative of the amount of the blood constituent present in the blood. The amount of transmitted or reflected light passed through the tissue will vary in accordance with the changing amount of blood constituent in the tissue and the related light absorption. For measuring blood oxygen level, such sensors have been provided with light sources and photodetectors that are adapted to operate at two different wavelengths, in accordance with known techniques for measuring blood oxygen saturation.


Various methods have been proposed in the past for coding information in sensors, including pulse oximeter sensors, to convey useful information to a monitor. For example, an encoding mechanism is shown in Nellcor U.S. Pat. No. 4,700,708. This mechanism relates to an optical oximeter probe which uses a pair of light emitting diodes (LEDs) to direct light through blood-perfused tissue, with a detector picking up light which has not been absorbed by the tissue. The operation depends upon knowing the wavelength of the LEDs. Since the wavelength of LEDs can vary from device-to-device, a coding resistor is placed in the sensor with the value of the resistor corresponding to the actual wavelength of at least one of the LEDs. When the oximeter instrument is turned on, it first determines the value of the resistor and thus appropriate saturation calculation coefficients for the value of the wavelengths of the LEDs in the probe.


Other coding mechanisms have also been proposed in U.S. Pat. Nos. 5,259,381; 4,942,877; 4,446,715; 3,790,910; 4,303,984; 4,621,643; 5,246,003; 3,720,177; 4,684,245; 5,645,059; 5,058,588; 4,858,615; and 4,942,877, the disclosures of which are all hereby incorporated by reference. The '877 patent in particular discloses storing a variety of data in a pulse oximetry sensor memory, including coefficients for a saturation equation for oximetry.


Nellcor pulse oximeter sensors are encoded with a resistor (RCAL) value that corresponds to the wavelength(s) of the LED(s) within the emitter, such as described in U.S. Pat. No. 4,700,708. Nellcor pulse oximeter instruments read this resistor coding value and use it as a pointer to a look-up table that holds the proper set of coefficients for that sensor for calculating arterial oxygen saturation (Sp02). The function that converts the measured red and IR signal modulation ratio R (also known as the “ratio of ratios” or “rat-rat”) to a calculated saturation value is derived from the basic form of the Lambert-Beer Law:












R
=





ln


(


I
1

/

I
2


)


red



ln


(


I
1

/

I
2


)


ir








=





S
·

β

O





2

Hb

red


+


(

1
-
S

)

·

β
Hb
red





S
·

β

O





2

Hb

ir


+


(

1
-
S

)

·

β
Hb
ir










=





S
·

c
1


+


(

1
-
S

)

·

c
2





S
·

c
3


+


(

1
-
S

)

·

c
4











(
1
)








where I1 and I2 refer to detected light signals at two different points in the cardiac cycle, and the β's refer to the characteristic light absorption properties of oxygenated and deoxygenated hemoglobin. When solved for the saturation (S), the result takes on the form:











Sp

O

2

=


S
·
100

=




c
2

-


c
4

·
R





(


c
3

-

c
4


)

·
R

+

(


c
2

-

c
1


)



·
100.






(
2
)







Equation 2 can be further simplified to require only three constants (by, for example, dividing each constant by c2), but will be used as shown for the remainder of this description. Although theoretically based, the four constants c1-c4 are empirically determined. Theoretical values for the constants are insufficient primarily due to the complexities of light scattering and sensor optics. The values of the sets of constants (c1 through c4) vary with each resistor coding bin (each “bin” corresponding to a range of different characterized LED wavelengths). Multiple sets of coefficients (bins) are provided within a lookup table in Nellcor oximeters. When calculated SpO2 values according to Eq. 2 are less than 70%, a revised value of SpO2 using a linear function is used:

SpO2=c5−c6·R,  (3)

where both c5 and c6 vary with the resistor coding value. This linear function was found to better match SpO2 (arterial oxygen saturation as measured by a pulse oximeter) with SaO2 (the true value of arterial oxygen saturation, as measured directly on a blood sample) in observations made at low saturations.


A limitation of this method is that the proper calibration of the pulse oximetry sensor can be accomplished only if the relationship between the signal modulation ratio (R) to blood SaO2 conforms to one of the pre-encoded sets of calibration coefficients.


A further limitation of this method is that the relationship between R and SaO2 of the pulse oximetry sensor may not be linear in a low-saturation region, or that the breakpoint may not optimally be located at 70% SpO2.


A yet further limitation of this prior art method is that the functional relationship between the true arterial oxygen saturation and the measured signals may not fit a single function over the entire span of the measurement range.


SUMMARY OF THE INVENTION

The present invention takes advantage of a memory in the sensor to provide enhanced performance. In one embodiment, not only are the sensor's specific calibration coefficients stored in a memory in the sensor for the formula to determine oxygen saturation, but multiple sets of coefficients are stored. The multiple sets apply to different ranges of saturation values to provide a better fit to occur by breaking the R to SpO2 relationship up into different pieces, each described by a different function. The different functions can also be according to different formulas for determining oxygen saturation.


In another aspect of the invention, the sensor can store a variable breakpoint between the two functions used for oxygen saturation. The two functions could either be separate formulas or the same formula with different coefficients. This allows optimization to a value other than the 70% breakpoint of the prior art.


In another aspect of the present invention, the sensor can store more than one breakpoint to create more than two functions describing the R to SpO2 relationship.


In yet another aspect of the present invention, a spline function is used, breaking up the R to SpO2 relationship into an arbitrary number of regions.


In one embodiment, the coefficients stored in the sensor memory correspond to a non-linear curve for low saturation values below 70% or some other breakpoint(s).


Each of the methods described here improve the fit between the chosen mathematical function and the arterial oxygen saturation by breaking the relationship into subsets of the full measured range and determining optimum coefficients for each range. Spline-fitting, in this context, similarly breaks the full measurement range into subsets to efficiently describe the numerical relational between the underlying tissue parameter of interest and the actual signals being used to estimate its value.


For a further understanding of the nature and advantages of the invention, reference should be made to the following description taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a pulse oximeter system incorporating the present invention.



FIG. 2 is a graph of R (signal modulation ratio) versus oxygen saturation (SaO2).



FIG. 3 is a diagram of the contents of a sensor memory according to the invention.



FIG. 4 is a graph of oxygen saturation versus R to illustrate the embodiment for spline or curve fitting to a predefined set of knots.



FIGS. 5A, 5B, 6A and 6B are graphs illustrating the improved curve fitting of the embodiments of the invention versus the prior art.





DESCRIPTION OF THE SPECIFIC EMBODIMENTS
Sensor Reader/Monitor


FIG. 1 is a block diagram of one embodiment of the invention. FIG. 1 shows a pulse oximeter 17 (or sensor reader) which is connected to a non-invasive sensor 15 attached to patient tissue 18. Light from sensor LEDs 14 passes into the patient tissue 18, and after being transmitted through or reflected from tissue 18, the light is received by photosensor 16. Either two or more LEDs can be used depending upon the embodiment of the present invention. Photosensor 16 converts the received energy into an electrical signal, which is then fed to input amplifier 20.


Light sources other than LEDs can be used. For example, lasers could be used, or a white light source could be used with appropriate wavelength filters either at the transmitting or receiving ends.


Time Processing Unit (TPU) 48 sends control signals to the LED drive 32, to activate the LEDs, typically in alternation. Again, depending on the embodiment, the drive may control two or any additional desired number of LEDs.


The signal received from input amplifier 20 is passed through two different channels as shown in the embodiment of FIG. 1 for two different wavelengths. Alternately, three channels for three wavelengths could be used, or N channels for N wavelengths. Each channel includes an analog switch 40, a low pass filter 42, and an analog to digital (A/D) converter 38. Control lines from TPU 48 select the appropriate channel at the time the corresponding LED 14 is being driven, in synchronization. A queued serial module (QSM) 46 receives the digital data from each of the channels via data lines 79. CPU 50 transfers the data from QSM 46 into RAM 52 as QSM 46 periodically fills up. In one embodiment, QSM 46, TPU 48, CPU 50 and RAM 52 are part of one integrated circuit, such as a microcontroller.


Sensor Memory


Sensor 15, which includes photodetector 16 and LEDs 14, has a sensor memory 12 associated with it. Memory 12 is connected to CPU 50 in the sensor reader or monitor 17. The memory 12 could be packaged in a body of the sensor 15 or in an electrical plug connected to the sensor. Alternatively, the memory 12 could be packaged in a housing which is attachable to an external surface of the monitor or the memory 12 could be located anywhere in a signal path between the sensor body and the monitor. Specifically, according to some preferred embodiments, a content of the sensor memory 12 could be constant for all sensors associated with a particular sensor model. In this case, instead of putting an individual memory 12 on each sensor associated with this model, the memory 12 could instead be included in a reusable extension cable associated with the sensor model. If the sensor model is a disposable sensor, in this case a single memory 12 would be incorporated into a reusable extension cable. The reusable cable could then be used with multiple disposable sensors.



FIG. 2 is an example of a graph of the ratio of ratios (R) on the X axis versus oxygen saturation (SaO2) on the Y axis. Shown is a breakpoint 52. In the prior art, a breakpoint of 70% was pre-defined in the monitor software. To the right of the breakpoint (oxygen saturations between 70-100%) a formula was used with four coefficients. To the left of the breakpoint in the prior art, a linear equation was used with two coefficients. The present invention provides increased flexibility and accuracy by using a non-linear formula for the portion of the curve to the left of breakpoint 52. By using a memory chip in the sensor itself, it is possible to actually store these coefficients on the memory chip, as well as the separate coefficients for the higher saturation values.


In another embodiment of the invention, breakpoint 52 can be stored in the memory chip, and chosen to optimize the curve fitting for the two sets of coefficients. In other words, a better fit to the two curves may be obtained if the breakpoint is 68%, for example. In an alternate embodiment, multiple breakpoints and curves might be used. In addition, rather than using the same formula, different formulas could be used for different sections in another embodiment.



FIG. 3 illustrates the contents of sensor memory 12 of FIG. 1. As illustrated, in a first section of memory 54 are stored a first set of coefficients. A second portion of memory 56 stores a second set of coefficients. Finally, in a third section of memory 58, the breakpoint 52 is stored. Different combinations of these elements could be stored in different memories. For example, the breakpoint could be left out of some, and in others a breakpoint may be provided with only one set of coefficients (with the other set of coefficients in the monitor). Alternately, a breakpoint might be implied from a sensor model number which is stored in the memory, or some other ID value.


β-Equation:


In one embodiment, an enhanced form of the curvilinear function is used. Instead of using Eq. 3 (linear) in the lower saturation region, Eq. 2 (non-linear) is used for both the upper and lower saturation regions. The breakpoint that defines when to switch coefficients from an upper-region set to a lower-region set is defined by another coefficient. The breakpoint can be programmed either as a value of R, or as a value of SpO2. With the breakpoint defined as a value of R, the algorithm becomes:











Sp

O

2

=




b
-

d
·
R





(

c
-
d

)

·
R

+

(

b
-
a

)



·
100



{









R



c
5



:






a


=

c
1


,

b
=

c
2


,







c
=

c
3


,

d
=

c
4
















R
>


c
5



:






a


=

c
6


,

b
=

c
7


,







c
=

c
8


,

d
=

c
9















(
4
)








Curve Fitting


Curve fitting to multiple regions follows the same methodology as fitting to a single region. Simply put, the data is partitioned into separate regions and coefficients are determined for each region separately. Commercially available software programs are available, (for example, Mathcad, (Mathsoft, Inc., Cambridge, Mass.). The process can also be found in, for example, Data Reduction and Error Analysis for the Physical Sciences (Philip Beviyton, McGraw-Hill, New York 1969, Ch. 11—Least squares fit to an arbitrary function).


Spline Fitting


An alternate embodiment uses either spline (curve) fitting, or linear or higher order interpolation to a predefined set of SpO2 vs R values (“knots”). A “knot” is a term of art in spline fitting that refers to an x-y pair corresponding to a node on a line, with a number of such knots defining the line. Spline fitting is a technique for interpolation.


For instance, the values of R at specifically defined SpO2 values would be stored in the sensor memory. An example of this looks like:






R
=



a


b


c











Sp

O

2

=



100


95


90








Alternatively, though less preferably, the independent variable could be swapped:






R
=



0.5


0.6


0.7











Sp

O

2

=



x


y


z









    • a) Only the bold values (e.g., a, b and c) would need to be stored with fixed, pre-selected spaced values of SpO2 (equally spaced or unequally spaced). Or, alternatively, preselected values of R.

    • b) An alternative approach would store within the sensor memory the SpO2(minimum) and SpO2(maximum) values of the spline range, the number of knots that will be defined, and the sequence of defined values of R for those knots.

    • c) A further alternative approach could store both SpO2 and the associated R value for each knot.


      For each of these options, the instrument would use a spline-fitting algorithm, preferably a cubic spline, to determine the SpO2 at the measured value of R according to the stored values (an alternative could be a linear or higher order interpolation algorithm).






FIG. 4 illustrates the cubic spline method. FIG. 4 is a graph of oxygen saturation vs. R for a particular sensor emitter. Thus, instead of storing the coefficients as in the prior art method, the actual R or oxygen saturation values are calculated and stored in the sensor memory for that particular sensor's characteristics (e.g., emitter wavelengths). When the oximeter measures the signal level of the light detector, it determines an oxygen saturation value by determining the point on the curve associated with the calculated R value between two of the sample points shown in FIG. 4.


There exists a trade-off in the number of knots defined and the amount of memory required to store them. Too few knots requires very little storage memory, but may not adequately describe the functional relationship; too many over-defines the curve and consumes more memory. The inventors have found that knots spaced 5%-10% apart give adequate results.


Cubic Spline Calculation:


The process for cubic spline interpolation is known to those skilled in the art. Intrinsic in using the spline method is that the value of R needs to be determined first before being translated to SpO2. The preferred process for spline interpolation can be accomplished using the functions provided in Mathcad, and treats the endpoints with cubic functions. Other references for cubic spline interpolations are available.


The process of finding the coordinates of the knots in empirical data with a significant amount of noise may require an additional step. Commercially available basic curve fitting programs may be used (sigmaPlot, or TableCurve, or Mathematical for instance) to determine a best-fit functional approximation to the data. Alternately, one can perform a least-squares fit of an arbitrarily chosen analytical function and pick the values of R at the knot locations (SaO2 values). The analytical function can be an overlapping piece-wise polynomial (e.g., linear or parabolic), or the curvilinear equation of Eq. 1 or Eq. 4. Another approach is to perform a least-squares selection of the knots directly.



FIG. 5A shows the conventional curve fitting of the prior art, wherein a linear relationship is used below 70% saturation, with a curvilinear approach above 70%. The residual error due to an imperfect fit to the actual R to Sa02 response for the curvilinear approach above 70% saturation is illustrated by curve 60, while the residual error of the linear interpolation approach below 70% is illustrated by dots 62. FIG. 5B illustrates the use of curvilinear fits in both regions, with a different curvilinear curve 64 being used below 70%. In this instance, a much improved fit is provided. In both figures, the smaller dotted line 66 corresponds to the use of a single curvilinear fit across both regions, which is also not as accurate, having a much higher error characteristic compared to the curves of the invention, 64 and 60 of FIG. 5B.



FIGS. 6A and 6B show a plurality of knots as circles 70 on the graphs. Dotted line 72 of FIG. 6A illustrates a linear interpolation fit to these knots, which shows a residual error prone result with multiple loops. In FIG. 6B, on the other hand, the present invention using a cubic spline fitting approach provides a dotted line 74 which is a more accurate fit to the knots 70.


As will be understood by those of skill in the art, the present invention may be embodied in other specific embodiments without departing from the essential characteristics thereof. For example, any function can be used for the formulas for determining oxygen saturation, not just the ones described. For a limited sensor memory, the function representation may be compressed. Any representation of a function could be used. Calibration coefficients may be based on more or different characteristics than the sensor's LED wavelength(s). For example, other LED emitter characteristics or sensor design characteristics can be factors in the sensor's calibration coefficients.


Additionally, the formula for calculating oxygen saturation may be a function of more than the ratio of ratios; for example, other input variables such as signal strength, light levels, and signals from multiple detectors could be used.


This methodology for piece-wise fitting is not limited to oximetry. This method is useful when the relationship between the measured signal and reference value observed during calibration is not adequately described by a single function or set of coefficients over the whole measurement range. The relationship may be broken into subsets, and a piece-wise continuous set of functions may be used to describe the relationship. For example, other blood or tissue constituents could be calculated, such as carboxyhemoglobin, methemoglobin, bilirubin, glucose, lactate, etc. Accordingly, the foregoing description is intended to be illustrative, but not limiting, of the scope of the invention which is set forth in the following claims.

Claims
  • 1. An oximeter system comprising: an oximeter sensor, comprising:a light emitter configured to direct light at a patient;a light detector mounted to receive light from the patient; anda sensor memory storing a first set of coefficients corresponding to a wavelength of the light emitter and a second set of coefficients corresponding to the wavelength of the light emitter;an oximeter monitor, comprising:a monitor memory storing a first formula and a second formula, wherein the first formula differs from the second formula and wherein at least one of the different formulas comprises a spline function; anda calculation mechanism configured to determine a blood oxygen saturation in the patient, wherein the calculation mechanism selects and utilizes the first set of coefficients in the first formula for a first range of oxygen saturation values and selects and utilizes the second set of coefficients in the second formula for a second range of oxygen saturation values, wherein the first range differs from the second range.
  • 2. The system of claim 1 wherein the coefficients are dependent on a mean wavelength of the light emitter.
  • 3. The system of claim 1 wherein at least one of the different formulas is a nonlinear formula.
  • 4. The system of claim 1 wherein the different formulas are linear formulas.
  • 5. The system of claim 1 wherein at least one of the different formulas comprises a ratio-of-ratios function.
  • 6. The system of claim 1 wherein the oximeter memory further stores a value indicating a signal breakpoint between the first and second formulas.
  • 7. The system of claim 6 wherein the value comprises an oxygen saturation level.
  • 8. An oximeter system comprising: an oximeter sensor, comprising:a light emitter configured to direct light at a patient;a light detector mounted to receive light from the patient; anda memory storing a first set and a second set of a plurality of alternate values of oxygen saturation or ratio-of-ratio values, wherein the plurality of values correspond to a same mean wavelength of the light emitter;an oximeter monitor, comprising:an oximeter memory storing a spline-fitting algorithm used to determine oxygen saturation; anda calculation mechanism configured to determine a blood oxygen saturation level in the patient, wherein the calculation mechanism uses the algorithm to define a first curve using the first set of a plurality of alternate values and uses the algorithm to define a second curve using the second set of a plurality of alternate values, wherein the first curve corresponds to a first range of oxygen saturation values and the second curve corresponds to a second range of oxygen saturation values, wherein the first range differs from the second range.
  • 9. A method of manufacturing an oximeter monitor, comprising: providing a drive circuit configured to provide signals to an oximeter sensor that is coupleable to a patient;providing a read circuit configured to read from a sensor memory a first set of coefficients for use in a first formula and a second set of coefficients for use in a second formula that is different from the first formula, wherein at least one of the first and second formulas comprises a spline function and wherein the read circuit is configured to provide the first and second sets of coefficients to a calculation circuit in the monitor; andproviding the calculation circuit in the monitor, wherein the calculation circuit is configured to determine a blood oxygen saturation in the patient by utilizing the first set of coefficients in the first formula for a first range of oxygen saturation and utilizing the second set of coefficients in the second formula for a second range of oxygen saturation, wherein the first range differs from the second range.
  • 10. The method of claim 9, comprising storing a value indicating a signal breakpoint between the first and second formulas.
  • 11. The method of claim 9, comprising storing the first and second formulas in a memory of the oximeter monitor.
  • 12. The method of claim 9, comprising providing the calculation circuit with an algorithm to read a breakpoint signal, wherein the breakpoint signal determines whether the calculation circuit uses the first formula or the second formula to calculate the blood oxygen saturation.
  • 13. The method of claim 12 wherein the calculation circuit is configured to read the breakpoint signal from the sensor memory.
  • 14. The method of claim 12 wherein the calculation circuit is configured to read the breakpoint signal from a memory of the oximeter monitor.
  • 15. The method of claim 12 wherein the breakpoint signal is based on an indication of oxygen saturation.
  • 16. A method of manufacturing an oximeter monitor, comprising: providing a drive circuit configured to provide signals to an oximeter sensor;providing a read circuit configured to read from a memory of the oximeter sensor a first set of coefficients for use in at least one formula comprising a spline function, a second set of coefficients for use in the same formula, and a breakpoint signal, wherein the breakpoint signal is based on an indication of oxygen saturation; andconfiguring the monitor to perform calculations using the at least one formula to estimate oxygen saturation in the blood of the patient, wherein the monitor is configured to use the breakpoint signal to determine whether the first set of coefficients or the second set of coefficients is used in the at least one formula.
  • 17. A method of manufacturing an oximeter monitor, comprising: providing a drive circuit configured to provide signals to an oximeter sensor;providing a memory containing a first formula and a second formula, wherein the first formula differs from the second formula and at least one of the different formulas comprises a spline function;providing a read circuit configured to request a first set of coefficients for use in the first formula, a second set of coefficients for use in the second formula, and a value indicating a signal breakpoint between the first and second formulas;providing a calculation mechanism configured to determine a blood oxygen saturation; wherein the calculation mechanism selects and utilizes the first set of coefficients in the first formula and selects and utilizes the second set of coefficients in the second formula.
  • 18. The method of claim 17 wherein the breakpoint signal is based on an indication of oxygen saturation.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. application Ser. No. 10/798,596, filed Mar. 10, 2004, which is a continuation of U.S. application Ser. No. 09/836,050, filed Apr. 16, 2001, now U.S. Pat. No. 6,801,797, which claims the benefit of U.S. Provisional Application No. 60/198,109, filed Apr. 17, 2000, the disclosures of which are each incorporated herein by reference.

US Referenced Citations (648)
Number Name Date Kind
3721813 Condon et al. Mar 1973 A
4086915 Kofsky et al. May 1978 A
4586513 Hamaguri May 1986 A
4603700 Nichols et al. Aug 1986 A
4621643 New, Jr. et al. Nov 1986 A
4623248 Sperinde Nov 1986 A
4653498 New, Jr. et al. Mar 1987 A
4685464 Goldberger et al. Aug 1987 A
4694833 Hamaguri Sep 1987 A
4697593 Evans et al. Oct 1987 A
4700708 New, Jr. et al. Oct 1987 A
4714080 Edgar, Jr. et al. Dec 1987 A
4714341 Hamaguri et al. Dec 1987 A
4759369 Taylor Jul 1988 A
4770179 New, Jr. et al. Sep 1988 A
4773422 Isaacson et al. Sep 1988 A
4776339 Schreiber Oct 1988 A
4781195 Martin Nov 1988 A
4796636 Branstetter et al. Jan 1989 A
4800495 Smith Jan 1989 A
4800885 Johnson Jan 1989 A
4802486 Goodman et al. Feb 1989 A
4805623 Jöbsis Feb 1989 A
4807630 Malinouskas Feb 1989 A
4807631 Hersh et al. Feb 1989 A
4819646 Cheung et al. Apr 1989 A
4819752 Zelin Apr 1989 A
4824242 Frick et al. Apr 1989 A
4825872 Tan et al. May 1989 A
4825879 Tan et al. May 1989 A
4830014 Goodman et al. May 1989 A
4832484 Aoyagi et al. May 1989 A
4846183 Martin Jul 1989 A
4848901 Hood, Jr. Jul 1989 A
4854699 Edgar, Jr. Aug 1989 A
4859056 Prosser et al. Aug 1989 A
4859057 Taylor et al. Aug 1989 A
4863265 Flower et al. Sep 1989 A
4865038 Rich et al. Sep 1989 A
4867557 Takatani et al. Sep 1989 A
4869253 Craig, Jr. et al. Sep 1989 A
4869254 Stone et al. Sep 1989 A
4880304 Jaeb et al. Nov 1989 A
4883055 Merrick Nov 1989 A
4883353 Hausmann et al. Nov 1989 A
4890619 Hatschek Jan 1990 A
4892101 Cheung et al. Jan 1990 A
4901238 Suzuki et al. Feb 1990 A
4908762 Suzuki et al. Mar 1990 A
4911167 Corenman et al. Mar 1990 A
4913150 Cheung et al. Apr 1990 A
4926867 Kanda et al. May 1990 A
4927264 Shiga et al. May 1990 A
4928692 Goodman et al. May 1990 A
4934372 Corenman et al. Jun 1990 A
4938218 Goodman et al. Jul 1990 A
4942877 Sakai et al. Jul 1990 A
4948248 Lehman Aug 1990 A
4955379 Hall Sep 1990 A
4960126 Conlon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
4971062 Hasebe et al. Nov 1990 A
4974591 Awazu et al. Dec 1990 A
5007423 Branstetter et al. Apr 1991 A
5025791 Niwa Jun 1991 A
RE33643 Isaacson et al. Jul 1991 E
5028787 Rosenthal et al. Jul 1991 A
5040539 Schmitt et al. Aug 1991 A
5054488 Muz Oct 1991 A
5055671 Jones Oct 1991 A
5058588 Kaestle Oct 1991 A
5065749 Hasebe et al. Nov 1991 A
5066859 Karkar et al. Nov 1991 A
5069213 Polczynski Dec 1991 A
5078136 Stone et al. Jan 1992 A
5084327 Stengel Jan 1992 A
5088493 Giannini et al. Feb 1992 A
5090410 Saper et al. Feb 1992 A
5094239 Jaeb et al. Mar 1992 A
5094240 Muz Mar 1992 A
5099841 Heinonen et al. Mar 1992 A
5099842 Mannheimer et al. Mar 1992 A
H1039 Tripp et al. Apr 1992 H
5104623 Miller Apr 1992 A
5109849 Goodman et al. May 1992 A
5111817 Clark et al. May 1992 A
5113861 Rother May 1992 A
5125403 Culp Jun 1992 A
5127406 Yamaguchi Jul 1992 A
5131391 Sakai et al. Jul 1992 A
5140989 Lewis et al. Aug 1992 A
5152296 Simons Oct 1992 A
5154175 Gunther Oct 1992 A
5158082 Jones Oct 1992 A
5170786 Thomas et al. Dec 1992 A
5188108 Secker Feb 1993 A
5190038 Polson et al. Mar 1993 A
5193542 Missanelli et al. Mar 1993 A
5193543 Yelderman Mar 1993 A
5203329 Takatani et al. Apr 1993 A
5209230 Swedlow et al. May 1993 A
5213099 Tripp et al. May 1993 A
5216598 Branstetter et al. Jun 1993 A
5217012 Young et al. Jun 1993 A
5217013 Lewis et al. Jun 1993 A
5218962 Mannheimer et al. Jun 1993 A
5224478 Sakai et al. Jul 1993 A
5226417 Swedlow et al. Jul 1993 A
5228440 Chung et al. Jul 1993 A
5237994 Goldberger Aug 1993 A
5239185 Ito et al. Aug 1993 A
5246002 Prosser Sep 1993 A
5246003 DeLonzor Sep 1993 A
5247931 Norwood Sep 1993 A
5247932 Chung et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5253645 Friedman et al. Oct 1993 A
5253646 Delpy et al. Oct 1993 A
5259381 Cheung et al. Nov 1993 A
5259761 Schnettler et al. Nov 1993 A
5263244 Centa et al. Nov 1993 A
5267562 Ukawa et al. Dec 1993 A
5267563 Swedlow et al. Dec 1993 A
5273036 Kronberg et al. Dec 1993 A
5275159 Griebel Jan 1994 A
5279295 Martens et al. Jan 1994 A
5285783 Secker Feb 1994 A
5285784 Seeker Feb 1994 A
5287853 Vester et al. Feb 1994 A
5291884 Heinemann et al. Mar 1994 A
5297548 Pologe Mar 1994 A
5299120 Kaestle Mar 1994 A
5299570 Hatschek Apr 1994 A
5309908 Friedman et al. May 1994 A
5311865 Mayeux May 1994 A
5313940 Fuse et al. May 1994 A
5323776 Blakeley et al. Jun 1994 A
5329922 Atlee, III Jul 1994 A
5337744 Branigan Aug 1994 A
5339810 Ivers et al. Aug 1994 A
5343818 McCarthy et al. Sep 1994 A
5343869 Pross et al. Sep 1994 A
5348003 Caro Sep 1994 A
5348004 Hollub et al. Sep 1994 A
5348005 Merrick et al. Sep 1994 A
5349519 Kaestle Sep 1994 A
5349952 McCarthy et al. Sep 1994 A
5349953 McCarthy et al. Sep 1994 A
5351685 Potratz Oct 1994 A
5353799 Chance Oct 1994 A
5355880 Thomas et al. Oct 1994 A
5355882 Ukawa et al. Oct 1994 A
5361758 Hall et al. Nov 1994 A
5365066 Krueger, Jr. et al. Nov 1994 A
5368025 Young et al. Nov 1994 A
5368026 Swedlow et al. Nov 1994 A
5368224 Richardson et al. Nov 1994 A
5372136 Steuer et al. Dec 1994 A
5377675 Ruskewicz et al. Jan 1995 A
5385143 Aoyagi Jan 1995 A
5386827 Chance et al. Feb 1995 A
5387122 Goldberger et al. Feb 1995 A
5390670 Centa et al. Feb 1995 A
5392777 Swedlow et al. Feb 1995 A
5398680 Polson et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5402777 Warring et al. Apr 1995 A
5411023 Morris, Sr. et al. May 1995 A
5411024 Thomas et al. May 1995 A
5413099 Schmidt et al. May 1995 A
5413100 Barthelemy et al. May 1995 A
5413101 Sugiura May 1995 A
5413102 Schmidt et al. May 1995 A
5417207 Young et al. May 1995 A
5421329 Casciani et al. Jun 1995 A
5425360 Nelson Jun 1995 A
5425362 Siker et al. Jun 1995 A
5427093 Ogawa et al. Jun 1995 A
5429128 Cadell et al. Jul 1995 A
5429129 Lovejoy et al. Jul 1995 A
5431159 Baker et al. Jul 1995 A
5431170 Mathews Jul 1995 A
5437275 Amundsen et al. Aug 1995 A
5438986 Disch et al. Aug 1995 A
5448991 Polson et al. Sep 1995 A
5452717 Branigan et al. Sep 1995 A
5465714 Scheuing Nov 1995 A
5469845 DeLonzor et al. Nov 1995 A
RE35122 Corenman et al. Dec 1995 E
5482034 Lewis et al. Jan 1996 A
5482036 Diab et al. Jan 1996 A
5483646 Uchikoga Jan 1996 A
5485847 Baker, Jr. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5490523 Isaacson et al. Feb 1996 A
5491299 Naylor et al. Feb 1996 A
5494032 Robinson et al. Feb 1996 A
5497771 Rosenheimer Mar 1996 A
5499627 Steuer et al. Mar 1996 A
5503148 Pologe et al. Apr 1996 A
5505199 Kim Apr 1996 A
5507286 Solenberger Apr 1996 A
5517988 Gerhard May 1996 A
5520177 Ogawa et al. May 1996 A
5521851 Wei et al. May 1996 A
5522388 Ishikawa et al. Jun 1996 A
5524617 Mannheimer Jun 1996 A
5529064 Rall et al. Jun 1996 A
5533507 Potratz Jul 1996 A
5551423 Sugiura Sep 1996 A
5551424 Morrison et al. Sep 1996 A
5553614 Chance Sep 1996 A
5553615 Carim et al. Sep 1996 A
5555882 Richardson et al. Sep 1996 A
5558096 Palatnik Sep 1996 A
5560355 Merchant et al. Oct 1996 A
5564417 Chance Oct 1996 A
5575284 Athan et al. Nov 1996 A
5575285 Takanashi et al. Nov 1996 A
5577500 Potratz Nov 1996 A
5582169 Oda et al. Dec 1996 A
5584296 Cui et al. Dec 1996 A
5588425 Sackner et al. Dec 1996 A
5588427 Tien Dec 1996 A
5590652 Inai Jan 1997 A
5595176 Yamaura Jan 1997 A
5596986 Goldfarb Jan 1997 A
5611337 Bukta Mar 1997 A
5617852 MacGregor Apr 1997 A
5619992 Guthrie et al. Apr 1997 A
5626140 Feldman et al. May 1997 A
5630413 Thomas et al. May 1997 A
5632272 Diab et al. May 1997 A
5632273 Suzuki May 1997 A
5634459 Gardosi Jun 1997 A
5638593 Gerhardt et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645060 Yorkey et al. Jul 1997 A
5645440 Tobler et al. Jul 1997 A
5660567 Nierlich et al. Aug 1997 A
5662105 Tien Sep 1997 A
5662106 Swedlow et al. Sep 1997 A
5666952 Fuse et al. Sep 1997 A
5671529 Nelson Sep 1997 A
5673692 Schulze et al. Oct 1997 A
5673693 Solenberger Oct 1997 A
5676139 Goldberger et al. Oct 1997 A
5676141 Hollub Oct 1997 A
5678544 DeLonzor et al. Oct 1997 A
5680857 Pelikan et al. Oct 1997 A
5685299 Diab et al. Nov 1997 A
5685301 Klomhaus Nov 1997 A
5687719 Sato et al. Nov 1997 A
5687722 Tien et al. Nov 1997 A
5692503 Kuenstner Dec 1997 A
5692505 Fouts Dec 1997 A
5709205 Bukta Jan 1998 A
5713355 Richardson et al. Feb 1998 A
5724967 Venkatachalam Mar 1998 A
5727547 Levinson et al. Mar 1998 A
5731582 West Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743260 Chung et al. Apr 1998 A
5743263 Baker, Jr. Apr 1998 A
5746206 Mannheimer May 1998 A
5746697 Swedlow et al. May 1998 A
5752914 DeLonzor et al. May 1998 A
5755226 Carim et al. May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5766125 Aoyagi et al. Jun 1998 A
5766127 Pologe et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5772587 Gratton et al. Jun 1998 A
5774213 Trebino et al. Jun 1998 A
5776058 Levinson et al. Jul 1998 A
5776059 Kaestle Jul 1998 A
5779630 Fein et al. Jul 1998 A
5779631 Chance Jul 1998 A
5782237 Casciani et al. Jul 1998 A
5782756 Mannheimer Jul 1998 A
5782757 Diab et al. Jul 1998 A
5782758 Ausec et al. Jul 1998 A
5783821 Costello, Jr. Jul 1998 A
5786592 Hök Jul 1998 A
5790729 Pologe et al. Aug 1998 A
5792052 Isaacson et al. Aug 1998 A
5795292 Lewis et al. Aug 1998 A
5797841 DeLonzor et al. Aug 1998 A
5800348 Kaestle Sep 1998 A
5800349 Isaacson et al. Sep 1998 A
5803910 Potratz Sep 1998 A
5807246 Sakaguchi et al. Sep 1998 A
5807247 Merchant et al. Sep 1998 A
5807248 Mills Sep 1998 A
5810723 Aldrich Sep 1998 A
5810724 Gronvall Sep 1998 A
5813980 Levinson et al. Sep 1998 A
5817008 Rafert et al. Oct 1998 A
5817009 Rosenheimer et al. Oct 1998 A
5817010 Hibl Oct 1998 A
5818985 Merchant et al. Oct 1998 A
5820550 Polson et al. Oct 1998 A
5823950 Diab et al. Oct 1998 A
5823952 Levinson et al. Oct 1998 A
5827182 Raley et al. Oct 1998 A
5830135 Bosque et al. Nov 1998 A
5830136 DeLonzor et al. Nov 1998 A
5830137 Scharf Nov 1998 A
5839439 Nierlich et al. Nov 1998 A
RE36000 Swedlow et al. Dec 1998 E
5842979 Jarman et al. Dec 1998 A
5842981 Larsen et al. Dec 1998 A
5842982 Mannheimer Dec 1998 A
5846190 Woehrle Dec 1998 A
5851178 Aronow Dec 1998 A
5851179 Ritson et al. Dec 1998 A
5853364 Baker, Jr. et al. Dec 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5865736 Baker, Jr. et al. Feb 1999 A
5871442 Madarasz et al. Feb 1999 A
5879294 Anderson et al. Mar 1999 A
5885213 Richardson et al. Mar 1999 A
5890929 Mills et al. Apr 1999 A
5891021 Dillon et al. Apr 1999 A
5891022 Pologe Apr 1999 A
5891024 Jarman et al. Apr 1999 A
5891025 Buschmann et al. Apr 1999 A
5891026 Wang et al. Apr 1999 A
5902235 Lewis et al. May 1999 A
5910108 Solenberger Jun 1999 A
5911690 Rall Jun 1999 A
5912656 Tham et al. Jun 1999 A
5913819 Taylor et al. Jun 1999 A
5916154 Hobbs et al. Jun 1999 A
5916155 Levinson et al. Jun 1999 A
5919133 Taylor et al. Jul 1999 A
5919134 Diab Jul 1999 A
5920263 Huttenhoff et al. Jul 1999 A
5921921 Potratz et al. Jul 1999 A
5922607 Bernreuter Jul 1999 A
5924979 Swedlow et al. Jul 1999 A
5924980 Coetzee Jul 1999 A
5924982 Chin Jul 1999 A
5924985 Jones Jul 1999 A
5934277 Mortz Aug 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5954644 Dettling et al. Sep 1999 A
5960610 Levinson et al. Oct 1999 A
5961450 Merchant et al. Oct 1999 A
5961452 Chung et al. Oct 1999 A
5964701 Asada et al. Oct 1999 A
5971930 Elghazzawi Oct 1999 A
5978691 Mills Nov 1999 A
5978693 Hamilton et al. Nov 1999 A
5983122 Jarman et al. Nov 1999 A
5987343 Kinast Nov 1999 A
5991648 Levin Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995858 Kinast Nov 1999 A
5995859 Takahashi Nov 1999 A
5997343 Mills et al. Dec 1999 A
5999834 Wang et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6005658 Kaluza et al. Dec 1999 A
6006120 Levin Dec 1999 A
6011985 Athan et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6014576 Raley et al. Jan 2000 A
6018673 Chin et al. Jan 2000 A
6018674 Aronow Jan 2000 A
6022321 Amano et al. Feb 2000 A
6023541 Merchant et al. Feb 2000 A
6026312 Shemwell et al. Feb 2000 A
6026314 Amerov et al. Feb 2000 A
6031603 Fine et al. Feb 2000 A
6035223 Baker, Jr. Mar 2000 A
6036642 Diab et al. Mar 2000 A
6041247 Weckstrom et al. Mar 2000 A
6044283 Fein et al. Mar 2000 A
6047201 Jackson, III Apr 2000 A
6061584 Lovejoy et al. May 2000 A
6064898 Aldrich May 2000 A
6064899 Fein et al. May 2000 A
6067462 Diab et al. May 2000 A
6073038 Wang et al. Jun 2000 A
6078833 Hueber Jun 2000 A
6081735 Diab et al. Jun 2000 A
6081742 Amano et al. Jun 2000 A
6083157 Noller Jul 2000 A
6083172 Baker, Jr. et al. Jul 2000 A
6088607 Diab et al. Jul 2000 A
6094592 Yorkey et al. Jul 2000 A
6095974 Shemwell et al. Aug 2000 A
6104938 Huiku et al. Aug 2000 A
6112107 Hannula Aug 2000 A
6113541 Dias et al. Sep 2000 A
6115621 Chin Sep 2000 A
6122535 Kaestle et al. Sep 2000 A
6133994 Mathews et al. Oct 2000 A
6135952 Coetzee Oct 2000 A
6144444 Haworth et al. Nov 2000 A
6144867 Walker et al. Nov 2000 A
6144868 Parker Nov 2000 A
6149481 Wang et al. Nov 2000 A
6150951 Olejniczak Nov 2000 A
6151107 Schöllermann et al. Nov 2000 A
6151518 Hayashi Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6154667 Miura et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6163715 Larsen et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6173196 Delonzor et al. Jan 2001 B1
6178343 Bindszus et al. Jan 2001 B1
6181958 Steuer et al. Jan 2001 B1
6181959 Schöllermann et al. Jan 2001 B1
6184521 Coffin, IV et al. Feb 2001 B1
6188470 Grace Feb 2001 B1
6192260 Chance Feb 2001 B1
6195575 Levinson Feb 2001 B1
6198951 Kosuda et al. Mar 2001 B1
6206830 Diab et al. Mar 2001 B1
6213952 Finarov et al. Apr 2001 B1
6217523 Amano et al. Apr 2001 B1
6222189 Misner et al. Apr 2001 B1
6226539 Potratz May 2001 B1
6226540 Bernreuter May 2001 B1
6229856 Diab et al. May 2001 B1
6230035 Aoyagi et al. May 2001 B1
6233470 Tsuchiya May 2001 B1
6236871 Tsuchiya May 2001 B1
6236872 Diab et al. May 2001 B1
6240305 Tsuchiya May 2001 B1
6253097 Aronow et al. Jun 2001 B1
6253098 Walker et al. Jun 2001 B1
6256523 Diab et al. Jul 2001 B1
6256524 Walker et al. Jul 2001 B1
6261236 Grimblatov Jul 2001 B1
6263221 Chance et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6263223 Shepherd et al. Jul 2001 B1
6266546 Steuer et al. Jul 2001 B1
6266547 Walker et al. Jul 2001 B1
6272363 Casciani et al. Aug 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285894 Oppelt et al. Sep 2001 B1
6285895 Ristolainen et al. Sep 2001 B1
6285896 Tobler et al. Sep 2001 B1
6298252 Kovach et al. Oct 2001 B1
6308089 Von der Ruhr et al. Oct 2001 B1
6321100 Parker Nov 2001 B1
6330468 Scharf Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6339715 Bahr et al. Jan 2002 B1
6343223 Chin et al. Jan 2002 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6351658 Middleman et al. Feb 2002 B1
6353750 Kimura et al. Mar 2002 B1
6356774 Bernstein et al. Mar 2002 B1
6360113 Dettling Mar 2002 B1
6360114 Diab et al. Mar 2002 B1
6361501 Amano et al. Mar 2002 B1
6363269 Hanna et al. Mar 2002 B1
6370408 Merchant et al. Apr 2002 B1
6370409 Chung et al. Apr 2002 B1
6374129 Chin et al. Apr 2002 B1
6377829 Al-Ali et al. Apr 2002 B1
6381479 Norris Apr 2002 B1
6381480 Stoddar et al. Apr 2002 B1
6385471 Mortz May 2002 B1
6385821 Modgil et al. May 2002 B1
6388240 Schulz et al. May 2002 B2
6393310 Kuenster May 2002 B1
6397091 Diab et al. May 2002 B2
6397092 Norris et al. May 2002 B1
6397093 Aldrich May 2002 B1
6400971 Finarov et al. Jun 2002 B1
6400972 Fine Jun 2002 B1
6402690 Rhee et al. Jun 2002 B1
6408198 Hanna et al. Jun 2002 B1
6411832 Guthermann Jun 2002 B1
6411833 Baker, Jr. et al. Jun 2002 B1
6419671 Lemberg Jul 2002 B1
6421549 Jacques Jul 2002 B1
6430423 DeLonzor et al. Aug 2002 B2
6430513 Wang et al. Aug 2002 B1
6438399 Kurth Aug 2002 B1
6453183 Walker Sep 2002 B1
6463310 Swedlow et al. Oct 2002 B1
6463311 Diab Oct 2002 B1
6466808 Chin et al. Oct 2002 B1
6470200 Walker et al. Oct 2002 B2
6496711 Athan et al. Dec 2002 B1
6498942 Esenaliev et al. Dec 2002 B1
6501975 Diab et al. Dec 2002 B2
6512937 Blank et al. Jan 2003 B2
6515273 Al-Ali Feb 2003 B2
6519486 Edgar, Jr. et al. Feb 2003 B1
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6526301 Larsen et al. Feb 2003 B2
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6549284 Boas et al. Apr 2003 B1
6553242 Sarussi Apr 2003 B1
6553243 Gurley Apr 2003 B2
6564088 Soller et al. May 2003 B1
6574491 Elghazzawi Jun 2003 B2
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587704 Fine et al. Jul 2003 B1
6594511 Stone et al. Jul 2003 B2
6594513 Jobsis et al. Jul 2003 B1
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6615064 Aldrich Sep 2003 B1
6615065 Barrett et al. Sep 2003 B1
6622034 Gorski et al. Sep 2003 B1
6643530 Diab et al. Nov 2003 B2
6647280 Bahr et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654622 Eberhard et al. Nov 2003 B1
6654624 Diab et al. Nov 2003 B2
6658276 Kianl et al. Dec 2003 B2
6662033 Casciani et al. Dec 2003 B2
6671526 Aoyagi et al. Dec 2003 B1
6671528 Steuer et al. Dec 2003 B2
6671530 Chung et al. Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6675031 Porges et al. Jan 2004 B1
6678543 Diab et al. Jan 2004 B2
6681126 Solenberger Jan 2004 B2
6681128 Steuer et al. Jan 2004 B2
6681454 Modgil et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6694160 Chin Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6708049 Berson et al. Mar 2004 B1
6714803 Mortz Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721584 Baker, Jr. et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6735459 Parker May 2004 B2
6745060 Diab et al. Jun 2004 B2
6748253 Norris et al. Jun 2004 B2
6760609 Jacques Jul 2004 B2
6763255 DeLonzor et al. Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6792300 Diab et al. Sep 2004 B1
6793654 Lemberg Sep 2004 B2
6801797 Mannheimer et al. Oct 2004 B2
6810277 Edgar et al. Oct 2004 B2
6813511 Diab et al. Nov 2004 B2
6816741 Diab Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6836679 Baker, Jr. et al. Dec 2004 B2
6845256 Chin et al. Jan 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6898452 Al-Ali et al. May 2005 B2
6916289 Schnall Jul 2005 B2
6939307 Dunlop Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6971580 Zhu et al. Dec 2005 B2
6979812 Al-Ali Dec 2005 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7006855 Sarussi Feb 2006 B1
7024233 Ali et al. Apr 2006 B2
7035697 Brown Apr 2006 B1
7039449 Al-Ali May 2006 B2
7043289 Fine et al. May 2006 B2
7047055 Boaz et al. May 2006 B2
7048687 Reuss et al. May 2006 B1
7062307 Norris et al. Jun 2006 B2
7067893 Mills et al. Jun 2006 B2
7072702 Edgar, Jr. et al. Jul 2006 B2
RE39268 Merrick et al. Sep 2006 E
7130671 Baker, Jr. et al. Oct 2006 B2
7132641 Schulz et al. Nov 2006 B2
7190984 DeLonzor et al. Mar 2007 B1
7215984 Diab et al. May 2007 B2
7254433 Diab et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7315753 Baker, Jr. et al. Jan 2008 B2
7428432 Ali et al. Sep 2008 B2
7457652 Porges et al. Nov 2008 B2
7522948 Chin Apr 2009 B2
20010021803 Blank et al. Sep 2001 A1
20020026109 Diab et al. Feb 2002 A1
20020028990 Sheperd et al. Mar 2002 A1
20020103423 Chin et al. Aug 2002 A1
20020128544 Diab et al. Sep 2002 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030045785 Diab et al. Mar 2003 A1
20030132495 Mills et al. Jul 2003 A1
20030135099 Al-Ali Jul 2003 A1
20030162414 Schulz et al. Aug 2003 A1
20030197679 Ali et al. Oct 2003 A1
20040059209 Al-Ali et al. Mar 2004 A1
20040064020 Diab et al. Apr 2004 A1
20040068164 Diab et al. Apr 2004 A1
20040097797 Porges et al. May 2004 A1
20040116789 Boas et al. Jun 2004 A1
20040133087 Ali et al. Jul 2004 A1
20040133088 Al-Ali et al. Jul 2004 A1
20040147823 Kiani et al. Jul 2004 A1
20040147824 Diab et al. Jul 2004 A1
20040152965 Diab et al. Aug 2004 A1
20040158134 Diab et al. Aug 2004 A1
20040158135 Baker, Jr. et al. Aug 2004 A1
20040162472 Berson et al. Aug 2004 A1
20040176671 Fine et al. Sep 2004 A1
20040181134 Baker, Jr. et al. Sep 2004 A1
20040204636 Diab et al. Oct 2004 A1
20040204637 Diab et al. Oct 2004 A1
20040204638 Diab et al. Oct 2004 A1
20040204639 Casciani et al. Oct 2004 A1
20040210146 Diab et al. Oct 2004 A1
20040236196 Diab et al. Nov 2004 A1
20050020894 Norris et al. Jan 2005 A1
20050033128 Ali et al. Feb 2005 A1
20050033129 Edgar, Jr. et al. Feb 2005 A1
20050043600 Diab et al. Feb 2005 A1
20050065417 Ali et al. Mar 2005 A1
20050283059 Iyer et al. Dec 2005 A1
20060030764 Porges et al. Feb 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060200018 Al-Ali Sep 2006 A1
20060224059 Swedlow et al. Oct 2006 A1
20060258926 Ali et al. Nov 2006 A1
20070112260 Diab et al. May 2007 A1
20080039701 Ali et al. Feb 2008 A1
20080287757 Berson et al. Nov 2008 A1
Foreign Referenced Citations (11)
Number Date Country
0571225 Nov 1993 EP
0793942 Mar 1997 EP
3939782 Jul 1996 JP
10337282 Dec 1998 JP
2001-245871 Mar 2000 JP
4038280 Nov 2007 JP
WO 9111137 Aug 1991 WO
WO 9306775 Apr 1993 WO
WO 9313706 Jul 1993 WO
WO 9516387 Jun 1995 WO
WO 0061000 Oct 2000 WO
Related Publications (1)
Number Date Country
20100113903 A1 May 2010 US
Provisional Applications (1)
Number Date Country
60198109 Apr 2000 US
Divisions (1)
Number Date Country
Parent 10798596 Mar 2004 US
Child 12686277 US
Continuations (1)
Number Date Country
Parent 09836050 Apr 2001 US
Child 10798596 US