The present invention relates to a pulse tube refrigerator comprising a pulse tube connected to a cold reservoir and having a hot end that generates heat.
A conventional pulse tube refrigerator (Japanese Patent Application Laid-Open (kokai) No. 8-271071) is constructed as shown in
In the above conventional pulse tube refrigerator, when refrigerant flows from the phase adjustment changeover valve 106 into the hot end 105c of the pulse tube 105 via the flow-rate adjustment means 122, the refrigerant undergoes adiabatic compression, whereby the gas temperature within the pulse tube increases, and the wall temperature of the pulse tube 105 elevates to about 120° C. in a range extending from the hot end 105c of the pulse tube 105 to a longitudinally central portion of the pulse tube. Accordingly, the above conventional pulse tube refrigerator has a problem in that heat of the hot gas within the pulse tube 105 and heat of the wall of the pulse tube 105 are conducted to a cold end of the pulse tube 105, to thereby lower refrigeration capacity.
Moreover, since a heat radiating unit 102 of a heat exchange unit A is interposed between the main changeover valve 111 and the cold reservoir 103, the above conventional pulse tube refrigerator has a problem in that the free gas space increases, thereby decreasing the refrigeration capacity of the refrigerator.
In view of technical requirements of reducing the quantity of heat conducting to the cold end of the pulse tube 105 and the free gas space of the heat radiating unit 102 of the heat exchange unit A, the present inventor has conceived a technical idea of the present invention such that, in a pulse tube refrigerator having a pulse tube connected to a cold reservoir and having a hot end that generates heat, a high-temperature-side portion on the wall of the pulse tube is cooled by means of cooling medium which is lower in temperature than the high-temperature-side wall portion of the pulse tube.
Based on the technical concepts of the present invention, the inventors of the present invention have made further extensive studies and developments, thus arrived at completion of the present invention.
It is an object of the present invention to increase a refrigerating capacity of a pulse tube refrigerator.
The present invention provides a pulse tube refrigerator which comprises a pulse tube connected to a cold reservoir and having a hot end that generates heat, and cooling means for cooling a high-temperature-side portion on the wall of the pulse tube by use of cooling medium which is lower in temperature than the high-temperature-side portion on the wall of the pulse tube.
The present invention according to the first invention provides a pulse tube refrigerator in which the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use or refrigerant of the pulse tube refrigerator.
The present invention according to the first invention provides a pulse tube refrigerator in which the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of atmospheric air.
The present invention according to the second invention provides a pulse tube refrigerator in which the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant which flows out of a pressure source and flows into the cold reservoir.
The present invention according to the second invention provides a pulse tube refrigerator in which the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant which flows between a discharge port of a pressure source and a high-pressure inlet port of a changeover valve communicating with the discharge port of the pressure source.
The present invention according to the second invention provides a pulse tube refrigerator in which the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant which flows out of the cold reservoir and flows into a pressure source.
The present invention according to the second invention provides a pulse tube refrigerator in which the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant which flows between a low-pressure outlet port of a changeover valve and a suction port of a pressure source.
The present invention according to the second invention provides a pulse tube refrigerator in which the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant from a compressor provided separately.
The present invention according to the second invention provides a pulse tube refrigerator in which the cooling means cools a heat radiating unit disposed at the hot end of the pulse tube, by use of refrigerant which flows between a discharge side of a pressure source and a high-pressure inlet port of a changeover valve communicating with the discharge side of the pressure source.
The present invention according to the second invention provides a pulse tube refrigerator in which the cooling means cools a heat radiating unit disposed at the hot end of the pulse tube, by use of refrigerant which flows between a suction port of a pressure source and a low-pressure outlet port of a changeover valve communicating with the suction port of the pressure source.
The present invention according to the second invention provides a pulse tube refrigerator in which a radiator is provided between a suction port of a pressure source and a low-pressure outlet port of a changeover valve communicating with the suction port of the pressure source; the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant flowing out of the low-pressure outlet port of the changeover valve; and the refrigerant used to cool the high-temperature-side portion on the wall of the pulse tube is cooled by use of the radiator.
The present invention according to the second invention provides a pulse tube refrigerator in which a radiator is provided between a suction port of a pressure source and a low-pressure outlet port of a changeover valve communicating with the suction port of the pressure source; the cooling means cools a heat radiating unit disposed at the hot end of the pulse tube by use of refrigerant flowing out of the low-pressure outlet port of the changeover valve; and the refrigerant used to cool the heat radiating unit is cooled by use of the radiator.
The present invention according to the third invention provides a pulse tube refrigerator in which the cooling means is constituted by a high-temperature-side portion on the wall of the pulse tube disposed in the atmosphere.
The present invention according to the thirteenth invention provides a pulse tube refrigerator in which fins are provided on an outer circumferential surface of the high-temperature-side portion on the wall of the pulse tube disposed in the atmosphere.
The present invention according to the thirteenth invention or the fourteenth invention provides a pulse tube refrigerator in which air is forcedly supplied to the high-temperature-side portion of the wall of the pulse tube.
The present invention according to the thirteenth invention provides a pulse tube refrigerator in which the high-temperature-side portion on the wall of the pulse tube disposed in the atmosphere is formed of a member having good heat conduction; a low-temperature-side portion on the wall of the pulse tube disposed within a vacuum tank is formed of a member having poor heat conduction; and the high-temperature-side portion and the low-temperature-side portion are joined together.
The present invention according to the thirteenth invention provides a pulse tube refrigerator in which one end of a conducting member is disposed in thermal contact with the high-temperature-side portion on the wall of the pulse tube, and the other end of the conducting member is disposed in thermal contact with a cooling source which is lower in temperature than the high-temperature-side portion on the wall of the pulse tube.
The present invention according to the seventeenth invention provides a pulse tube refrigerator in which the cooling source is formed of a vacuum tank of the refrigerator.
In the pulse tube refrigerator of the first invention having the above-described construction the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of cooling medium which is lower in temperature than the high-temperature-side portion on the wall of the pulse tube. Therefore, the pulse tube refrigerator of the present invention accomplishes the effect of increasing the refrigerating capacity.
In the pulse tube refrigerator of the second invention having the above-described construction according to the first invention, the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant of the pulse tube refrigerator. Therefore the pulse tube refrigerator of the second invention accomplishes the effect of increasing the refrigerating capacity as a result of a decrease in the quantity of heat which reaches a cold end of the pulse tube because of movement of refrigerant gas.
In the pulse tube refrigerator of the third invention having the above-described construction according to the first invention, the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of atmospheric air. Therefore, the pulse tube refrigerator of the third invention accomplishes the effect of increasing the refrigerating capacity.
In the pulse tube refrigerator of the fourth invention having the above-described construction according to the second invention, the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant which flows out of the pressure source and flows into the cold reservoir. Accordingly, in the pulse tube refrigerator of the present invention, when refrigerant flows from a phase adjuster to the pulse tube, the gas temperature at the high-temperature side of the pulse tube increases; and refrigerant flows from the phase adjuster toward the pulse tube in synchronism with the timing at which refrigerant flows out of a pressure source and flows into the cold reservoir. Therefore, the high-temperature-side wall portion of the pulse tube is cooled effectively and refrigerant at the high-temperature side of the pulse tube is cooled effectively via the wall. Moreover, the pulse tube refrigerator of the fourth invention accomplishes the effect of increasing the refrigerating capacity.
In the pulse tube refrigerator of the fifth invention having the above-described construction according to the second invention, the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant which flows between a discharge port of a pressure source and the high-pressure inlet port of the changeover valve communicating with the discharge port of the pressure source. Therefore, in the pulse tube refrigerator of the present invention, the high-temperature-side wall portion of the pulse tube and refrigerant at the high-temperature side of the pulse tube are cooled, and such cooling is effected by use of refrigerant flowing between a discharge port of the pressure source and an inflow side of the changeover valve. Therefore, even when the high-temperature side portion of the pulse tube is cooled by means of refrigerant flowing out of the pressure source, a free gas space between the changeover valve and the hot end of the cold reservoir does not increase. Moreover, the pulse tube refrigerator of the present invention accomplishes the effect of increasing the refrigerating capacity effectively.
In the pulse tube refrigerator of the sixth invention having the above-described construction according to the second invention, the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant which flows out of the cold reservoir and flows into a pressure source. Therefore, in a pulse tube refrigerator of the sixth invention, the timing of cooling the high-temperature side of the pulse tube shifts by about 180° as compared with the above-described fourth invention. However, refrigerant flowing into the pressure source is lower in temperature than refrigerant flowing into the hot end of the cold reservoir, because refrigerant flowing out of the hot end of the cold reservoir flows into the pressure source. Therefore, the temperature of refrigerant which cools the high-temperature side wall portion of the pulse tube is low. Therefore, when the wall of the pulse tube is thick, the heat capacity of the pulse tube increases so that influence of the timing shift is mitigated by the heat accumulation effect of the wall. Moreover, the pulse tube refrigerator of the sixth invention accomplishes the effect of increasing the refrigerating capacity.
In the pulse tube refrigerator of the seventh invention having the above-described construction according to the second invention, the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant which flows between the low-pressure outlet port of a changeover valve and a suction port of the pressure source. Therefore, the pulse tube refrigerator of the seventh invention is the same as that of the above-described sixth invention in terms of the action of cooling the high-temperature-side portion on the wall of the pulse tube and cooling the high-temperature side of the pulse tube via the wall. However, since cooling is performed by use of refrigerant which flows between the suction port of the pressure source and the low-pressure outlet port of the changeover valve, even when the high-temperature side of the pulse tube is cooled by refrigerant flowing to the suction port of the pressure source, the free gas space between the changeover valve and the hot end of the cold reservoir does not increase. Moreover, the pulse tube refrigerator of the seventh invention accomplishes the effect of increasing the refrigerating capacity effectively.
In the pulse tube refrigerator of the eighth invention having the above-described construction according to the second invention, the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant from a compressor provided separately. Therefore, in the pulse tube refrigerator of the above-described eighth invention, pressure loss and temperature increase of the refrigerant, which would otherwise occur when the high-temperature-side portion on the wall of the pulse tube is cooled by used of refrigerant of the pressure source, do not occur, and thus the high-temperature side of the pulse tube can be cooled. Therefore, the pulse tube refrigerator achieves the effect of increasing the refrigerating capacity to the greatest extent.
In the pulse tube refrigerator of the ninth invention having the above-described construction according to the second invention, the cooling means cools a heat radiating unit disposed at the hot end of the pulse tube, by use of refrigerant which flows between a discharge side of a pressure source and a high-pressure inlet port of a changeover valve communicating with the discharge side of the pressure source. Therefore, the pulse tube refrigerator of the ninth invention is the same as that of the above-described fourth invention in terms of the action of cooling the high-temperature-side portion on the wall of the pulse tube and cooling the high-temperature side of the pulse tube through the wall. However, since cooling is performed by use of refrigerant which flows between the discharge port of the pressure source and the inflow side of the changeover valve, the heat radiating unit is cooled by use of refrigerant flowing from the discharge port of the pressure source, so that the free gas space between the changeover valve and the hot end of the cold reservoir does not increase. Moreover, the pulse tube refrigerator of the ninth invention accomplishes the effect of increasing the refrigerating capacity effectively.
In the pulse tube refrigerator of the tenth invention having the above-described construction according to the second invention, the cooling means cools a heat radiating unit disposed at the hot end of the pulse tube, by use of refrigerant which flows between a suction port of a pressure source and a low-pressure outlet port of a changeover valve communicating with the suction port or the pressure source. Therefore, in the pulse tube refrigerator of the above-described tenth invention, since cooling is performed by use of refrigerant which flows between the suction port of the pressure source and the outlet side of the changeover valve, the heat radiating unit is cooled by refrigerant flowing to the suction port of the pressure source, so that the free gas space between the changeover valve and the hot end of the cold reservoir does not increase. Moreover, the pulse tube refrigerator of the tenth invention accomplishes the effect of increasing the refrigerating capacity effectively.
In the pulse tube refrigerator of the eleventh invention having the above-described construction according to the second invention, the cooling means cools the high-temperature-side portion on the wall of the pulse tube by use of refrigerant flowing out of the low-pressure outlet port of the changeover valve; and the refrigerant used to cool the high-temperature-side portion on the wall of the pulse tube is cooled by use of the radiator provided between a suction port of a pressure source and a low-pressure outlet port of a changeover valve communicating with the suction port of the pressure source. Therefore, the pulse tube refrigerator of the present invention accomplishes the effect of increasing the refrigerating capacity effectively.
In the pulse tube refrigerator of the twelfth invention having the above-described construction according to the second invention, the cooling means cools a heat radiating unit disposed at the hot end of the pulse tube by use of refrigerant flowing out of the low-pressure outlet port of the changeover valve, and the refrigerant used to cool the heat radiating unit is cooled by use of the radiator provided between a suction port of a pressure source and a low-pressure outlet port of a changeover valve communicating with the suction port of the pressure source. Therefore, the pulse tube refrigerator of the present invention accomplishes the effect of increasing the refrigerating capacity effectively.
In the pulse tube refrigerator of the thirteenth invention having the above-described construction according to the third invention, the cooling means is constituted by a high-temperature-side portion on the wall of the pulse tube disposed in the atmosphere. Therefore, in the pulse tube refrigerator of the above-described thirteenth invention, since the wall temperature at the high-temperature side of the pulse tube decreases because of air cooling of the high-temperature-side portion on the wall of the pulse tube, the quantity of heat which reaches the cold end of the pulse tube due to heat conduction decreases, and refrigerant gas in contact with the inner wall surface of the high-temperature-side portion of the pulse tube is also cooled, whereby the quantity of heat which reaches the cold end of the pulse tube due to movement of the refrigerant gas also decreases. Moreover, the pulse tube refrigerator of the thirteenth invention accomplishes the effect of increasing the refrigerating capacity.
In the pulse tube refrigerator of the fourteenth invention having the above-described construction according to the thirteenth invention, fins are provided on an outer circumferential surface of the high-temperature-side portion on the wall of the pulse tube disposed in the atmosphere. Therefore, in the pulse tube refrigerator of the above-described fourteenth invention, the cooling area of the pulse tube is increased so as to increase the degree of cooling by air, whereby the temperature of the high-temperature-side wall portion of the pulse tube decreases. Moreover, the pulse tube refrigerator of the present invention accomplishes the effect of increasing the refrigerating capacity.
In the pulse tube refrigerator of the fifteenth invention having the above-described construction according to the thirteenth invention or the fourteenth invention, air is forcedly supplied to the high-temperature-side portion of the wall of the pulse tube. Therefore, in the pulse tube refrigerator of the above-described fifteenth invention, the heat transfer of air which cools the high-temperature-side wall portion of the pulse tube is improved so as to increase the degree of cooling by air, whereby the temperature of the high-temperature-side wall portion of the pulse tube decreases. Moreover, the pulse tube refrigerator of the fifteenth invention accomplishes the effect of increasing the refrigerating capacity.
In the pulse tube refrigerator of the sixteenth invention having the above-described construction according to the thirteenth invention, the high-temperature-side portion on the wall of the pulse tube disposed in the atmosphere is formed of a member having good heat conduction; a low-temperature-side portion on the wall of the pulse tube disposed within a vacuum tank is formed of a member having poor heat conduction; and the high-temperature-side portion and the low-temperature-side portion are joined together. Therefore, in the pulse tube refrigerator of the above-described sixteenth invention, since the heat conduction in the radial direction of the high-temperature-side tube portion of the pulse tube disposed in the atmosphere increases, the temperature difference between the inner circumferential surface and the outer circumferential surface of the high-temperature-side tube portion decreases, whereby the temperature of refrigerant in contact with the inner circumferential surface decreases, and accomplishes the effect of increasing the refrigerating capacity.
In the pulse tube refrigerator of the seventeenth invention having the above-described construction according to the thirteenth invention, one end of a conducting member is disposed in thermal contact with the high-temperature-side portion on the wall of the pulse tube, and the other end of the conducting member is disposed in thermal contact with a cooling source which is lower in temperature than the high-temperature-side portion on the wall of the pulse tube. Therefore, the high-temperature-side wall portion of the pulse tube is cooled by heat conduct, and the pulse tube refrigerator of the present invention accomplishes the effect of increasing the refrigerating capacity.
In the pulse tube refrigerator of the eighteenth invention having the above-described construction according to the sixteenth invention, the cooling source is formed of a vacuum tank of the refrigerator. Therefore, in the pulse tube refrigerator of the above-described eighteenth invention, heat which moves from the high-temperature-side portion of the pulse tube to the vacuum chamber via the conducting member is radiated to the atmosphere at the outer circumferential surface of the vacuum tank, whereby the high-temperature-side wall portion of the pulse tube is cooled. Moreover, the pulse tube refrigerator of the present invention accomplishes the effect of increasing the refrigerating capacity.
Embodiments of the present invention will now be described with reference to the drawings.
(First Embodiment)
As shown in
In the first embodiment, which belongs to the second, fourth, fifth, ninth, and tenth inventions, a discharge port 1a of the pressure source 1 communicates with a high-pressure inlet port 7a of a changeover valve 7 via a flow passage 2, a flow passage 3, a flow passage 4, a flow passage 5, and a flow passage 6, in this sequence. A suction port 1b of the pressure source 1 is connected to a low-pressure outlet port 7b of the changeover valve 7 via a flow passage 18.
As shown in
The flow passage 5, which partially constitutes the cooling means 30, is disposed in contact with an outer surface of a heat radiating unit 12 disposed at the hot end 11a of the pulse tube 11, in such a manner that the flow passage 5 establishes thermal contract with the outer circumferential surface of the heat radiating unit 12 and thus exchanges heat with refrigerant flowing within the heat radiating unit 12.
The changeover valve 7 is controlled to be switched in such a manner that a port 7c of the changeover valve 7 communicates with the high-pressure inlet port 7a when refrigerant flows from the pressure source 1 to the cold reservoir 9, and communicates with the low-pressure outlet port 7b when refrigerant flows from the cold reservoir 9 to the pressure source 1.
The cold reservoir 9 is filled with a cold-reserving material 9c such as wire gauze. The port 7c communicates with a hot end 9a of the cold reservoir 9 via a flow passage 8. A cold end 9b of the cold reservoir 9 communicates with a cold end 11b of the pulse tube 11 via a flow passage 10.
The hot end 11a of the pulse tube 11 communicates with a phase adjuster 14 via the heat radiating unit 12 and a flow passage 13. Reference numeral 15 denotes a vacuum tank, the interior of which is maintained at vacuum. The pulse tube refrigerator is configured in the above-described manner.
Refrigerant compressed at the pressure source 1 is cooled by means of a compressor cooler 100.
Operation of the pulse tube refrigerator of the first embodiment having the above-described construction will now be described.
(Compression Step I)
In a compression step Ia (
In a compression step Ib (
(Substantially-Isobaric Step II)
In a substantially-isobaric step II (
(Expansion Step III)
In an expansion step IIIa (
In an expansion step IIIb (
(Substantially-Isobaric Step IV)
In a substantially-isobaric step IV, which follows the expansion step III and in which the port 7c of the changeover valve 7 communicates with the low-pressure output port 7b, low-pressure refrigerant flows from the cold end 11b of the pulse tube 11 to the suction side of the pressure source 1 via the flow passage 10, the cold reservoir 9, the flow passage 8, the changeover valve 7, and the flow passage 8. Meanwhile, low-pressure refrigerant flows from the hot end 11a of the pulse tube 11 into the phase adjuster 14 via the heat radiating unit 12 and the flow passage 13. As a result, the pressure of refrigerant becomes slightly lower than that at the end of the expansion step III, and the temperature of refrigerant within the pulse tube 11 becomes slightly lower than that at the end of the expansion step III.
In the above-described substantially-isobaric step II and expansion step III, refrigerant within the pulse tube 11 performs work (L1) and in the above-described substantially-isobaric step IV and compression step I, refrigerant within the pulse tube 11 receives work (L2). The difference between the work (L1) and the work (L2) is equal to a refrigerating quantity (Qi) generated at the low-temperature side of the pulse tube 11.
Refrigerant flowing through the flow passage 3 cools the high-temperature-side wall portion 11cd of the pulse tube 11, and the high-temperature-side wall portion 11cd captures heat from a portion of refrigerant in contact with the inner surface of the high-temperature-side wall portion 11cdb to thereby lower the temperature of the refrigerant.
As a result, heat loss attributable to conduction of heat to the lower temperature side of the pulse tube 11 via the wall thereof and heat loss attributable to transfer of heat to the lower temperature side of the pulse tube 11 by means of refrigerant that flows back and forth in the vicinity of the inner surface of the pulse tube 11 both decrease, whereby the amount of heat which lowers the refrigerating quantity Qi generated at the low-temperature side of the pulse tube 11 decreases, the usable refrigerating quantity increases, and the refrigerating capacity of the pulse tube refrigerator increases.
The above-described refrigerant flowing into the pulse tube 11 from the low-temperature side thereof flows through the hot end 11a thereof to the phase adjuster 14 via the heat radiating unit 12 and the flow passage 13. Such refrigerant is cooled when passing through the heat radiating unit 12 by refrigerant which flows through the flow passage 5. Since the flow passage 5 is disposed between the changeover valve 7 and the pressure source 1, the free gas spaces of the flow passage 8, the cold reservoir 9, the flow passage 10, the pulse tube 11, the heat radiating unit 12, and the flow passage 13 do not increase, and the decrease in refrigerating capacity is small.
(Second Embodiment)
As shown in
The main circuit extends from the discharge port 1a of the pressure source 1 to the high-pressure inlet port 7a of the changeover valve 7 via a flow passage 2a, a flow-rate adjustment valve 19, and a flow passage 2b. The branch circuit branches off from the flow passage 2a, and merges into the flow passage 2b after extending through a flow passage 2c, a flow-rate adjustment valve 20, a flow passage 2d, the flow passage 3, the flow passage 4, the flow passage 5, and the flow passage 6. The flow passage 3 and the flow passage 5 are in thermal contact with the outer surface of the high-temperature-side wall portion 11cd of the pulse tube 11 and the outer circumference surface of the heat radiating unit 12.
The flow-rate adjustment valves 19 and 20 are provided in order to adjust the flow rate of refrigerant flowing through the branch circuit. One or both of the flow-rate adjustment valves 19 and 20 may be omitted, depending on the flow resistances of the flow passage 2c, the flow passage 2d, the flow passage 3, the flow passage 4, the flow passage 5, and the flow passage 6. The configuration of the remaining portion is identical with that of the first embodiment shown in
Operation of the pulse tube refrigerator according to the second embodiment having the above-described construction is identical with that of the first embodiment in terms of cooling of the pulse tube 11 and cooling of the heat radiating unit 12. When the flow rate of refrigerant flowing through the cold reservoir 12 is high or when the flow resistances of the flow passage 3 and the flow passage 5 are large, the pressure losses at the flow passage 3 and the flow passage 5 can be reduced. Therefore, the pulse tube refrigerator has an advantage in that a drop in refrigerating capacity attributable to pressure loss is small.
(Third Embodiment)
As shown in
Specifically, the discharge port 1a of the pressure source 1 communicates with the high-pressure inlet port 7a of the changeover valve 7 via the flow passage 2a, the flow-rate adjustment valve 19, and the flow passage 2b. A flow passage 32 divided from the flow passage 2a communicates with the suction port 1b of the pressure source 1 via a flow passage 33, a flow passage 34, a flow passage 35, a flow passage 36, the flow-rate adjustment valve 20, and a flow passage 37. The flow passage 33 and the flow passage 35 are in thermal contact with the outer surface of the high-temperature-side wall portion 11cd of the pulse tube 11 and the outer circumference surface of the heat radiating unit 12, respectively.
The flow-rate adjustment valves 19 and 20 are provided in order to adjust the flow rate of refrigerant flowing through the flow passage 2a and the flow passage 32. Either or both of the flow-rate adjustment valves 19 and 20 may be omitted, depending on the flow resistances of the flow passage 32, the flow passage 33, the flow passage 34, the flow passage 35, the flow passage 36, and the flow passage 37. The configuration of the remaining portion is identical with that of the first embodiment.
In the third embodiment, a portion of refrigerant flowing out from the discharge port 1a of the pressure source 1 continuously flows through the flow passages 33 and 35, whereby the high-temperature-side wall portion 11cd of the pulse tube 11 and the heat radiating unit 12 are cooled continuously in all the steps (the compression step I, the substantially-isobaric step II, the expansion step III, and the substantially-isobaric step IV) of the pulse tube refrigerator cycle. Therefore, the refrigerator of the third embodiment has a greater refrigerating capacity as compared with that of the first embodiment, although the flow rate of the pressure source 1 increases.
(Fourth Embodiment)
As shown in
Specifically, the discharge port 41a of the pressure source 41 communicates with a suction port 41b of the pressure source 41 via a flow passage 42, a flow passage 43, a flow passage 44, a flow passage 45, and a flow passage 46. The flow passage 43 and the flow passage 45 are in thermal contact with the high-temperature-side wall portion 11cd of the pulse tube 11 and the heat radiating unit 12, respectively.
The discharge port 1a of the pressure source 1 communicates with the high-pressure inlet port 7a of the changeover valve 7 via the flow passage 2a. The configuration of the remaining portion is identical with that of the first embodiment shown in
In the fourth embodiment, refrigerant flowing out from the discharge port 41a of the pressure source 41 continuously flows through the flow passages 43 and 45, whereby the high-temperature-side wall portion 11cd of the pulse tube 11 is cooled continuously in all the steps (the compression step I, the substantially-isobaric step II, the expansion step III, and the substantially-isobaric step IV) of the pulse tube refrigerator cycle. Therefore, the refrigerator of the present embodiment has a greater refrigerating capacity at the low-temperature side of the pulse tube, as compared with that of the first embodiment, although the pressure source 41 must be newly provided.
(Fifth Embodiment)
As shown in
Specifically, the low-pressure output port 7b of the changeover valve 7 communicates with the suction port 1b of the pressure source 1 via a flow passage 52, a flow passage 53, a flow passage 54, a flow passage 55, a flow passage 56, a radiator 57 which is air-cooled by a fan 59, and a flow passage 58. The flow passage 53 and the flow passage 55 are in thermal contact with the high-temperature-side wall portion 11cd of the pulse tube 11 and the heat radiating unit 12, respectively.
The discharge port 1a of the pressure source 1 communicates with the high-pressure inlet port 7a of the changeover valve 7 via the flow passage 2a. The configuration of the remaining portion is identical with that of the first embodiment.
In the fifth embodiment, refrigerant flows from the cold reservoir 9 into the flow passage 53 via the low-pressure outlet port 7b of the changeover valve 7 and the flow passage 52, and cools the high-temperature-side wall portion 11cd of the pulse tube 11 at the flow passage 53. Subsequently, the refrigerant flows into the flow passage 55 via the flow passage 54 and cools refrigerant flowing between the phase adjuster 14 and the pulse tube 11 in the heat radiating unit 12. As a result, heat loss attributable to conduction of heat to the low-temperature side of the pulse tube 11 via the wall thereof and heat loss attributable to transfer of heat to the low-temperature side of the pulse tube 11 by means of refrigerant that flows back and forth in the vicinity of the inner surface of the pulse tube both decrease, whereby the refrigerating capacity of the refrigerator increases.
The timing of cooling the high-temperature side of the pulse tube shifts by about 180° as compared with the above-described fifth invention. However, refrigerant flowing into the pressure source is lower in temperature than refrigerant flowing into the hot end of the cold reservoir, because refrigerant flowing out of the hot end of the cold reservoir flows. Therefore, the temperature of refrigerant which cools the high-temperature side of the pulse tube is low.
In this case, in terms of timing of cooling the high-temperature side of the pulse tube, the embodiment of the fifth invention is superior, because in the present embodiment, the timing of cooling the high-temperature side of the pulse tube shifts by about 180° as compared with the fifth invention. However, when the wall of the pulse tube 11 is thick, the heat capacity increases, so that influence of the timing shift is mitigated by the heat accumulation effect of the wall, whereby refrigerating capacity is enhanced.
(Sixth Embodiment)
As shown in
The discharge port 1a of the pressure source 1 communicates with the high-pressure inlet port 7a of the changeover valve 7 via the flow passage 2. The suction port 1b of the pressure source 1 communicates with the low-pressure outlet port 7b of the changeover valve 7 via the flow passage 18. The changeover valve 7 is controlled in such a manner that the port 7c of the changeover valve 7 communicates with the high-pressure inlet port 7a when refrigerant flows from the pressure source 1 to the cold reservoir 9, and communicates with the low-pressure outlet port 7b when refrigerant flows from the cold reservoir 9 to the pressure source 1.
The cold reservoir 9 is filled with a cold-reserving material 9c such as wire gauze. The port 7c communicates with the hot end 9a of the cold reservoir 9 via the flow passage 8. The cold end 9b of the cold reservoir 9 communicates with the cold end 11b of the pulse tube 11 via the flow passage 10. The hot end 11a of the pulse tube 11 communicates with the phase adjuster 14 via the heat radiating unit 12 and the flow passage 13.
The high-temperature side 11cd of the pulse tube 11, which constitutes the cooling means 30, is disposed in the atmosphere outside the vacuum tank 15, and the low-temperature side 11de is disposed within the vacuum tank 15. The interior of the vacuum tank 15 is maintained at vacuum.
Refrigerant compressed at the pressure source 1 is cooled by means of a compressor cooler 100. The PV diagrams at the low temperature and high-temperature sides, respectively, of the pulse tube according to the sixth embodiment having the above-described configuration are the same as those of the first embodiment shown in
Operation of the pulse tube refrigerator according to the sixth embodiment having the above-described configuration is similar to that of the first embodiment.
Since the temperature of the high-temperature-side wall portion 11cd of the pulse tube 11 is higher than the temperature of surrounding air, the high-temperature-side wall portion 11cd of the pulse tube is cooled by the surrounding air, whereby the high-temperature-side wall portion 11cd captures heat from a portion of refrigerant in contact with the inner surface thereof to thereby lower the temperature of the refrigerant. As a result, heat loss attributable to conduction of heat to the low-temperature side of the pulse tube 11 via the wall thereof and heat loss attributable to transfer of heat to the low-temperature side of the pulse tube 11 by means of refrigerant that flows back and forth in the vicinity of the inner surface of the pulse tube 11 both decrease, whereby the amount of heat which lowers the refrigerating quantity Qi generated at the low-temperature side of the pulse tube decreases, whereby the usable refrigerating quantity increases, and the refrigerating capacity of the pulse tube refrigerator increases.
(Seventh Embodiment)
As shown in
The large number of annular fins 21 and 22 are arranged on the outer circumferential surfaces of the pulse tube 11 and the heat radiating unit 12 at constant intervals along the axial direction, as shown in
By virtue of provision of the fins 21 and 22, the pulse tube refrigerator according to the seventh embodiment has an increased conduction surface, whereby cooling of the high-temperature-side wall portion 11cd of the pulse tube 11 and the heat radiating unit 12 can be performed better than in the sixth embodiment shown in
In the seventh embodiment, a large number of the fins 21 and 22 are fixed to the outer circumferential surface of the high-temperature-side wall portion 11cd of the pulse tube 11 and the outer circumferential surface of the heat radiating unit 12 at proper intervals. However, a fin may be provided spirally on the outer circumferential surface of the high-temperature-side wall portion 11cd of the pulse tube 11 and the outer circumferential surface of the heat radiating unit 12.
(Eighth Embodiment)
As shown in
The large number of vertical fins 31 and 32 are arranged on the outer circumferential surfaces of the pulse tube 11 and the heat radiating unit 12 at constant intervals along the circumferential direction, in such a manner that the fins 31 and 32 extend over the entire lengths of the pulse tube 11 and the heat radiating unit 12, as shown in
By virtue of provision of the fins 31 and 32, as in the case of the seventh embodiment, the pulse tube refrigerator according to the eighth embodiment has an increased conduction surface, whereby cooling of the high-temperature-side wall portion 11cd of the pulse tube 11 and the heat radiating unit 12 can be performed better than in the sixth embodiment. As a result, the refrigerating quantity increases, as compared with the sixth embodiment.
(Ninth Embodiment)
As shown in
In the pulse tube refrigerator according to the ninth embodiment, heat transmission of air which cools the high-temperature-side wall portion 11cd and the heat radiating unit 12 is improved, whereby the degree of cooling by means of air is increased. As a result, the temperature of the high-temperature-side wall portion 11cd decreases, and the refrigerating capacity is increased by virtue of the same action as in the sixth embodiment.
(Tenth Embodiment)
As shown in
The material 25, which has good heat conduction, is copper, aluminum, or the like, and the material 26, which has poor heat conduction, is stainless steel or the like.
In the pulse tube refrigerator according to the tenth embodiment, the high-temperature-side tube portion of the pulse tube disposed in the atmosphere provides a high degree of heat conduction in the radial direction, whereby the temperature difference between the inner circumferential surface and the outer inner circumferential surface of the high-temperature-side tube portion decreases, the temperature of refrigerant in contact with the inner circumferential surface decreases, and the refrigerating capacity increases.
(Eleventh Embodiment)
As shown in
In the pulse tube refrigerator according to the eleventh embodiment, the high-temperature-side wall portion 11cd of the pulse tube 11 is cooled, via the conduction member 30, by means of the vacuum tank 15, which serves as a cooling source whose temperature is lower than the temperature of the high-temperature-side wall portion 11cd thereof, whereby the refrigerating capacity is increased.
In this case, the high-temperature-side wall portion 11cd of the pulse tube 11 may be disposed inside the vacuum tank or in the atmosphere outside the vacuum tank.
The above-described embodiments of the present invention, as herein disclosed, are taken as some embodiments for explaining the present invention. It is to be understood that the present invention should not be restricted by these embodiments and any modifications and additions are possible so far as they are not beyond the technical idea or principle, which would be considerable by a person with ordinary skill in the art, based on description of the scope of the patent claims, specification and figures.
The phase adjuster 14 used in the above-described embodiment may be of an orifice type shown in
In the above-described embodiments, the pulse tube refrigerators are of a single stage type; however, the present invention is not limited thereto, and can be applied to pulse tube refrigerators having two or more stages.
Since the cooling means cools a high-temperature-side wall portion of the pulse tube by use of refrigerant of a pulse tube refrigerator, the temperature of the high-temperature-side wall portion of the pulse tube decreases. As a result, the quantity of heat which reaches the cold end of the pulse tube because of heat conduction decreases. In addition, since a portion of refrigerant gas in contact with the inner surface of the high-temperature-side wall portion of the pulse tube is cooled, the quantity of heat which reaches the cold end of the pulse tube because of movement of the refrigerant gas decreases. As a result, the refrigerating capacity is increased.
Number | Date | Country | Kind |
---|---|---|---|
2001-262282 | Aug 2001 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP02/08733 | 8/29/2002 | WO | 00 | 10/4/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/019087 | 3/6/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5107683 | Chan et al. | Apr 1992 | A |
6205812 | Acharya et al. | Mar 2001 | B1 |
6374617 | Bonaquist et al. | Apr 2002 | B1 |
6389819 | Zhu et al. | May 2002 | B1 |
Number | Date | Country |
---|---|---|
3-194364 | Aug 1991 | JP |
4-268167 | Sep 1992 | JP |
04313649 | Nov 1992 | JP |
05312423 | Nov 1993 | JP |
6-137696 | May 1994 | JP |
07180938 | Jul 1995 | JP |
8-54151 | Feb 1996 | JP |
8-271071 | Oct 1996 | JP |
09004936 | Jan 1997 | JP |
10325626 | Dec 1998 | JP |
11014174 | Jan 1999 | JP |
2000-55491 | Feb 2000 | JP |
2001091076 | Apr 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20050044860 A1 | Mar 2005 | US |