1. Field of the Invention (Technical Field)
The present invention relates to pulse powered drilling apparatuses and methods. The present invention also relates to insulating fluids of high relative permittivity (dielectric constant).
2. Background Art
Processes using pulsed power technology are known in the art for breaking mineral lumps.
The process of passing such a current through minerals is disclosed in U.S. Pat. No. 4,540,127 which describes a process for placing a lump of ore between electrodes to break it into monomineral grains. As noted in the '127 patent, it is advantageous in such processes to use an insulating liquid that has a high relative permittivity (dielectric constant) to shift the electric fields away from the liquid and into the rock in the region of the electrodes.
The '127 patent discusses using water as the fluid for the mineral disintegration process. However, insulating drilling fluid must provide high dielectric strength to provide high electric fields at the electrodes, low conductivity to provide low leakage current during the delay time from application of the voltage until the arc ignites in the rock, and high relative permittivity to shift a higher proportion of the electric field into the rock near the electrodes. Water provides high relative permittivity, but has high conductivity, creating high electric charge losses. Therefore, water has excellent energy storage properties, but requires extensive deionization to make it sufficiently resistive so that it does not discharge the high voltage components by current leakage through the liquid. In the deionized condition, water is very corrosive and will dissolve many materials, including metals. As a result, water must be continually conditioned to maintain the high resistivity required for high voltage applications. Even when deionized, water still has such sufficient conductivity that it is not suitable for long-duration, pulsed power applications.
Petroleum oil, on the other hand, provides high dielectric strength and low conductivity, but does not provide high relative permittivity. Neither water nor petroleum oil, therefore, provide all the features necessary for effective drilling.
Propylene carbonate is another example of such insulating materials in that it has a high dielectric constant and moderate dielectric strength, but also has high conductivity (about twice that of deionized water) making it unsuitable for pulsed power applications.
In addition to the high voltage, mineral breaking applications discussed above, Insulating fluids are used for many electrical applications such as, for example, to insulate electrical power transformers.
There is a need for an insulating fluid having a high dielectric constant, low conductivity, high dielectric strength, and a long life under industrial or military application environments.
Other techniques are known for fracturing rock. Systems known in the art as “boulder breakers” rely upon a capacitor bank connected by a cable to an electrode or transducer that is inserted into a rock hole. Such systems are described by Hamelin, M. and Kitzinger, F., Hard Rock Fragmentation with Pulsed Power, presented at the 1993 Pulsed Power Conference, and Res, J. and Chattapadhyay, A, “Disintegration of Hard Rocks by the Electrohydrodynamic Method” Mining Engineering, January 1987. These systems are for fracturing boulders resulting from the mining process or for construction without having to use explosives. Explosives create hazards for both equipment and personnel because of fly rock and over pressure on the equipment, especially in underground mining. Because the energy storage in these systems are located remotely from the boulder, efficiency is compromised. Therefore, there is a need for improving efficiency in the boulder breaking and drilling processes.
Another technique for fracturing rock is the plasma-hydraulic (PH), or electrohydraulic (EH) techniques using pulsed power technology to create underwater plasma, which creates intense shock waves in water to crush rock and provide a drilling action. In practice, an electrical plasma is created in water by passing a pulse of electricity at high peak power through the water. The rapidly expanding plasma in the water creates a shock wave sufficiently powerful to crush the rock. In such a process, rock is fractured by repetitive application of the shock wave.
The present invention is a pulsed power drilling apparatus and method for passing a pulsed electrical current through a mineral substrate to break a substrate.
In one embodiment, the apparatus and method comprises a rotatable drill bit; a pulsed power generator linked to the drill bit for delivering high voltage pulses; and at least one set of at least two electrodes disposed on the drill bit defining therebetween at least one electrode gap. The electrodes of each set may be oriented substantially along a face of the drill bit. At least one of the electrodes may be disposed so that it touches the substrate. Another of the electrodes may be disposed so that it functions in close proximity to the substrate for current to pass through the substrate. At least one of the electrodes may be compressible toward the drill bit. The apparatus may further comprise a plurality of mechanical teeth disposed on the bit.
The apparatus may comprise an insulating drilling fluid having an electrical conductivity less than approximately 10−5 mho/cm and a dielectric constant greater than approximately 6. The insulating fluid may comprise treated water having a conductivity less than approximately 10−5 mho/cm. The insulating fluid may comprise at least one oil. The insulating fluid may comprise a dielectric strength of at least approximately 300 kV/cm (1 μsec); a dielectric constant of at least approximately 15; and a conductivity of less than approximately 10−5 mho/cm.
The electrode sets may comprise an asymmetric configuration relative to the bit. The electrodes may comprise a coaxial configuration. Each set of electrodes may comprise a central electrode partially or fully surrounded by a ground electrode. The electrodes may be radiused on a side of the electrodes that contact the substrate.
The bit may be substantially conical in shape. The electrodes may be configured on the bit to form a dual angle.
The apparatus may further comprise a rotary drill reamer. This reamer may include, but is not limited to, a drag bit, a tapered drag bit, and/or a rotary bit. At least one set of electrodes may be disposed at a longitudinal center of the bit. Or, the set of electrodes may be disposed off-center of rotation of the bit.
The apparatus may further comprise a conduit or a cable to send power to the drill bit. A pulsed power system may be disposed on the drill bit for conditioning electrical current received by the drill bit. The apparatus may further comprise a rotating interface to deliver pulsed power to the drill bit via the cable.
The apparatus may further comprise a solid state switch controlled pulse forming system, a gas switch controlled pulse forming system, and/or a piezoelectric power generator. The power generator may comprise a fuel cell. The power generator preferably delivers high voltage pulses of at least approximately 100 kV.
The apparatus may further comprise passages disposed in the bit and in which a flow of fluid is disposed for flushing debris.
The present invention may also be pulsed power drilling apparatus and method for passing a pulsed electrical current through a mineral substrate to break the substrate.
In one embodiment of the invention, the apparatus and method may comprise a drill bit; a pulsed power generator linked to the drill bit for delivering high voltage pulses; and at least one set of at least two electrodes disposed on the drill bit defining therebetween at least one electrode gap. The electrodes of each set may be oriented substantially parallel to one another along a face of the drill bit. The apparatus and method may further comprise an insulating drilling fluid having an electrical conductivity less than that of water. Other components or parameters are discussed above.
In another embodiment, the present invention is also a pulsed power drilling apparatus and method for passing a pulsed electrical current through a mineral substrate to break a substrate. The apparatus and method may comprise a drill bit; at least one set of at least two electrodes disposed on the drill bit defining therebetween at least one electrode gap; a pulsed power generator linked to the drill bit for delivering high voltage pulses; and a passage for delivering water down the drilling apparatus.
A first of the electrodes and a second of the electrodes may be a center electrode. The center electrode may be compressible.
A cable may connect the generator to at least one of the electrodes. The invention may further comprise a drill stem assembly within which the electrodes are enclosed.
Another embodiment of the invention is an apparatus and method for mining rock comprising a plurality of electrocrushing drill bits arranged in an array. The invention may comprise a plurality of electrohydraulic drill bits arranged in the array.
The present invention may further comprise a method for breaking and drilling a mineral substrate. The method may comprise providing a drill bit; disposing at least one set of electrodes on the drill bit; rotating the drill bit; and delivering a pulsed power current between the electrodes and through the substrate to break the substrate, at least one set of at least two electrodes disposed on the drill bit defining there between at least one electrode gap, orienting the electrodes of each the set substantially along a face of the drill bit, disposing at least one of the electrodes so that it touches the substrate and another of the electrodes is disposed so that it functions in close proximity to the substrate for current to pass through the substrate. The method may further comprise disposing a drilling fluid about the substrate to be drilled.
The present invention may comprise a method for breaking and drilling a mineral substrate. The method may comprise providing a drill bit; disposing at least one set of electrodes on the drill bit; disposing a drilling fluid about the substrate to be acted upon by the drill bit; rotating the drill bit; and delivering a pulsed power current between the electrodes and through the substrate to break the substrate.
One embodiment of the present invention is a pulsed power drilling apparatus for passing a pulsed electrical current through a substrate to break the substrate. The apparatus comprises a non-rotatable drill bit comprising an electrocrushing drill; a pulsed power generator linked to the drill bit for delivering high voltage pulses; and at least one set of at least two electrodes disposed on the drill bit defining therebetween at least one electrode gap, the electrodes of each the set oriented substantially along a front of the drill bit, at least one of the electrodes disposed so that it touches the substrate and another of the electrodes disposed so that it functions in close proximity to the substrate for current to pass through the substrate.
The non-rotatable drill bit may be disposed in a symmetric array. The symmetric array may comprise an angled side. The symmetric array may comprise a flat center. Alternately, the non-rotatable drill bit may be disposed in an asymmetric array.
The non-rotatable drill bit may comprise a multi-conical angle.
The non-rotatable drill bit may comprise a flat section and a conical section. The non-rotatable drill bit may comprise a conical section.
Another embodiment of the invention comprises a method for breaking and drilling a substrate comprising: providing a non-rotating drill bit comprising an electrocrushing drill bit; disposing at least one set of two electrodes on the drill bit, at least one set of at least two electrodes disposed on the drill bit defining therebetween at least one electrode gap; orienting the electrodes of each the set substantially along a front face of the drill bit; disposing at least one of the electrodes so that it touches the substrate and disposing another of the electrodes so that it functions in close proximity to the substrate for current to pass through the substrate; and delivering a pulsed power current between the electrodes and through the substrate, breaking the substrate;
The method may further comprise drilling a hole out beyond edges of the hole without mechanical teeth. The method may further comprise providing pulse energy to groups of electrode sets by a single pulsed power system per group. The method may further comprise providing pulse energy for each electrode set.
Another embodiment of the invention comprises a method for differentially excavating a substrate comprising: arranging multiple electrode sets at the front of a bit; delivering a high voltage; differentially operating electrode sets or groups of electrode sets varying a pulse repetition rate or pulse energy to the different electrode sets; and steering the bit through the substrate by excavating more substrate from one side of the bit than another side.
The method may further comprise directionally controlling the bit by increasing the pulse repetition rate or pulse energy for those electrode sets toward which it is desired to turn the bit. At least one of the electrode sets may be conical. The method may further comprise using a pulsed power system to power the bit.
Embodiments of the method of the present invention may include wherein the bit may be an electrocrushing bit and/or the bit may be an electrohydraulic bit.
The method may further comprise switching stored electrical energy into the substrate using a plurality of switches and pulsed power circuits, wherein the switches comprise at least one switch selected from the group consisting of a solid state switch, gas or liquid spark gap, thyratron, vacuum tube, solid state optically triggered switch and self-break switch.
An embodiment may further comprise storing energy in either capacitors or inductors.
An embodiment of the present invention may further comprise creating the high voltage by a pulse transformer; and/or creating the high voltage by charging capacitors in parallel and adding them in series.
Other embodiments may comprise locating the pulsed power system downhole in a bottom hole assembly; locating the pulsed power system at a surface with the pulse sent over a plurality of cables; and/or locating the pulsed power system in an intermediate section of a drill string.
An embodiment may further comprise flowing fluid flow through electrohydraulic projectors or electrocrushing electrode sets at a back of a bottom hole assembly to balance flow requirements in the bottom hole assembly.
An embodiment of the present invention may comprise a pulsed power drilling apparatus for passing a pulsed electrical current through a substrate to break the substrate, the apparatus comprising: an electrocrushing drill comprising a non-rotating bit; a main power cable inside a fluid pipe for powering the non-rotating bit electrocrushing drill; and a main power cable on an outside of the fluid pipe for powering the non-rotating bit electrocrushing drill. The main power cable on the outside of the fluid pipe may be disposed inside continuous coiled tubing or other protective tubing or covering.
The pulsed power drilling apparatus may further comprise electrohydraulic projectors or electrocrushing electrode sets disposed on a back of a bottom hole assembly.
A method of one embodiment may comprise backwards excavation comprising: locating electrohydraulic projectors or electrocrushing electrode sets or both electrohydraulic projectors and electrocrushing electrode sets on a backside of a bottom hole assembly; drilling out backwards; diverting electrical pulses from a main forward electrocrushing bit to the back electrohydraulic projectors/electrocrushing electrode sets; using a controllable valve; and diverting more flow from the main electrocrushing bit to the back electrohydraulic/electrocrushing bits when backwards drill-out is required.
An embodiment of the present invention is an apparatus to drill out backwards comprising: electrohydraulic projectors or electrocrushing electrode sets or both electrohydraulic projectors and electrocrushing electrode sets located on a back side of a bottom hole assembly; switches inside the bottom hole assembly diverting electrical pulses from a main forward electrocrushing bit to back electrohydraulic projectors/electrocrushing electrode sets; and a controllable valve diverting more flow from the main electrocrushing bit to the back electrohydraulic/electrocrushing sets when backwards drill-out is required. The embodiment may further comprise: a fluid pipe comprising a rotatable drill pipe; a cable disposed inside the fluid pipe; and mechanical teeth installed on the back side of the bottom hole assembly.
Another embodiment comprises a method of backwards excavation comprising: rotating a bottom hole assembly to assist an electrohydraulic or electrocrushing projector in cleaning substrate from behind a bottom hole assembly; pulling out the bottom hole assembly; rotating the bottom hole assembly as it is pulled out; fracturing the substrate behind the bottom hole assembly with the projectors; and flushing particles of the substrate up the hole.
This embodiment may further comprise: producing a high power shock wave from the projectors; propagating a pulse through slumped substrate; breaking up the slumped substrate behind the bottom hole assembly; disturbing the substrate above the bottom hole assembly; enhancing fluid flow through the bottom hole assembly to carry the substrate particles up the hole to the surface; and continually disrupting the slumped substrate by a pressure pulse to keep it from sealing the hole.
Other features and further scope of applicability of the present invention will be set forth in part in the detailed description to follow, taken in conjunction with the accompanying drawings, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations pointed out in the appended claims.
The accompanying drawings, which are incorporated into and form a part of the specification, illustrate one or more embodiments of the present invention and, together with the description, serve to explain the principles of the invention. The drawings are only for the purpose of illustrating one or more preferred embodiments of the invention and are not to be construed as limiting the invention. In the drawings:
a) shows the spiker pulsed power system and the sustainer pulsed power system; and
The present invention provides for pulsed power breaking and drilling apparatuses and methods. As used herein, “drilling” is defined as excavating, boring into, making a hole in, or otherwise breaking and driving through a substrate. As used herein, “bit” and “drill bit” are defined as the working portion or end of a tool that performs a function such as, but not limited to, a cutting, drilling, boring, fracturing, or breaking action on a substrate (e.g., rock). As used herein, the term “pulsed power” is that which results when electrical energy is stored (e.g., in a capacitor or inductor) and then released into the load so that a pulse of current at high peak power is produced. “Electrocrushing” (“EC”) is defined herein as the process of passing a pulsed electrical current through a mineral substrate so that the substrate is “crushed” or “broken”.
An embodiment of the present invention provides a drill bit on which is disposed one or more sets of electrodes. In this embodiment, the electrodes are disposed so that a gap is formed between them and are disposed on the drill bit so that they are oriented along a face of the drill bit. In other words, the electrodes between which an electrical current passes through a mineral substrate (e.g., rock) are not on opposite sides of the rock. Also, in this embodiment, it is not necessary that all electrodes touch the mineral substrate as the current is being applied. In accordance with this embodiment, at least one of the electrodes extending from the bit toward the substrate to be fractured and may be compressible (i.e., retractable) into the drill bit by any means known in the art such as, for example, via a spring-loaded mechanism.
Generally, but not necessarily, the electrodes are disposed on the bit such that at least one electrode contacts the mineral substrate to be fractured and another electrode that usually touches the mineral substrate but otherwise may be close to, but not necessarily touching, the mineral substrate so long as it is in sufficient proximity for current to pass through the mineral substrate. Typically, the electrode that need not touch the substrate is the central, not the surrounding, electrode.
Therefore, the electrodes are disposed on a bit and arranged such that electrocrushing arcs are created in the rock. High voltage pulses are applied repetitively to the bit to create repetitive electrocrushing excavation events. Electrocrushing drilling can be accomplished, for example, with a flat-end cylindrical bit with one or more electrode sets. These electrodes can be arranged in a coaxial configuration.
The electrocrushing (EC) drilling process does not require rotation of the bit. The electrocrushing drilling process is capable of excavating the hole out beyond the edges of the bit without the need of mechanical teeth. In addition, by arranging many electrode sets at the front of the bit and varying the pulse repetition rate or pulse energy to different electrode sets, the bit can be steered through the rock by excavating more rock from one side of the bit than another side. The bit turns toward the electrode sets that excavate more rock relative to the other electrode sets.
For drilling larger holes, a conical bit may be utilized, especially if controlling the direction of the hole is important. Such a bit may comprise one or more sets of electrodes for creating the electrocrushing arcs and may comprise mechanical teeth to assist the electrocrushing process. One embodiment of the conical electrocrushing bit has a single set of electrodes, may be arranged coaxially on the bit, as shown in
An alternate embodiment is to arrange a second electrode set on the conical portion of the bit. In such an embodiment, one set of the electrocrushing electrodes operates on just one side of the bit cone in an asymmetrical configuration as exemplified in
The combination of the conical surface on the bit and the asymmetry of the electrode sets results in the ability of the dual-electrode bit to excavate more rock on one side of the hole than the other and thus to change direction. For drilling a straight hole, the repetition rate and pulse energy of the high voltage pulses to the electrode set on the conical surface side of the bit is maintained constant per degree of rotation. However, when the drill is to turn in a particular direction, then for that sector of the circle toward which the drill is to turn, the pulse repetition rate (and/or pulse energy) per degree of rotation is increased over the repetition rate for the rest of the circle. In this fashion, more rock is removed by the conical surface electrode set in the turning direction and less rock is removed in the other directions (See
In the embodiment shown in
Alternative embodiments include variations on the configuration of the ground ring geometry and center-to-ground ring geometry as for the single-electrode set bit. For example,
As shown in
It should be understood that the use of a bit with an asymmetric electrode configuration can comprise one or more electrode sets and need not comprise mechanical teeth. It should also be understood that directional drilling can be performed with one or more electrode sets.
The electrocrushing drilling process takes advantage of flaws and cracks in the rock. These are regions where it is easier for the electric fields to breakdown the rock. The electrodes used in the bit of the present invention are usually large in area in order to intercept more more flaws in the rock and therefore improve the drilling rate, as shown in
Another embodiment of the present invention provides a drilling system/assembly utilizing the electrocrushing bits described herein and is designated herein as the FAST Drill system. A limitation in drilling rock with a drag bit is the low cutter velocity at the center of the drill bit. This is where the velocity of the grinding teeth of the drag bit is the lowest and hence the mechanical drilling efficiency is the poorest. Effective removal of rock in the center portion of the hole is the limiting factor for the drilling rate of the drag bit. Thus, an embodiment of the FAST Drill system comprises a small electrocrushing (EC) bit (alternatively referred to herein as a FAST bit or FAST Drill bit) disposed at the center of a drag bit to drill the rock at the center of the hole. Thus, the EC bit removes the rock near the center of the hole and substantially increases the drilling rate. By increasing the drilling rate, the net energy cost to drill a particular hole is substantially reduced. This is best illustrated by the bit shown in
As noted above, the function of the mechanical drill teeth on the bit is to smooth off the tops of the protrusions and recesses left by the electrocrushing or plasma-hydraulic process. Because the electrocrushing process utilizes an arc through the rock to crush or fracture the rock, the surface of the rock is rough and uneven. The mechanical drill teeth smooth the surface of the rock, cutting off the tops of the protrusions so that the next time the electrocrushing electrodes come around to remove more rock, they have a larger smoother rock surface to contact the electrodes.
The electrocrushing bit comprises passages for the drilling fluid to flush out the rock debris (i.e., cuttings) (See
The electrocrushing bit may comprise an insulation section that insulates the electrodes from the housing, the electrodes themselves, the housing, the mechanical rock cutting teeth that help smooth the rock surface, and the high voltage connections that connect the high voltage power cable to the bit electrodes.
An embodiment utilizing a multi-section rigid drill pipe to rotate the bit and conduct drilling fluid to the bit requires a downhole generator, because a power cable cannot be used, but does not need a mud motor to turn the bit, since the pipe turns the bit. Such an embodiment does not need a rotating interface because the system as a whole rotates at the same rotation rate.
An embodiment utilizing a continuous coiled tubing to provide mud to the drill bit, without a power cable, requires a down-hole generator, overdrive gear, and a generator drive mud motor, and also needs a downhole motor to rotate the bit because the tubing does not turn. An electrical rotating interface is needed to transmit the electrical control and data signals from the non-rotating cable to the rotating drill bit.
An embodiment utilizing a continuous coiled tubing to provide drilling fluid to the drill bit, with a cable to bring high voltage electrical pulses from the surface to the bit, through the rotating interface, places the source of electrical power and the pulsed power system at the surface. This embodiment does not need a down-hole generator, overdrive gear, or generator drive mud motor or downhole pulsed power systems, but does need a downhole motor to rotate the bit, since the tubing does not turn.
Still another embodiment utilizes continuous coiled tubing to provide drilling fluid to the drill bit, with a fuel cell to generate electrical power located in the rotating section of the drill string. Power is fed across the rotating interface to the pulsed power system, where the high voltage pulses are created and fed to the FAST bit. Fuel for the fuel cell is fed down tubing inside the coiled tubing mud pipe.
An embodiment of the FAST Drill system comprises FAST bit 114, a drag bit reamer 150 (shown in
Preferably, a pulse power system that powers the FAST bit is enclosed in the housing of the reamer drag bit and the stem above the drag bit as shown in
(1) a solid state switch controlled or gas-switch controlled pulse generating system with a pulse transformer that pulse charges the primary output capacitor (example shown in
(2) an array of solid-state switch or gas-switch controlled circuits that are charged in parallel and in series pulse-charge the output capacitor (example shown in
(3) a voltage vector inversion circuit that produces a pulse at about twice, or a multiple of, the charge voltage (example shown in
(4) An inductive store system that stores current in an inductor, then switches it to the electrodes via an opening or transfer switch (example shown in
(5) any other pulse generation circuit that provides repetitive high voltage, high current pulses to the FAST Drill bit.
The pulsed power system is preferably located in the rotating bit, but may be located in the stationary portion of the drill pipe or at the surface.
Electrical power for the pulsed power system is either generated by a generator at the surface, or drawn from the power grid at the surface, or generated down hole. Surface power is transmitted to the FAST drill bit pulsed power system either by cable inside the drill pipe or conduction wires in the drilling fluid pipe wall. In one embodiment, the electrical power is generated at the surface, and transmitted downhole over a cable 148 located inside the continuous drill pipe 147 (shown in
The cable is located in non-rotating flexible mud pipe (continuous coiled tubing). Using a cable to transmit power to the bit from the surface has advantages in that part of the power conditioning can be accomplished at the surface, but has a disadvantage in the weight, length, and power loss of the long cable.
At the bottom end of the mud pipe is located the mud motor which utilizes the flow of drilling fluid down the mud pipe to rotate the FAST Drill bit and reamer assembly. Above the pulsed power section, at the connection between the mud pipe and the pulsed power housing, is the rotating interface as shown in
In the case of electrical power transmission through conduction wires in rigid rotating pipe, the rotating interface is not needed because the pulsed power system and the conduction wires are rotating at the same velocity. If a downhole gearbox is used to provide a different rotation rate for the pulsed power/bit section from the pipe, then a rotating interface is needed to accommodate the electrical power transfer.
In another embodiment, power for the FAST Drill bit is provided by a downhole generator that is powered by a mud motor that is powered by the flow of the drilling fluid (mud) down the drilling fluid, rigid, multi-section, drilling pipe (
Alternatively, the downhole generator might be of the piezoelectric type that provides electrical power from pulsation in the mud. Such fluid pulsation often results from the action of a mud motor turning the main bit.
Another embodiment for power generation is to utilize a fuel cell in the non-rotating section of the drill string.
As noted above, there are two primary means for transmitting drilling fluid (mud) from the surface to the bit: continuous flexible tubing or rigid multi-section drill pipe. The continuous flexible mud tubing is used to transmit mud from the surface to the rotation assembly where part of the mud stream is utilized to spin the assembly through a mud motor, a mud turbine, or another rotation device. Part of the mudflow is transmitted to the FAST bits and reamer for flushing the cuttings up the hole. Continuous flexible mud tubing has the advantage that power and instrumentation cables can be installed inside the tubing with the mudflow. It is stationary and not used to transmit torque to the rotating bit. Rigid multi-section drilling pipe comes in sections and cannot be used to house continuous power cable, but can transmit torque to the bit assembly. With continuous flexible mud pipe, a mechanical device such as, for example, a mud motor, or a mud turbine, is used to convert the mud flow into mechanical rotation for turning the rotating assembly. The mud turbine can utilize a gearbox to reduce the revolutions per minute. A downhole electric motor can alternatively be used for turning the rotating assembly. The purpose of the rotating power source is primarily to provide torque to turn the teeth on the reamer and the FAST bit for drilling. It also rotates the FAST bit to provide the directional control in the cutting of a hole. Another embodiment is to utilize continuous mud tubing with downhole electric power generation.
In one embodiment, two mud motors or mud turbines are used: one to rotate the bits, and one to generate electrical power.
Another embodiment of the rigid multi-section mud pipe is the use of data transmitting wires buried in the pipe such as, for example, the Intelipipe manufactured by Grant Prideco. This is a composite pipe that uses magnetic induction to transmit data across the pipe joints, while transmitting it along wires buried in the shank of the pipe sections. Utilizing this pipe provides for data transmission between the bit and the control system on the surface, but still requires the use of downhole power generation.
Another embodiment of the FAST Drill is shown in
Another embodiment of the rotating interface is to use a rotating magnetic interface to transfer electrical power and data across the rotating interface, instead of a slip ring rotating interface.
In another embodiment, the mud returning from the well loaded with cuttings flows to a settling pond, at the surface, where the rock fragments settle out. The mud then cleaned and reinjected into the FAST Drill mud pipe.
Another embodiment of the present invention provides a small-diameter, electrocrushing drill (designated herein as “SED”) that is related to the hand-held electrohydraulic drill disclosed in U.S. Pat. No. 5,896,938 (to a primary inventor herein), incorporated herein by reference. However, the SED is distinguishable in that the electrodes in the SED are spaced in such a way, and the rate of rise of the electric field is such, that the rock breaks down before the water breaks down. When the drill is near rock, the electric fields break down the rock and current passes through the rock, thus fracturing the rock into small pieces. The electrocrushing rock fragmentation occurs as a result of tensile failure caused by the electrical current passing through the rock, as opposed to compressive failure caused by the electrohydraulic (EH) shock or pressure wave on the rock disclosed in U.S. Pat. No. 5,896,938, although the SED, too, can be connected via a cable from a box as described in the '938 patent so that it can be portable.
This small-diameter electrocrushing drill embodiment is advantageous for drilling in non-porous rock. Also, this embodiment benefits from the use concurrent use of the high permittivity liquid discussed herein.
Another embodiment of the present invention is to assemble several individual small-diameter electrocrushing drill (SED) drill heads or electrode sets together into an array or group of drills, without the individual drill housings, to provide the capability to mine large areas of rock. In such an embodiment, a vein of ore can be mined, leaving most of the waste rock behind.
In another embodiment, a combination of electrocrushing and electrohydraulic (EH) drill bit heads enhances the functionality of the by enabling the Electrocrushing Vein-Miner (EVM) to take advantage of ore structures that are layered. Where the machine is mining parallel to the layers, as is the case in mining most veins of ore, the shock waves from the EH drill bit heads tend to separate the layers, thus synergistically coupling to the excavation created by the electrocrushing electrodes. In addition, combining electrocrushing drill heads with plasma-hydraulic drill heads combines the compressive rock fracturing capability of the plasma-hydraulic drill heads with the tensile rock failure of the electrocrushing drill heads to more efficiently excavate rock.
With the EVM mining machine, ore can be mined directly and immediately transported to a mill by water transport, already crushed, so the energy cost of primary crushing and the capital cost of the primary crushers is saved. This method has a great advantage over conventional mechanical methods in that it combines several steps in ore processing, and it greatly reduces the amount of waste rock that must be processed. This method of this embodiment can also be used for tunneling.
The high voltage pulses can be generated in the housing of the EVM, transmitted to the EVM via cables, or both generated elsewhere and transmitted to the housing for further conditioning. The electrical power generation can be at the EVM via fuel cell or generator, or transmitted to the EVM via power cable. Typically, water or mining fluid flows through the structure of the EVM to flush out rock cuttings.
If a few, preferably just three, of the electrocrushing or plasma-hydraulic drill heads shown in
An embodiment of the present invention also comprises insulating drilling fluids that may be utilized in the drilling methods described herein. For example, for the electrocrushing process to be effective in rock fracturing or crushing, it is preferable that the dielectric constant of the insulating fluid be greater than the dielectric constant of the rock and that the fluid have low conductivity such as, for example, a conductivity of less than approximately 10-6 mho/cm and a dielectric constant of at least approximately 6.
Therefore, one embodiment of the present invention provides for an insulating fluid or material formulation of high permittivity, or dielectric constant, and high dielectric strength with low conductivity. The insulating formulation comprises two or more materials such that one material provides a high dielectric strength and another provides a high dielectric constant. The overall dielectric constant of the insulating formulation is a function of the ratio of the concentrations of the at least two materials. The insulating formulation is particularly applicable for use in pulsed power applications.
Thus, this embodiment of the present invention provides for an electrical insulating formulation that comprises a mixture of two or more different materials. In one embodiment, the formulation comprises a mixture of two carbon-based materials. The first material may comprise a dielectric constant of greater than approximately 2.6, and the second material may comprise a dielectric constant greater than approximately 10.0. The materials are at least partly miscible with one another, and the formulation has low electrical conductivity. The term “low conductivity” or “low electrical conductivity”, as used throughout the specification and claims means a conductivity less than that of tap water, that may be lower than approximately 10-5 mho/cm, and may be lower than 10-6 mho/cm. The materials are substantially non-aqueous. The materials in the insulating formulation are non-hazardous to the environment, may be non-toxic, and may be biodegradable. The formulation exhibits a low conductivity.
In one embodiment, the first material comprises one or more natural or synthetic oils. The first material may comprise castor oil, but may comprise or include other oils such as, for example, jojoba oil or mineral oil.
Castor oil (glyceryl triricinoleate), a triglyceride of fatty acids, is obtained from the seed of the castor plant. It is nontoxic and biodegradable. A transformer grade castor oil (from CasChem, Inc.) has a dielectric constant (i.e., relative permittivity) of approximately 4.45 at a temperature of approximately 22° C. (100 Hz).
The second material comprises a solvent, one or more carbonates, and/or may be one or more alkylene carbonates such as, but not limited to, ethylene carbonate, propylene carbonate, or butylene carbonate. The alkylene carbonates can be manufactured, for example, from the reaction of ethylene oxide, propylene oxide, or butylene oxide or similar oxides with carbon dioxide.
Other oils, such as vegetable oil, or other additives can be added to the formulation to modify the properties of the formulation. Solid additives can be added to enhance the dielectric or fluid properties of the formulation.
The concentration of the first material in the insulating formulation may range from between approximately 1.0 and 99.0 percent by volume, between approximately 40.0 and 95.0 percent by volume, between approximately 65.0 and 90.0 percent by volume, and/or between approximately 75.0 and 85.0 percent by volume.
The concentration of the second material in the insulating formulation may range from between approximately 1.0 and 99.0 percent by volume, between approximately 5.0 and 60.0 percent by volume, between approximately 10.0 and 35.0 percent by volume, and/or between approximately 15.0 and 25.0 percent by volume.
Thus, the resulting formulation comprises a dielectric constant that is a function of the ratio of the concentrations of the constituent materials. The mixture for the formulation of one embodiment of the present invention is a combination of butylene carbonate and a high permittivity castor oil wherein butylene carbonate is present in a concentration of approximately 20% by volume. This combination provides a high relative permittivity of approximately 15 while maintaining good insulation characteristics. In this ratio, separation of the constituent materials is minimized. At a ratio of below 32%, the castor oil and butylene carbonate mix very well and remain mixed at room remain mixed at room temperature. At a butylene carbonate concentration of above 32%, the fluids separate if undisturbed for approximately 10 hours or more at room temperature. A property of the present invention is its ability to absorb water without apparent effect on the dielectric performance of the insulating formulation.
An embodiment of the present invention comprising butylene carbonate in castor oil comprises a dielectric strength of at least approximately 300 kV/cm (I μsec), a dielectric constant of approximately at least 6, a conductivity of less than approximately 10−5 mho/cm, and a water absorption of up to 2,000 ppm with no apparent negative effect caused by such absorption. More preferably, the conductivity is less than approximately 10−6 mho/cm.
The formulation of the present invention is applicable to a number of pulsed power machine technologies. For example, the formulation is useable as an insulating and drilling fluid for drilling holes in rock or other hard materials or for crushing such materials as provided for herein. The use of the formulation enables the management of the electric fields for electrocrushing rock. Thus, the present invention also comprises a method of disposing the insulating formulation about a drilling environment to provide electrical insulation during drilling.
Other formulations may be utilized to perform the drilling operations described herein. For example, in another embodiment, crude oil with the correct high relative permittivity derived as a product stream from an oil refinery may be utilized. A component of vacuum gas crude oil has high molecular weight polar compounds with O and N functionality. Developments in chromatography allow such oils to be fractionated by polarity. These are usually cracked to produce straight hydrocarbons, but they may be extracted from the refinery stream to provide high permittivity oil for drilling fluid.
Another embodiment comprises using specially treated waters. Such waters include, for example, the Energy Systems Plus (ESP) technology of Complete Water Systems which is used for treating water to grow crops. In accordance with this embodiment,
Another embodiment of the present invention provides a high efficiency electrohydraulic boulder breaker (designated herein as “HEEB”) for breaking up medium to large boulders into small pieces. This embodiment prevents the hazard of fly rock and damage to surrounding equipment. The HEEB is related to the High Efficiency Electrohydraulic Pressure Wave Projector disclosed in U.S. Pat. No. 6,215,734 (to the principal inventor herein), incorporated herein by reference.
Main capacitor bank 183 (shown in
These capacitors/devices are connected to the probe of the transducer assembly where the electrodes that create the pressure wave are located. The capacitors increase in voltage from the charge coming through the cable from the main capacitor bank until they reach the the breakdown voltage of the electrodes inside the transducer assembly. When the fluid gap at the tip of the transducer assembly breaks down (acting like a switch), current then flows from the energy storage capacitors or inductive devices through the gap. Because the energy storage capacitors are located very close to the transducer tip, there is very little inductance in the circuit and the peak current through the transducers is very high. This high peak current results in a high energy transfer efficiency from the energy storage module capacitors to the plasma in the fluid. The plasma then expands, creating a pressure wave in the fluid, which fractures the boulder.
The HEEB system may be transported and used in various environments including, but not limited to, being mounted on a truck as shown in
Therefore, the HEEB does not rely on transmitting the boulder-breaking current over a cable to connect the remote (e.g., truck mounted) capacitor bank to an electrode or transducer located in the rock hole. Rather, the HEEB puts the high current energy storage directly at the boulder. Energy storage elements, such as capacitors, are built into the transducer assembly. Therefore, this embodiment of the present invention increases the peak current through the transducer and thus improves the efficiency of converting electrical energy to pressure energy for breaking the boulder. This embodiment of the present invention also significantly reduces the amount of current that has to be conducted through the cable thus reducing losses, increasing energy transfer efficiency, and increasing cable life.
An embodiment of the present invention improves the efficiency of coupling the electrical energy to the plasma into the water and hence to the rock by using a multi-gap design. A problem with the multi-gap water spark gaps has been getting all the gaps to ignite because the cumulative breakdown voltage of the gaps is much higher than the breakdown voltage of a single gap. However, if capacitance is placed from the intermediate gaps to ground (
In another embodiment, the multi-gap transducer design can be used with a conventional pulsed power system, where the capacitor bank is placed at some distance from the material to be fractured, a cable is run to the transducer, and the transducer is placed in the hole in the boulder. Used with the HEEB, it provides the advantage of the much higher peak current for a given stored energy.
Thus, an embodiment of the present invention provides a transducer assembly for creating a pressure pulse in water or some other liquid in a cavity inside a boulder or some other fracturable material, said transducer assembly incorporating energy storage means located directly in the transducer assembly in close proximity to the boulder or other fracturable material. The transducer assembly incorporates a connection to a cable for providing charging means for the energy storage elements inside the transducer assembly. The transducer assembly includes an electrode means for converting the electrical current into a plasma pressure source for fracturing the boulder or other fracturable material.
The transducer assembly may have a switch located inside the transducer assembly for purposes of connecting the energy storage module to said electrodes. In the transducer assembly, the cable is used to pulse charge the capacitors in the transducer energy storage module. The cable is connected to a high voltage capacitor bank or inductive storage means to provide the high voltage pulse.
In another embodiment, the cable is used to slowly charge the capacitors in the transducer energy storage module. The cable is connected to a high voltage electric power source.
In an embodiment of the present invention, the switch located at the primary capacitor bank is a spark gap, thyratron, vacuum gap, pseudo-spark switch, mechanical switch, or some other means of connecting a high voltage or high current source to the cable leading to the transducer assembly.
In another embodiment, the transducer electrical energy storage utilizes inductive storage elements.
Another embodiment of the present invention provides a transducer assembly for the purpose of creating pressure waves from the passage of electrical current through a liquid placed between one or more pairs of electrodes, each gap comprising two or more electrodes between which current passes. The current creates a phase change in the liquid, thus creating pressure in the liquid from the change of volume due to the phase change. The phase change includes a change from liquid to gas, from gas to plasma, or from liquid to plasma.
In the transducer, more than one set of electrodes may be arranged in series such that the electrical current flowing through one set of electrodes also flows through the second set of electrodes, and so on. Thus, a multiplicity of electrode sets can be powered by the same electrical power circuit.
In another embodiment, in the transducer, more than one set of electrodes is arranged in parallel such that the electrical current is divided as it flows through each set of electrodes (
A plurality of electrode sets may be arrayed in a line or in a series of straight lines.
In another embodiment, the plurality of electrode sets is alternatively arrayed to form a geometric figure other than a straight line, including, but not limited to, a curve, a circle (
The electrode sets in the transducer assembly may be constructed in such a way as to provide capacitance between each intermediate electrode and the ground structure of the transducer (
In another embodiment, in the plurality of electrode sets, the capacitance of the intermediate electrodes to ground is formed by the presence of a liquid between the intermediate electrode and the ground structure.
In another embodiment, in the plurality of electrode sets, the capacitance is formed by the installation of a specific capacitor between each intermediate electrode and the ground structure (
In another embodiment, in the plurality of electrode sets, capacitance is provided between the electrode sets from electrode to electrode. The capacitance can be provided either by the presence of the fracturing liquid between the electrodes or by the installation of a specific capacitor from an intermediate electrode between electrodes as shown in
In an embodiment of the present invention, the electrical energy is supplied to the multi-gap transducer from an integral energy storage module in the multi-electrode transducer.
In another embodiment, in the multi-electrode transducer, the energy is supplied to the transducer assembly via a cable connected to an energy storage device located away from the boulder or other fracturable material.
Another embodiment of the present invention comprises a method for crushing rock by passing current through the rock using electrodes that do not touch the rock. In this method, the rock particles are suspended in a flowing or stagnant water column, or other liquid of relative permittivity greater than the permittivity of the rock being fractured. Water may be used for transporting the rock particles because the dielectric constant of water is approximately 80 compared to the dielectric constant of rock which is approximately 3.5 to 12.
In one embodiment, the water column moves the rock particles past a set of electrodes as an electrical pulse is provided to the electrodes. As the electric field rises on the electrodes, the difference in dielectric constant between the water and the rock particle causes the electric fields to be concentrated in the rock, forming a virtual electrode with the rock. This is illustrated in
The difference in dielectric constant concentrated the electric fields in the rock particle. These high electric fields cause the rock to break down and current to flow from the electrode, through the water, through the rock particles, through the conducting water, and back to the opposite electrode. In this manner, many small particles of rock can be disintegrated by the virtual electrode electrocrushing method without any of them physically contacting both electrodes. The method is also suitable for large particles of rock.
Thus, it is not required that the rocks be in contact with the physical electrodes and so the rocks need not be sized to match the electrode spacing in order for the process to function. With the virtual electrode electrocrushing method, it is not necessary for the rocks to actually touch actually touch the electrode, because in this method, the electric fields are concentrated in the rock by the high dielectric constant (relative permittivity) of the water or fluid. The electrical pulse must be tuned to the electrical characteristics of the column structure and liquid in order to provide a sufficient rate of rise of voltage to achieve the allocation of electric field into the rock with sufficient stress to fracture the rock.
Another embodiment of the present invention, illustrated in
As these oversized particles sink past the electrodes, a high voltage pulse is applied to the electrodes to fracture the particles, reducing them in size until they become small enough to become entrained by the water or fluid flow. This method provides a means of transport of the particles past the electrodes for crushing and at the same time differentiating the particle size.
The reverse-flow crusher also provides for separating ash from coal in that it provides for the ash to sink to the bottom and out of the flow, while the flow provides transport of the fine coal particles out of the crusher to be processed for fuel.
The invention is further illustrated by the following non-limiting example(s).
An apparatus utilizing FAST Drill technology in accordance with the present invention was constructed and tested.
A high permittivity fluid comprising a mixture of castor oil and approximately 20% by volume butylene carbonate was made and tested in accordance with the present invention as follows.
1. Dielectric Strength Measurements.
Because this insulating formulation of the present invention is intended for high voltage applications, the properties of the formulation were measured in a high voltage environment. The dielectric strength measurements were made with a high voltage Marx bank pulse generator, up to 130 kV. The rise time of the Marx bank was less than 100 nsec. The breakdown measurements were conducted with 1-inch balls immersed in the insulating formulation at spacings ranging from 0.06 to 0.5 cm to enable easy calculation of the breakdown fields. The delay from the initiation of the pulse to breakdown was measured.
The breakdown strength of the formulation is substantially higher than transformer oil at times greater than 10 μsec. No special effort was expended to condition the formulation. It contained dust, dissolved water and other contaminants, whereas the Martin model is for very well conditioned transformer oil or water.
2. Dielectric Constant Measurements.
The dielectric constant was measured with a ringing waveform at 20 kV. The ringing high voltage circuit was assembled with 8-inch diameter contoured plates immersed in the insulating formulation at 0.5-inch spacing. The effective area of the plates, including fringing field effects, was calibrated with a fluid whose dielectric constant was known (i.e., transformer oil). An aluminum block was placed between the plates to short out the plates so that the inductance of the circuit could be measured with a known circuit capacitance. Then, the plates were immersed in the insulating formulation, and the plate capacitance was evaluated from the ringing frequency, properly accounting for the effects of the primary circuit capacitor. The dielectric constant was evaluated from that capacitance, utilizing the calibrated effective area of the plate. These tests indicated a dielectric constant of approximately 15.
3. Conductivity Measurements.
To measure the conductivity, the same 8-inch diameter plates used in the dielectric constant measurement were utilized to measure the leakage current. The plates were separated by 2-inch spacing and immersed in the insulating formulation. High voltage pulses, ranging from 70-150 kV were applied to the plates, and the leakage current flow between the plates was measured. The long duration current, rather than the initial current, was the value of interest, in order to avoid displacement current effects. The conductivity obtained was approximately 1 micromho/cm [1×10−6(ohm-cm)−1].
4. Water Absorption.
The insulating formulation has been tested with water content up to 2000 ppm without any apparent effect on the dielectric strength or dielectric constant. The water content was measured by Karl Fisher titration.
5. Energy Storage Comparison.
The energy storage density of the insulating formulation of the present invention was shown to be substantially higher than that of transformer oil, but less than that of deionized water. Table 1 shows the energy storage comparison of the insulating formulation, a transformer oil, and water in the 1 μsec and 10 μsec breakdown time scales. The energy density (in joules/cm3) was calculated from the dielectric constant (∈, ∈0) and the breakdown electric field (Ebd˜kV/cm). The energy storage density of the insulating formulation is approximately one-fourth that of water at 10 microseconds. The insulating formulation did not require continuous conditioning, as did a water dielectric system. After about 12 months of use, the insulating formulation remained useable without conditioning and with no apparent degradation.
6. Dielectric Properties.
A summary of the dielectric properties of the insulating formulation of the present invention is shown in Table 2. Applications of the insulating formulation include high energy density capacitors, large-scale pulsed power machines, and compact repetitive pulsed power machines.
Spiker-Sustainer
Another embodiment of the present invention comprises two pulsed power systems coordinated to fire one right after the other.
Creating an arc inside the rock or other substrate with the electrocrushing (EC) process potentially comprises a large mismatch in impedance between the pulsed power system that provides the high voltage pulse and the arc inside the substrate. The conductivity of the arc may be quite high, because of the high plasma temperature inside the substrate, thus yielding a low impedance load to the pulsed power system requiring high current to deposit much energy. In contrast, the voltage required to overcome the insulative properties of the substrate (break down the substrate electrically) may be quite high, requiring a high impedance circuit (high ratio of voltage to current). The efficiency of transferring energy from the pulsed power system into the substrate can be quite low as a consequence of this mismatch.
The first pulsed power system, comprising a spiker, may create a high voltage pulse that breaks down the insulative properties of the substrate and may create an arc channel in the substrate. It is designed for high voltage but low energy, at high impedance. The second pulsed power system, comprising a sustainer, is designed to provide high current into the arc, but at low voltage, thus better matching the impedance of the arc and achieving much more efficient energy transfer.
The high voltage can be created through pulsed transformer 162 (see
The spiker-sustainer pulsed power system can be located downhole in the bottom hole assembly, at the surface with the pulse sent over a plurality of cables, or in an intermediate section of the drill string.
The non-rotating bit may be designed with a plurality of electrocrushing electrode sets with the sets divided in groups of one or more electrode sets per group for directional control. For example, in
The excavation process may be self-regulating and all the electrode sets in a group may excavate at approximately the same rate. The nine electrode sets shown in
Directional control may be achieved by increasing the pulse repetition rate or pulse energy for those conical electrode sets toward which it is desired to turn the bit. For example, as illustrated in
The term “rock” as used herein is intended to include rocks or any other substrates wherein drilling is needed.
The two conical electrode sets on the bottom and the bottom center electrode may all participate in the directional control of the bit when nine pulsed power systems are utilized to power the non-rotating bit with each electrode set having its own pulsed power system.
Another embodiment comprises arranging all the electrocrushing electrode sets in a conical shape, with no a flat portion to the bit, as shown in
Bottom hole assembly 242, as illustrated in
The cable may be located inside the continuous coiled tubing, as shown in
In another embodiment, part of the total fluid pumped down the fluid pipe is diverted through the backside electrohydraulic projectors/electrocrushing electrode sets when in normal operation. The fluid flow rate required to clean the rock particles out of the hole is greater above the bottom hole assembly than at the bottom hole assembly, because typically the diameter of the fluid pipe and power cable is less than the diameter of the bottom hole assembly, requiring greater volumetric flow above the bottom hole assembly to maintain the flow velocity required to lift the rock particles out of the well.
Another embodiment of the present invention comprises the method of backwards excavation. Slumping of the hole behind the bit, wherein the wall of the well caves in behind the bottom hole assembly, blocking the ability of the bottom hole assembly to be extracted from the well from the well and inhibiting further drilling because of the blockage, as shown in
In another embodiment of the present invention, electrohydraulics alone or electrohydraulic projectors in conjunction with electrocrushing electrode sets may be used at the back of the bottom hole assembly. The electrohydraulic projectors are especially helpful because the high power shock wave breaks up the slumped rock behind the bottom hole assembly and disturbs the rock above it. The propagation of the pressure pulse through the slumped rock disturbs the rock, providing for enhanced fluid flow through it to carry the rock particles up the well to the surface. As the bottom hole assembly is drawn up to the surface, the fluid flow carries the rock rock particles to the surface, and the pressure pulse continually disrupts the slumped rock to keep it from sealing the hole. One or more electrocrushing electrode sets may be added to the plurality of projectors at the back of the bottom hole assembly to further enhance the fracturing and removal of the slumped rock behind the bottom hole assembly.
In another embodiment of the present invention comprising the FAST drill, a cable may be disposed inside the fluid pipe and the fluid pipe may comprise a rotatable drill pipe. Mechanical teeth 116 may be installed on the back side of the bottom hole assembly and the bottom hole assembly may be rotated to further assist the electrohydraulic/electrocrushing projectors in cleaning the rock from behind the bottom hole assembly. The bottom hole assembly is rotated as it is pulled out while the electrohydraulic projectors/electrocrushing electrode sets are fracturing the rock behind the bottom hole assembly and the fluid is flushing the rock particles up the hole.
Embodiments of the present invention described herein may also include, but are not limited to the following elements or steps:
1) The invention may comprise a plurality of electrode sets on the bit, and the invention varies the pulse repetition rate or pulse energy produced by the pulsed power generator to different the electrode sets to provide breaking more substrate from one side of the bit than another side thus causing the bit to change direction so that the bit can be steered through the substrate;
2) The electrode sets may be arranged into groups with a single connection to the pulsed power generator for each group;
3) A single connection may be provided to the pulsed power generator for each electrode set on the bit;
4) A single connection may be provided to the pulsed power generator to some of the electrode sets on the bit and the remaining electrode sets arranged into a one or a plurality of groups with a single connection to the pulsed power generator for each group;
5) A plurality of electrode sets may be disposed on the drill bit, and the pulse repetition rate or pulse energy may be applied differently to different electrode sets on the bit for the purpose of steering the bit from the differential operation of electrode sets;
6) A plurality of electrode sets may be arranged in groups and the pulse repetition rate or pulse energy may be applied differently to different groups of electrode sets for the purpose of steering the bit from the differential operation of electrode sets;
7) A plurality of electrode sets may be arranged along a face of the drill bit with symmetry relative to the axis of the direction of motion of the drill bit;
8) A plurality of electrode sets may be arranged along a face of the drill bit with some of the electrode sets not having symmetry relative to the axis of the direction of motion of the drill bit;
9) The geometry of the arrangement of the electrode sets may be conical shapes whose axes are substantially parallel to the axis of the direction of motion of the drill bit;
10) The arrangement of the electrode sets may be conical shapes whose axes are at an angle to the axis of the direction of motion of the drill bit;
11) The geometry of the arrangement of the electrode sets may be a flat section perpendicular to the direction of motion of the drill bit in conjunction with a plurality of conical shapes whose axes are substantially oriented to the axis of the direction of motion of the drill bit;
12) Arranging the electrode sets into groups with a single connection to a voltage and current pulse source for each group;
13) Providing a single connection to a voltage and current pulse source for each electrode set on the bit;
14) Providing a single connection to a voltage and current pulse source for each of some of the electrode sets on the bit and arranging the remaining electrode sets into at least one group with a single connection to a voltage and current pulse source for each group;
15) Tuning the current pulse to the substrate properties so that the substrate is broken beyond the boundaries of the electrode set;
16) Utilizing at least one initial high voltage pulse to overcome the insulative properties of the substrate followed by at least one high current pulse of a different source impedance from the initial pulse(s) to provide the energy to break the substrate;
17) The high voltage pulses and the high current pulses are created by utilizing a pulse transformer or by charging capacitors in parallel and adding them in series or a combination thereof;
18) The high voltage pulses and the high current pulses utilize electrical energy stored in either capacitors or inductors or a combination thereof;
19) The high voltage pulses and the high current pulses utilize switches, including but not limited to solid state switches, gas or liquid spark gaps, thyratrons, vacuum tubes, solid state optically triggered and self-break switches;
20) A spiker-sustainer pulsed power system is provided as the pulsed power generator for providing at least one initial high voltage pulse to overcome the insulative properties of the substrate followed by at least one high current pulse to provide the energy to break the substrate;
21) The spiker-sustainer pulsed power system utilizes switches, including but not limited to solid state switches, gas or liquid spark gaps, thyratrons, vacuum tubes, solid state optically triggered and self-break switches;
22) The spiker-sustainer pulsed power system utilizes either capacitive or inductive energy storage or a combination thereof;
23) The spiker-sustainer pulsed power system creates the high voltage pulse by a pulse transformer or by charging capacitors in parallel and adding them in series or a combination thereof;
24) The spiker-sustainer pulsed power system may be located downhole in a bottom hole assembly, at the surface with the pulse sent over a one or a plurality of cables, or in an intermediate section of the drill string;
25) The cable resides inside a fluid conducting means for conducting drilling fluid from the surface to the bottom hole assembly;
26) The cable resides outside a fluid conducting means for conducting drilling fluid from the surface to the bottom hole assembly;
27) A power conducting means, including but not limited to a cable for providing power to a FAST drill bottom hole assembly, resides inside a fluid conducting means for conducting drilling fluid from the surface to the bottom hole assembly;
28) The power conducting means may reside outside the fluid conducting means;
29) The drill bit and means for connecting the drill bit to the pulsed power generator and means for transmitting the drilling fluid to the bit and the housing for containing these items are incorporated into a bottom hole assembly;
30) The bottom hole assembly may comprise at least one electrohydraulic projector installed on a side of the bottom hole assembly not in the direction of drilling;
31) The bottom hole assembly may comprise at least one electrocrushing electrode set installed on a side of the bottom hole assembly not in the direction of drilling;
32) A switch in the bottom hole assembly may switch the power from the pulsed power generator from at least one of the bit electrode sets to the electrocrushing electrode set or electrohydraulic projector;
33) A valve in the bottom hole assembly may divert at least a portion of the drilling fluid from the bit to the to the electrocrushing electrode set or electrohydraulic projector;
34) For those configurations where the cable is inside the fluid pipe and the fluid pipe comprises a rotatable drill pipe, mechanical cutting teeth may be installed on the back side of the bottom hole assembly so the bottom hole assembly can be rotated to clean the rock from behind the bottom hole assembly;
35) Drilling backwards out of a damaged or slumped or caved in well utilizing at least one electrohydraulic projector installed on a side of the bottom hole assembly not in the direction of drilling;
36) Creating a pressure wave propagating backwards in the well (opposite the direction of drilling) to assist in cleaning the substrate particles out of a damaged or slumped or caved in well utilizing at least one electrohydraulic projector installed on a side of the bottom hole assembly not in the direction of drilling;
37) Drilling backwards out of a damaged or slumped or caved in well utilizing at least one electrocrushing electrode set installed on a side of the bottom hole assembly not in the direction of drilling;
38) A switch in the bottom hole assembly may switch the power from the pulsed power generator from at least one of the bit electrode sets to the electrocrushing electrode set or electrohydraulic projector;
39) A valve means in the bottom hole assembly to divert at least a portion of the drilling fluid from the bit to the to the electrocrushing electrode set or electrohydraulic projector;
40) Creating a flow of drilling fluid backwards in the well (opposite the direction of drilling) to assist in cleaning the substrate particles out of a damaged or slumped or caved in well utilizing a valve in the bottom hole assembly to divert at least a portion of the drilling fluid from the bit to the back of the bottom hole assembly;
41) Further balancing the fluid flow through the bit, around the bottom hole assembly and through the well, diverting at least a portion of the drilling fluid in the bottom hole assembly from the bit to the back of the bottom hole assembly during normal drilling operation; and
42) Cleaning the substrate out of a damaged or slumped or caved in well and enabling the bottom hole assembly to drill backwards to the surface by further providing a mechanical cutting means installed on the back side of a rotatable bottom hole assembly and drill string and rotating the bottom hole assembly to clean the substrate from behind the bottom hole assembly.
The preceding examples can be repeated with similar success by substituting the generically or specifically described compositions, biomaterials, devices and/or operating conditions of this invention for those used in the preceding examples.
Although the invention has been described in detail with particular reference to these preferred embodiments, other embodiments can achieve the same results. Variations and modifications of the present invention will be obvious to those skilled in the art and it is intended to cover all such modifications and equivalents. The entire disclosures of all references, applications, patents, and publications cited above, and of the corresponding application(s), are hereby incorporated by reference.
This application is a continuation-in-part application of U.S. patent application Ser. No. 11/208,671 entitled “Pulsed Electric Rock Drilling Apparatus,” filed Aug. 19, 2005, which claims the benefit of U.S. Provisional Patent Application No. 60/603,509 entitled “Electrocrushing FAST Drill And Technology, High Relative Permittivity Oil, High Efficiency Boulder Breaker, New Electrocrushing Process, and Electrocrushing Mining Machine” filed Aug. 20, 2004, and is also related to: U.S. Utility application Ser. No. 11/208,766 entitled “High Permittivity Fluid;” filed Aug. 19, 2005; U.S. Utility application Ser. No. 11/208,579 entitled “Electrohydraulic Boulder Breaker;” filed Aug. 19, 2005; U.S. Pat. No. 7,384,009 entitled “Virtual Electrode Mineral Particle Disintegrator;” issued Jun. 10, 2008; U.S. Utility application Ser. No. 11/551,840 entitled “Method of Drilling Using Pulsed Electric Drilling;” filed Nov. 20, 2006; U.S. Utility application Ser. No. 11/360,118 entitled “Portable Electrocrushing Drill;” filed Feb. 22, 2006; PCT Patent Application PCT/US06/006502 entitled “Portable Electrocrushing Drill;” filed Feb. 23, 2006; U.S. Utility application Ser. No. 11/479,346 entitled “Method of Drilling Using Pulsed Electric Drilling;” filed Jun. 29, 2006; PCT Patent Application PCT/US07/72565 entitled “Portable Directional Electrocrushing Drill; filed Jun. 29, 2007; and U.S. Utility application Ser. No. 11/561,852 entitled “Fracturing Using a Pressure Pulse,” filed Nov. 20, 2006, and the specifications and claims of those applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60603509 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11208671 | Aug 2005 | US |
Child | 12198868 | US |