The invention relates generally to an apparatus for measuring and discharging predetermined quantities of fluid such as lubricants or coolants from a reservoir. In particular, the invention relates to a fluid reservoir suitable for volatile coolants.
In industrial operations, particularly in cutting and machining operations, it is highly desirable to apply liquid lubricants or coolants to the cutting tools or workpieces during the duty cycles. Such lubricants and coolants can be applied as a generally continuous stream, a succession of droplets, or in mist or “atomized” form comprising droplets of lubricant/coolant entrained in an air stream.
During the machining or cutting of a workpiece by a tool, friction between the tool and the workpiece creates heat. Cooling is achieved by applying the lubricant or coolant to the tool/workpiece interface, resulting in a heat reduction in the tool/workpiece by transferring the heat to the resulting chips and/or by the evaporation of the lubricant or coolant.
Most cooling operations can be accomplished with standard petroleum or vegetable based oils. These coolants are non-volatile at room temperature, making them easy to handle. There are cooling situations where the rate of generated heat requires a much faster rate of cooling than what is obtainable from these non-volatile coolants. Under such circumstance it is desirable to use a fluid having a very low vapor pressure such that the fluid evaporates almost immediately upon contact. These types of fluid are know as volatile fluids and are highly effective in rapidly cooling an object. Examples of such comprise traditional refrigerants that change state from liquid to gas when exposed to standard atmospheric temperatures and pressures.
Volatile fluids are relatively difficult to handle. Exposure to standard room conditions will permit the volatile fluids to immediately evaporate, destroying their utility as a coolant. When used as a coolant for a machining operation, care must be taken to make sure that the volatile fluids are handled in such a way that their corresponding cooling characteristics are not lost prior to the application of the coolant to the tool or workpiece.
A portable metered coolant system comprises a coolant dispenser having an inlet for receiving coolant and an outlet for dispensing metered doses of the coolant, and a variable volume coolant reservoir carried by the coolant dispenser to form an integrated unit with the coolant dispenser, the variable volume coolant reservoir having a reservoir outlet fluidly coupled to the inlet of the coolant dispenser to supply the coolant from the variable volume coolant reservoir to the coolant dispenser for dispensing, wherein the volume of the variable volume coolant reservoir decreases as the coolant is dispensed.
A pulsed metered coolant system comprises a variable volume coolant reservoir having a reservoir outlet for dispensing coolant, a coolant dispenser having an inlet for receiving coolant and an outlet for dispensing metered doses of the coolant, the coolant dispenser comprising, a manifold having the inlet for fluidly coupling the variable volume coolant reservoir to the manifold, an injector fluidly coupled to the manifold for dispensing metered doses of coolant from the variable volume coolant reservoir through the outlet, and a pulsator fluidly coupled to the injector for controlling the dispensing of metered doses of coolant by the injector, whereby the variable volume coolant reservoir is carried by the coolant dispenser to form an integrated unit with the coolant dispenser, wherein the volume of the variable volume coolant reservoir decreases as the coolant is dispensed.
In the drawings:
Referring now to the figures, and in particular to
The pulsatory control apparatus 12 can comprise a pneumatic pulse generator or an electric timer and solenoid valve whose basic function is to provide a sequence of recurring actuation pulses to the injector 18, in response to which the injector 18 provides a corresponding sequence of metered charges of coolant from the coolant assembly 20. The actuating pulses are normally in the form of compressed air that is supplied to the injector 18.
The injector 18 is adapted to eject discrete metered volumes of fluid from a continuous supply in response to the pulses of compressed air. Devices of this type are commonly referred to as a “metering pump” or an “injector pump.” The injector 18 comprises an in-line metering pin which moves through a closely-fitted chamber to eject a measured volume of fluid therefrom in response to the pulses of compressed air.
The fluid manifold 14 includes a plurality of apertures and associated passageways for transfer of fluids between the various component parts of the pulsed lubricator assembly 10. In particular, the fluid manifold 14 comprises one or more passageways (not shown) for fluidly connecting the pulsatory control apparatus 12 with the injector module 16 and the injector 18, such as the exemplary passageway 36 illustrated in
The coolant assembly 20 comprises a reservoir 22, illustrated in
The end cap 72 is provided with a circular aperture 73 extending coaxially therethrough to enable access to the interior of the reservoir 22. The aperture 73 transitions radially to a circular spring seat 75 coaxial with the opening 73 for seating of a spring therein, as hereinafter described.
At a second end of the reservoir wall 70, a conical wall 74 extends from the reservoir wall 70 and transitions to a nipple 76 extending away from the conical wall 74 coaxially with the reservoir wall 70. The nipple 76 comprises an annular nipple wall 78 defining an orifice 80 extending coaxially therethrough. The reservoir wall 70 defines a cylindrical chamber 82, and the conical wall 74 defines a conical blow-off chamber 32. The chamber 82, the blow-off chamber 32, and the orifice 80 are fluidly interconnected. Toward the conical wall 74, a coolant outlet 84 extends radially through the reservoir wall 70 in fluid communication with the chamber 82.
Referring now to
The air release valve 34 is assembled by installing an O-ring 52 onto the O-ring shaft 96 against the retaining flange 98, and inserting the main shaft 90 through the orifice 80 with the retaining flange 98 and the O-ring 52 within the blow-off chamber 32. A helical spring 54 is inserted over the nipple 76, and a washer 56 is inserted over the main shaft 90. The washer 56 is secured in-place by a well-known retaining ring 58, such as a “C-type” retaining ring, circumscribing the groove 94. The spring 54 is adapted to bear against the washer 56 and the conical wall 74 to urge the pin 50 away from the blow-off chamber 32. In a normally closed position, the air release valve 34 will be positioned with the O-ring 52 held against the conical wall 74 by the retaining flange 98 to maintain an air-tight seal. However, if sufficient force is applied to the push flange 92 to overcome the force of the spring 54 and thereby move the O-ring 52 away from the conical wall 74, fluid will escape through the orifice 80 between the main shaft 90 and the nipple wall 78. Release of the air release valve 34 will return the O-ring 52 against the conical wall 74, thereby preventing further migration of fluid through the valve 34.
As illustrated in
A distal end of the piston 24 terminates in a conical face 66 adapted for registry with the conical wall 74. A circular cavity 68 extends coaxially into the piston 24 from the conical face 66. A coil spring 28 is received in the spring chamber 26, is seated in the spring seat 64 to bear against the end cap 72, and is seated in the spring seat 75 to bear against the end cap 72 to urge the piston 24 away from the end cap 72. As the volatile coolant is evacuated from the coolant chamber 30, the piston 24 will be urged toward the blow-off chamber 32.
In this manner, the effective volume of the coolant chamber is reduced as the volatile coolant is used. The variable volume of the coolant chamber 30 makes the coolant assembly 20 highly suitable for storing volatile coolants and preventing their expansion as the volatile coolant is used. In addition to the variable volume, the spring force applied by the coil spring 28 also aids in keeping the volatile coolant from expanding and changing state from a liquid to a gas in the coolant chamber by applying a pressure on the volatile coolant. The force of the spring should be great enough such that the pressure applied by the piston on the volatile coolant is greater than the vapor pressure of the volatile coolant. The pressurization of the volatile coolant also makes it easier for the volatile coolant to be expelled from the coolant chamber 30 and into the manifold 14 in response to a demand for volatile coolant by the injector module.
Referring again to
In operation, the pulsatory control 12 will send one or more pulses of pressurized air to the injector module when the coolant 38 is required. The pulses of pressurized air trigger the injector 18 to draw in and expel a charge of coolant from the coolant reservoir 30 through the line 40 and to the workpiece 42. As each charge of volatile coolant is removed, the force applied by the coil spring 28, combined with the vacuum generated by the action of the injector 18 advances the piston within the reservoir 20 toward the release valve 34 until all of the volatile coolant is ultimately evacuated. The advancing of the piston reduces the effective volume of the coolant chamber which eliminates any extra volume that the volatile coolant could expand into, which might result in the volatile coolant undesirably changing phase, from a liquid to a gas, for example, and losing its cooling properties. The coil spring also maintains the volatile coolant under pressure which further limits its ability to change phase.
It is not uncommon for the volatile coolant to have some impurities, which can separate from the volatile coolant over time. These impurities can separate in the form of a liquid or gas, which collects on top of the volatile coolant 38. The release valve permits these impurities to be evacuated from the reservoir.
The open proximal end 142 is provided with an annular stop 144 having an aperture 146 extending coaxially therethrough. The annular stop 144 is fabricated of a suitable material, such as aluminum, having a diameter adapted for a frictional fit within the reservoir 122. The frictional fit can be facilitated by providing an interference fit with an annular barb circumscribing the annular stop 144 to engage the inside of the reservoir 122. The spring 128 has a diameter somewhat greater than the aperture 146 to enable the spring 128 to bear against the annular stop 144.
The piston 124 is provided with a seal O-ring 148 circumscribing a distal end of the piston 124 and preferably seated in a circumscribing groove in the piston 124 to enable the piston to translate through the reservoir 122 while preventing fluid from escaping between the piston 124 and the reservoir 122. A wipe O-ring 150 circumscribes a proximal end of the piston 124 and is preferably seated in a circumscribing groove in the piston 124 to remove machining chips, dust, and other impurities that may enter the spring chamber 126 through the aperture 146 during use of the pulsed lubricator assembly 110.
The closed distal end 140 of the reservoir 122 is provided with a somewhat convex or conical shape, terminating in an end wall 154, which, as illustrated in
Referring to
The inlet coupling 136 and air release valve form a quick-release valve to enable the coolant reservoir 120 to be quickly and easily coupled/uncoupled to the fluid manifold 114. It is contemplated that a source of pressurized coolant will also have a suitable quick-release connector thereby enabling the quick filling of the coolant reservoir 120 by uncoupling the coolant reservoir 120 from the manifold 114 and coupling it to the source of pressurized where the reservoir 120 will be immediately filled. The reservoir can then be coupled to the manifold. This configuration makes the pulsed lubricator of the invention ideally suitable for portable use where the coolant reservoir is not continuously supplied coolant.
The pulsatory control apparatus 112 is a generally well-known device comprising an air inlet module 162 which is adapted for fluid connection in a generally well-known manner to a source of compressed air (not shown) for operating the pulsatory control apparatus 112. The air inlet module 162 is provided with an air adjustment valve 172 for adjusting the flow of air to the pulsatory control apparatus 112. The air inlet module 162 is fluidly coupled to a valve module 166, which, in turn is fluidly coupled to an air chamber 168. Air is delivered from the air inlet module 162 through the valve module 166 to the air chamber 168 for controlled delivery to the injector module 116. The injector module 116 is fluidly connected through the fluid manifold 114 to the coolant assembly 120.
A fluid adjustment module 170 is coupled to the air chamber 168 to control the volume and pressure of air in the inner chamber 168. The fluid adjustment module 170 is provided with a fluid adjustment valve 174 for adjusting the frequency of the air pulses delivered by the pulsatory control apparatus 112 to the injector module 116. Air pulses delivered by the pulsatory control apparatus 112 to the injector module 116 control the delivery of coolant from the reservoir 122 through the fluid manifold 114 for delivery through an output orifice 160 in the injector module 116.
In operation, the coolant chamber 130 is filled with coolant under pressure by suitably coupling the air release valve 134 with a supply of coolant as previously described. When the spring-biased valve in the valve orifice 158 is opened, coolant will flow under pressure into the coolant chamber 130, urging the piston 124 toward the proximal end 142. The spring 128 will dampen any impact of the piston 124 against the annular stop 144 during the filling process, and will remain compressed between the annular stop 144 and the piston 124 for a period of time during delivery of coolant from the coolant assembly 120. Initially, if any air is present in the coolant chamber 130, the coolant assembly 120 can be oriented with the air release valve 134 in an upper position so that the spring-biased valve in the valve orifice 158 can be opened briefly to enable blow-off of the entrapped air. The convex or conical shape of the end wall 154 will facilitate the blow-off of this entrapped air.
The coolant assembly 120 is then attached to the fluid manifold 114 by coupling the inlet coupling 136 to the air release valve 134. Coolant can then flow from the coolant chamber 130 through the manifold 114 into the injector module 116 for delivery through the output orifice 160. The pulsatory control apparatus 112 will deliver regularly-spaced air pulses to the injector module 116 so that the injector module 116 will deliver regularly-spaced doses of coolant through the output orifice 160. The action of the pulsatory control apparatus 112 imposes a vacuum at the spring-biased valve in the valve orifice 158 which facilitates the flow of coolant through the fluid manifold 114 into the injector module 116.
The pulsed lubricator assembly is a portable coolant device which can be readily attached to both hand and bench tools for cooling workpieces during cutting, milling, and forming operations. The portability enables the pulsed lubricator assembly to be located in the optimal position for cooling a workpiece, and to be readily installed among a variety of workpieces as needed. The use of a quick connect valve assembly for the coolant reservoir facilitates the use of small volume reservoirs which can be readily removed and refilled, thus enhancing the portability of the device. The use of pneumatics to control the pulsed lubricator assembly eliminates safety issues relating to electrically controlled devices, particularly with the use of potentially flammable coolants.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation. Reasonable variation and modification are possible within the scope of the forgoing disclosure and drawings without departing from the spirit of the invention which is defined in the appended claims.
This application claims the benefit of U.S. provisional application Ser. No. 60/522,252, filed Sep. 7, 2004, which is incorporated herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60522252 | Sep 2004 | US |