The present application relates generally to the field of detection of malaria parasites in a patient's body, in particular, with the use of laser-induced transient vapor nanobubbles.
Malaria is a widespread and infectious disease that can cause serious illness and/or death in humans. A patient can be infected when a malaria parasite infects cells of the patient, also known as a host. The parasite can produce hemozoin (Hz), which are nanocrystals formed when the parasite digests the hemoglobin in the host's red blood cells. Malaria-infected red blood cells or other body tissue infected by malaria parasites contain Hz nanocrystals.
Current malaria diagnosis techniques include, for example, rapid diagnostic tests (RDTs), microscopy, and polymerase chain reaction (PCR). These diagnosis techniques analyze a patient's blood samples. RDT analyzes the proteins in the blood to look for presence of malaria parasites and is approved by the World Health Organization (WHO). Microscopy uses stain of a thick blood slide, such as with a 200 to 500 white blood cell count, to determine malaria parasite density and gametocyte counts. Microscopy is also WHO-approved for malaria diagnosis. PCR analyzes DNAs in the blood to determine presence of malaria parasites.
Malaria can be treated and/or prevented by administration of antimalarial drugs, such as quinine, chloroquine, atovaquone/proguanil, and others.
Current malaria diagnosis and treatment generally employ invasive techniques which are costly, time-consuming, and have low accuracy. The diagnosis and treatment of malaria can require separate procedures. Current malaria diagnosis techniques also may not detect the Hz nanocrystals without an active and/or live malaria parasite, and/or tissue-sequestered malaria parasites.
Laser-induced transient vapor nanobubbles can be used to diagnose and/or treat malaria in a noninvasive, efficient, and reproducible manner. The transient vapor nanobubbles can be generated around malaria-specific nanoparticles (such as the Hz nanocrystals, with or without an active malaria parasite, and/or other malaria-specific nanoparticles that can be introduced into the host red blood cells) when laser pulses are applied to those nanoparticles. The laser pulses can cause rapid heating of the malaria-specific nanoparticles, but not of uninfected red blood cells or other host tissues. Liquid (such as water) around the malaria-specific nanoparticles can rapidly evaporate, leading to the generation of a transient vapor nanobubble. The generation of transient vapor nanobubbles can be detected by optical and/or acoustic detectors.
In order to use transient vapor nanobubbles to detect and/or treat malaria noninvasively, the laser pulses must penetrate a patient's skin and reach the malaria-specific nanoparticles despite attenuation of the laser pulses energy by the patient's body tissue (particularly by the melanin layer in the skin) as the laser pulses travel deeper under the skin. Example malaria sensors based on laser-induced transient vapor nanobubble technology are described in U.S. application Ser. No. 16/213,923, filed Dec. 7, 2018 and titled “APPARATUS FOR DIAGNOSING AND/OR TREATING MALARIA,” the entirety of which is incorporated herein by reference and should be considered part of the disclosure.
Malaria is a mosquito-borne infectious disease and known as a cause for poverty. Malaria outbreak tends to happen in tropical regions and/or other places having a rugged environment. As the malaria sensors may need to be used in places having a rugged environment, a reliable, rugged and/or compact pulsed laser can be desirable. A rugged environment can pose challenges such as limited healthcare resources, low levels of sanitation, extreme weather conditions (such as the tropical weather), and/or being in a remote location with low accessibility. For a pulsed laser reaching underneath a patient's skin to generate photo-thermal transient vapor nanobubbles around the malaria-specific nanoparticles for malaria detection and/or treatment, a pulsed laser needs to deliver laser pulses of several hundred picoseconds in duration (such as less than about 300 ps), and several tens of microjoule in energy (such as greater than about 20 μJ at the wavelength range of about 670 nm to about 675 nm). The pulsed laser also needs to operate under field conditions, such as in a rugged environment, to deliver, preferably reliably in repeated use, with the above-described parameters.
The above-described parameters of the laser pulse can be achieved with lasers having an optical parametric amplifier (OPA) and appropriate pulsed laser as a pump source. Lasers that can deliver pulses in a several tens of picoseconds duration can be amplified mode-locked oscillators. The duration also can be stretched up to several hundreds of picoseconds. The above-described parameters of the laser pulse can also be achieved with a single longitudinal mode laser delivering pulses of several nanoseconds, which can be compressed using a stimulated Brillouin scattering (SBS) effect. However, lasers of such approaches can be bulky, expensive, and/or may operate only under laboratory conditions and thus may not be suitable for use under the field conditions.
A pulsed micro-laser (“microchip”) can be more compact and less expensive than the lasers described above. Microchip pulsed laser is available for the above-described parameters required, but the currently available microchip lasers use an actively Q-switch component. Active Q-switch components are available as off-the-shelf products (such as Standa-Q1SH671), which are frequency doubled Nd:YVO4 based actively Q-switched lasers lasing at a fundamental wavelength of 1064 nm. Frequency doubling as used in the present disclosure has the plain meaning as understood by an ordinary person skilled in the art, such as a phenomenon wherein an input wave in a nonlinear material generates a wave with twice the optical frequency (and thus half the wavelength) of the input wave. However, microchip lasers with an active Q-switch component can still be complex, expensive, and/or unreliable under the field conditions.
The present disclosure provides embodiments of a pulsed laser that remedies one or more of the problems described and/or other problems. The pulsed laser can generate laser pulses of the above-described parameter under the field conditions, preferably reliably in repeated use. The pulsed laser embodiments described herein can have a frequency doubled passively Q-switched microchip laser with the desired and/or wanted wavelength at about 1340 nm to about 1350 nm. Passively Q-switched microchip lasers can be less expensive, more compact, and/or more robust than the aforementioned lasers. Because of the shorter cavity length due to the more compact size of a frequency doubled passively Q-switched microchip laser, embodiments of the pulsed laser disclosed herein can generate pulses with a higher peak power as a result of higher energy in conjunction with shorter pulse duration in the range of hundreds of picoseconds. The higher peak power in the generated laser pulses can be sufficient to generate the photo-thermal transient vapor nanobubbles around the malaria-specific nanoparticles for malaria detection and/or treatment. The passively Q-switched microchip laser embodiments disclosed herein can include suppression techniques for unwanted wavelengths in addition to using anti-reflective coatings for the unwanted wavelengths.
A passively Q-switched microchip laser configured for generating transient vapor nanobubbles around malaria-specific nanoparticles in a human can comprise a laser cavity bound by a reflector and an optical coupler; a gain element located in the cavity, the gain element having a first axis, a gain element surface that is generally perpendicular to the first axis, and an inclined gain element surface that is at an acute angle to the first axis, the perpendicular gain element surface being adjacent to one of the reflector or the optical coupler; a saturable absorber element in the cavity, the saturable absorber element having a second axis, a saturable absorber element surface that is generally perpendicular to the second axis, and an inclined saturable absorber element surface that is at an acute angle to the second axis, the perpendicular saturable absorber element surface being adjacent to another one of the reflector or the optical coupler, wherein, in response to pumping energy at a predetermined pumping wavelength, the gain element can be configured to produce simulated emission of at least a wanted wavelength and an unwanted wavelength, wherein a simulated emission cross-section of the unwanted wavelength is greater than a simulated emission cross-section of the wanted wavelength, wherein the saturable absorber element can be configured to output a pulsed laser beam substantially of the wanted wavelength, wherein the reflector and the optical coupler cam be anti-reflective of the unwanted wavelength, and the inclined surfaces of the gain element and the saturable absorber element can each be configured to direct light of the unwanted wavelength away from the first and/or second axis to reduce feedback of the unwanted wavelength along the first and/or second axis.
The system can include one or more of the following features: the pulsed laser beam can have a duration less than about 300 picoseconds; the pulsed laser beam can have an energy of at least about 20 microjoule; the pulse laser beam can have a wavelength of between 670 nm to about 675 nm; the inclined surface of the saturable absorber element can be reflective or highly reflective of the pump wavelength so that the saturable absorber element is protected from bleaching by pump radiation; the inclined surfaces of the gain element and the saturable absorber element can be anti-reflective of the wanted wavelength; the inclined surfaces of the gain element and the saturable absorber element can be separated by a gap, wherein at least a portion of light of the unwanted wavelength in the gap can be reflected away from the first and/or second axis to increase losses in the cavity; the pumping energy can be delivered into the cavity from the reflector or along a length of the cavity toward the inclined surface of the saturable absorber element; the pumping energy can be double-passed in the gain element to increase excitation of the gain element; the inclined surface of the saturable absorber element can be reflective or highly reflective of the unwanted wavelength; the first and second axes can be substantially collinear; the first and second axes can be offset from each other; the inclined surfaces of the gain element and the saturable absorber element are generally parallel; the first axis can be at an angle with second axis; the inclined surfaces of the gain element and the saturable absorber element can be generally not parallel; slopes of the inclined surfaces of the gain element and the saturable absorber element can extend away from each other so that light travels through a longer section of the gain element followed by a longer section of the saturable absorber element, or through a shorter section of the gain element followed by a shorter section of the saturable absorber element; the gain element and the saturable absorber element can each comprise a doped part and an undoped part, the doped part comprising a generally uniform cross-section normal to the first axis and/or the second axis; further comprising an exo-cavity element; the exo-cavity element can be located between a pump and the cavity along a length of the cavity, the exo-cavity element configured to isolate feedback of the unwanted wavelength from pump shaping optics; the exo-cavity element can be located on an opposite side of the gain element from a pump, the exo-cavity element configured to reflect back pump radiation into the cavity; the perpendicular surface of the gain element can comprise a two-wavelength coating for the wanted and unwanted wavelengths, the perpendicular surface of the gain element having an unspecified reflectivity for the pump wavelength; the system can comprise an intra-cavity element between the gain element and the saturable absorber element, the intra-cavity element configured to focus pump radiation into the gain element; the reflector can be at or next to the perpendicular gain element surface and the optical coupler can be at or next to the perpendicular saturable absorber element surface; and/or the reflector can be at or next to the perpendicular saturable absorber element surface and the optical coupler can be at or next to the perpendicular gain element surface.
A passively Q-switched microchip laser configured for generating transient vapor nanobubbles around malaria-specific nanoparticles in a human can comprise a laser cavity bound by a reflector and an optical coupler, the laser cavity having an optical axis; a gain element located in the cavity, the gain element having a gain element surface that is generally perpendicular to the optical axis, and an inclined gain element surface that is at an acute angle to the optical axis, the perpendicular gain element surface being adjacent to the reflector; a saturable absorber element in the cavity and adjacent to the gain element, the saturable absorber element having a saturable absorber element surface that is generally perpendicular to the optical axis, and an inclined saturable absorber element surface that is at an acute angle to the optical axis, the perpendicular saturable absorber element surface being adjacent to the optical coupler, wherein the inclined surfaces of the gain element and the saturable absorber element are generally parallel and separated by a predetermined distance; and an exo-cavity element located next to the perpendicular gain element surface and substantially collinear with the optical axis, the exo-cavity element configured to isolate feedback of an unwanted wavelength from pump shaping optics; wherein, in response to pumping energy at a predetermined pumping wavelength, the gain element can be configured to produce simulated emission of at least a wanted wavelength and the unwanted wavelength, wherein a simulated emission cross-section of the unwanted wavelength can be greater than a simulated emission cross-section of the wanted wavelength, wherein the saturable absorber element can be configured to output a pulsed laser beam substantially of the wanted wavelength, wherein the reflector and the optical coupler can be anti-reflective of the unwanted wavelength, and the inclined surfaces of the gain element and the saturable absorber element can each be configured to direct light of the unwanted wavelength away from the optical axis to reduce feedback of the unwanted wavelength along the optical axis and/or to increase losses in the cavity.
A passively Q-switched microchip laser configured for generating transient vapor nanobubbles around malaria-specific nanoparticles in a human can comprise: a laser cavity bound by a reflector and an optical coupler and having a laser cavity axis; a gain element and a saturable absorber element located in the cavity, the gain element and the saturable absorber element each having a first surface adjacent to one of the reflector or the optical coupler, the gain element and the saturable absorber element each having a second surface adjacent to another one of the reflector or the optical coupler, one or both of the second surfaces of the gain element and the saturable absorber element being inclined relative to the laser cavity axis; wherein, in response to pumping energy at a predetermined pumping wavelength, the gain element can be configured to produce simulated emission of at least a first wavelength and a second wavelength, wherein a simulated emission cross-section of the second wavelength can be greater than a simulated emission cross-section of the first wavelength, wherein the saturable absorber element can be configured to output a pulsed laser beam substantially of the first wavelength, and wherein the reflector and the optical coupler are configured to suppress the second wavelength.
The laser can include one or more of the following features: the reflector and the optical coupler can be anti-reflective of the second wavelength; the second gain element and saturable absorber element surfaces can be each configured to direct light of the second wavelength away from the laser cavity axis to reduce feedback of the second wavelength along the laser cavity second axis; the pulsed laser beam can have a duration less than about 300 picoseconds; the pulsed laser beam can have an energy of at least about 20 microjoule; the pulse laser beam can have a wavelength of between 670 nm to about 675 nm; the second surface of the saturable absorber element can be reflective or highly reflective of the pump wavelength so that the saturable absorber element is protected from bleaching by pump radiation; the second surfaces of the gain element and saturable absorber element can be anti-reflective of the first wavelength; the second surfaces of the gain element and saturable absorber element can be separated by a gap, wherein at least a portion of light of the second wavelength in the gap can be reflected away from the laser cavity axis to increase losses in the cavity; the pumping energy can be delivered into the laser cavity from the reflector or along a length of the cavity toward the second surface of the saturable absorber element; the pumping energy can be double-passed in the gain element to increase excitation of the gain element; the second surface of the saturable absorber element can be reflective or highly reflective of the second wavelength; the gain element can be at an angle with the saturable absorber element; or the second surfaces of the gain element and saturable absorber element can be at an angle with each other; slopes of the second surfaces of the gain element and saturable absorber element can extend away from each other so that light travels through a longer section of the gain element followed by a longer section of the saturable absorber element, or through a shorter section of the gain element followed by a shorter section of the saturable absorber element; the reflector can be at or next to the first gain element surface and the optical coupler can be at or next to the first saturable absorber element surface; or the reflector can be at or next to the first saturable absorber element surface and the optical coupler can be at or next to the first gain element surface.
A laser light generator device configured for generating transient vapor nanobubbles around malaria-specific nanoparticles in a human can comprise any of the example passively Q-switched microchip lasers described above; a pump coupled to the passively Q-switched microchip laser via a pump fiber; and an output fiber coupling the passively Q-switched microchip laser and one or more malaria detection sensors.
The device can include one or more of the following features: the device can comprise pump shaping optics between the pump fiber and the passively Q-switched microchip laser; the device can comprise second harmonic generation and filtering elements coupling the passively Q-switched microchip laser to the output fiber; and/or the device can be configured to sequentially switch the outputted pulsed laser beam among a plurality of optical fibers in the one or more malaria detection sensors.
Various embodiments are depicted in the accompanying drawings for illustrative purposes and may not be drawn to scale, and should in no way be interpreted as limiting the scope of the embodiments. In addition, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. In the drawings, similar elements have reference numerals with the same last two digits.
Although certain embodiments and examples are described below, this disclosure extends beyond the specifically disclosed embodiments and/or uses and obvious modifications and equivalents thereof. Thus, it is intended that the scope of this disclosure should not be limited by any particular embodiments described below.
Overview of Laser Technology
The gain element 102 can produce gain and subsequent generation of laser light. The gain element 102 can be a crystal, solid, liquid, semiconductor, or gas medium and can be pumped by the energy pump 104 to a higher energy state. The gain element material has a metastable state that supports stimulated emission. Laser light generation can be based on 3- or 4-level energy level systems, depending on the type of gain element used.
The pump 104 can provide energy to excite elements such as the atoms, electrons, ions or molecules in the gain element 102 to higher energy levels such as shown in
The optical cavity or resonator 106 can be formed by bounding the gain element 102 by two reflectors or mirrors 105, 107. Light travels in both directions along the cavity axis 108, bouncing back and forth between the two reflectors 105, 107. The light reflects back on itself on the reflectors 105, 107 so that as light passes through the gain medium repeatedly, the light is amplified each time (known as feedback) before it is emitted from an output aperture or lost to diffraction or absorption. The optical resonator 106 can produce gain in the gain element 102 to overcome the losses due to, for example, photons straying away from the active medium 102, and/or losses inside the active medium 102 due to absorption and/or scattering. The optical resonator 106 can also provide directionality to the laser beam 120 along an optical axis 108. Photons which are either not of the correct frequency (and thus not of the correct energy) or do not travel along the optical axis 108 are lost. On one end of the active medium 102, the mirror 105 can be a total reflector. On an opposite end of the active medium 102, the mirror 107 can be partially reflecting and partially transmissive, also known as an output coupler. The laser beam 120 can exit the cavity 106 from the output coupler 107, which is partially transmissive.
Q switching can be achieved using active Q-Switch components or passive Q-Switch components. For active Q switching, an active control element modulates the intra-cavity losses. A laser pulse is formed shortly after an electrical trigger signal from the active control element arrives. Having an active control element (and the associated electronics) can make the pulsed laser more complex, more expensive, and/or reduces the reliability of the laser under the field conditions than having passive Q-switching components.
Passive Q-switching (also known as self Q-switching) can be achieved with a saturable absorber element 209 that automatically modulates the intra-cavity losses. As shown in
Passively Q-switched microchip lasers disclosed herein can be either monolithic or non-monolithic. When the passively Q-switched microchip lasers are monolithic, the amplifying laser medium or gain element, and the saturable absorbable element form a single component. The formation of a single component can be, for example, due to molecular adhesion and/or epitaxial growth. The cavity mirrors can be directly placed on the single component. Non-monolithic passively Q-switched microchip lasers have at least one part of the cavity that cannot maintain structural integrity without external mechanical support. The mechanical support can be a combination of external object and adhesive material (such as when the elements are glued to an external object), purely mechanical (such as being sustained by friction), or purely adhesive (such as being glued together).
The gain element 202 can include crystals. The crystals in the gain element 202 of the passively Q-switched microchip laser 200 can have a fundamental wavelength at 1064 nm. Many laser gain elements can amplify light of more than one wavelength. For example, Nd: YVO4 can amplify light having a wavelength of 1342 nm in addition to photons having a wavelength of 1064 nm.
However, the gain at the sub-optimal wavelengths (which is the wavelength of interest for malaria detection applications) is lower than the gain at the fundamental wavelength. As described above, the wavelength necessary for generating transient vapor nanobubbles around malaria-specific nanoparticles is between about 1340 nm to about 1350 nm, which are sub-optimal wavelengths of the crystals in the gain element 202. A problem with current passively Q-switched microchip lasers working at sub-optimal wavelengths is that the laser beam at the sub-optimal wavelengths may not meet the required parameters for applications in malaria detection. For example, the energy of the laser light at the sub-optimal wavelengths may be too low and/or the pulse duration may be too long for applications in malaria detection. In order for the laser pulses to meet the requirement for malaria detection applications, the energy of the laser pulses at the sub-optimal wavelengths may need to be increased, and/or the pulse duration may need to be shortened.
The laser pulse output performance parameters (such as pulse duration and/or energy) of passively Q-switched lasers can depend on the design of the microchip laser cavity. Factors of the cavity that can affect the laser pulse output parameters include, but are not limited to, a length of the optical path in the gain element and/or the saturable absorber element, a gain magnitude in the gain element, saturable and non-saturable losses, output coupling, and/or a length of the cavity. The pulse duration is proportional to the cavity length and inversely proportional to the losses. The pulse energy is directly proportional to the pumped energy volume and to the losses.
Accordingly, one way to increase the energy of pulses of the sub-optimal wavelengths is to increase the pumped energy volume, such as by increasing a cross-sectional area of the pump beam. This approach can be limited by various unwanted instabilities caused by the appearance of additional transversal cavity modes that would not be present in a narrower pump beam.
Another way to increase the pulse energy is to increase total losses in the cavity, which in turn requires a higher initial gain in the gain element. Under this approach, a longer cavity is need to due to an increased length in the gain element to produce a higher initial gain. As a result, the output pulses have a longer duration, although the increased pulse duration can then be compensated by increasing the total losses using output coupling. In short, increasing the energy per pulse while maintaining the pulse duration (or vice versa) would require increasing the gain in the gain element.
The increase in the gain of the gain element can be limited and may not deliver the combination of the parameters required for malaria detection applications. The fundamental wavelength with a higher gain typically dominates in the laser cavity unless measures to suppress the fundamental wavelength are introduced. In most types of laser cavities, the fundamental wavelength is suppressed by introducing anti-reflective coatings for the fundamental wavelength, while keeping properties of the coatings favorable for the desired wavelength (for example, for the sub-optimal wavelength of 1342 nm). When the gain of the gain element is increased for the sub-optimal wavelength, the effect of exponential relative gain increase for the fundamental wavelength can eventually overcome the suppression of the unwanted fundamental wavelength provided by the anti-reflective coatings.
Specifically, the gain coefficient in the gain element depends on the density of excited ions and the probability of stimulated emission (also known as stimulated emission cross-section). Stimulated emission cross-section is wavelength dependent, while the density of exited ions is wavelength independent. In conjunction with an exponential overall gain dependency on the gain coefficient, the ratio of overall gains for different wavelengths is exponentially dependent on the excitation level. As a result, certain increases of the overall gain at sub-optimal wavelengths can lead to an even higher gain increase for the fundamental wavelength. In some instances, depending on the reflectivity of the mirrors 203, 205, 207 of
In addition, using the laser 200 as an example, as the reflector surfaces in the laser 200 are generally parallel to one another, reflection of light along the cavity axis can add up to increase feedback to a high gain active medium. The parallel surfaces can also lead to resonant modes, which can result in an increased reflection from anti-reflective coating. The probability of resonant modes being present can also be increased when the gain element crystal increases in temperature.
The parameters of the output coupler and the saturable absorber element in the laser 200 may also not be favorable for outputting pulses of high energy and short duration. For example, the laser pulse energy can be increased and/or the pulse duration can be reduced in the laser 200 by increasing a modulation depth of the saturable absorbable element 209. The modulation depth is the maximum change in absorption (or reflectivity) by the saturable absorber element that can be induced by incident light of a given wavelength. In addition, the pulse duration can be shortened by increasing the transmission of the output coupler 207. However, as the parameters of the output coupler 207 and the saturable absorber elements 209 are related, generally the transmission of the output coupler 207 needs to be similar to the modulation depth of the saturable absorber 209. As a result, increasing the transmission of the output coupler 207 is in tension with increasing the modulation depth of the saturable absorber element 209.
In conclusion, relying solely on anti-reflective coatings with reduced reflection for the unwanted wavelengths fail to provide sufficient suppression of the unwanted wavelengths when higher energy and shorter pulse duration is demanded, such as in the malaria detection application.
Overview of Example Microchip Lasers Suitable for Malaria Detection
It can be desirable for passively Q-switched microchip lasers to include suppression techniques for the unwanted fundamental wavelength in addition to anti-reflective coatings, and/or to increase the pulse energy and/or shorten the pulse duration of a sub-optimal wavelength to deliver the required combination of the laser pulse parameters for malaria detection applications. The passively Q-switched microchip lasers also include other components that a person skilled in the art would understand to be included in such devices based on the disclosure herein, for example but not limited to, heat sinks or other thermal regulation structures. Such components are not discussed in this disclosure in detail for brevity.
The present disclosure provides unwanted fundamental wavelength suppression techniques, such as inclined surfaces with specific coatings on each surface and/or arranged in specific spatial orders. The inclined surfaces do not form the laser cavity or introduce additional elements. The inclined surfaces as disclosed herein are aimed and optimized for the suppression of unwanted, or unwanted and dominating, wavelengths.
The suppression techniques disclosed herein can also increase the pulse energy and/or shorten the pulse duration of the wanted, or wanted and sub-optimal, wavelengths by lowering the reflectivity of the output coupler and the transmission of the saturable absorber element of the wanted wavelengths. Higher energy and shorter pulses can be obtained despite the increase in cavity length due to a longer gain element and a longer saturable absorber. Although the pump to lasing efficiency may be lowered by the increased cavity length, the reduction in efficiency can be compensated by providing a more powerful pump.
The techniques disclosed herein can increase the output pulse energy and decrease the pulse duration for sub-optimal pulse wavelength by one or more of the following features and obvious variations thereof based on the disclosure herein: having inclined surfaces that can suppress optical feedback of unwanted wavelengths from internal surfaces along a laser cavity axis; having inclined surfaces that can reflect unwanted wavelengths away from the laser cavity axis, thus increasing losses along the laser cavity axis; having inclined surfaces that can be used as mirrors to pump the cavity from inside the cavity; double-passing the pump to increase excitation of gain element; protecting the saturable absorber element from bleaching by the pump radiation to increase the lifetime of the laser; having a folding mirror that can work as a filter for unwanted wavelengths to increase losses for unwanted wavelength; having two-wavelength coatings that can replace triple-wavelength coatings (for the pumping, lasing and wanted wavelengths) to reduce the complexity of coatings and/or improve parameters on important specifications (for example, reflectivity for unwanted wavelengths); and/or having additional elements (intra-cavity and/or exo-cavity) that can act as a part of the pump shaping optics.
Examples of a passively Q-switched microchip laser with additional unwanted wavelength suppression techniques, such as for malaria detection applications, are described below with reference to
The gain element 302 can have a first, non-inclined gain element surface, which can optionally be generally perpendicular to the first axis 308. The first axis 308 can be along a central longitudinal axis of the gain element 302. In
The laser 300A can also include a saturable absorber element 309 in the cavity 306 adjacent the gain element 302. The saturable absorber element 309 can have a second axis 318. The second axis 318 can be along a central longitudinal axis of the saturable absorber element 309. The saturable absorber element 309 can have a first, non-inclined surface, which can optionally be generally perpendicular to the second axis 318. The optical coupler 307 can be located on the first surface of the saturable absorber element 309. The saturable absorber element 309 can also have a second, inclined surface that is opposite the first surface. The inclined surface can be at an angle (for example, an acute angle) to the second axis 318. The inclined saturable absorber element surface can include a reflector 313, such as a coating on the inclined saturable absorber element surface.
As shown in
The laser 300A can be optically pumped at a predetermined pump wavelength. The pump wavelength can be different from the fundamental wavelength and/or sub-optimal wavelengths of the gain element crystals. A pumping beam path, as shown by a dashed line 310, can be directed to the cavity 306 from the reflector 305 end. The reflector 305 can be anti-reflective or substantially anti-reflective of the pump wavelength so that substantially all of the pump beam travel through the gain element 302 toward the inclined surface of the gain element 302. The reflector 303 can be reflective or highly reflective of the pump wavelength. The reflector 313 can also be reflective or highly reflective of the pump wavelength. The reflectors 303 and 313 can thus protect the saturable absorber element 309 from bleaching by the pump radiation.
Energy from the pump can produce gain and subsequent simulated emission of a fundamental and unwanted wavelength (such as about 1064 nm) and sub-optical and wanted wavelengths (such as from about 1340 nm to 1350 nm) in the gain element 302. The reflector 305 can be anti-reflective of the unwanted wavelength. The optical coupler 307 can also be anti-reflective of the unwanted wavelength. The reflectors 303, 313 can be anti-reflective or have low reflectivity for the unwanted wavelength. Light of the fundamental and unwanted wavelength, upon reaching the non-inclined and/or inclined surfaces of the gain element 302 can be suppressed by the anti-reflective reflectors 303, 305, 307, 313 by reducing feedback of the unwanted wavelength.
In addition, as anti-reflective coatings cannot let 100% of light pass through, in particular, anti-reflective coating may not be sufficiently transparent at the unwanted wavelength, a small portion (for example, as low as about 0.25% or about 0.1%) of light of the unwanted wavelength can still be reflected into the gain element 302 by the reflector 303, as shown by the dotted line 330, away from the first axis 308, therefore reducing feedback of the unwanted wavelength along the first axis 308. As described above, light that does not travel along the laser cavity axis is lost and increasing the losses in the cavity can increase the laser pulse energy. In the saturable absorber element 309, the anti-reflective reflector 313 can also suppress the unwanted wavelengths in the saturable absorber element 309 by reflecting a portion of the unwanted wavelengths away from the second axis 318, as shown by the dotted line 330.
The reflector 305 can be a total reflector, or highly reflective of the wanted wavelengths. The optical coupler 307 can be partially reflective or have a specified reflectivity (for example, 60%, 50%, 40%, or others) of the wanted wavelengths. The reflectors 303, 313 can be anti-reflective of the wanted wavelength. As a result, the wanted wavelengths can be amplified along the first and second axes 308, 318 without being affected by the inclined surfaces of the gain element 302 and the saturable absorber element 309. A laser beam of the wanted wavelength, as illustrated by the arrow 320, can be outputted from the optical coupler 307 that is on the saturable absorber element 309 side.
In
As shown by the dashed line 310, the pump beam can still enter the laser cavity 306 on the gain element 302 side. The pump beam passes the output coupler 307 and travels toward the reflector 305. The laser beam of wanted wavelengths, as shown by the arrow 320, can exit the laser cavity 306 on the gain element 302 side.
The reflectivity of the surfaces in
The passively Q-switched microchip laser 400 can have a laser cavity 406 bound by a total reflector 405 and an optical coupler 407. A gain element 402 can be located in the cavity 406. The gain element 402 can have a first axis 408.
The gain element 402 can have a first gain element surface, which can optionally be generally perpendicular to the first axis 408. The reflector 405 is located on the first surface of the gain element 402. The gain element 402 can have a second, inclined gain element surface that is opposite the first surface. The inclined surface of the gain element 402 can be at an angle to the first axis 408. The inclined gain element surface can also include a reflector 403, such as a coating on the inclined gain element surface.
The laser 400 can also include a saturable absorber element 409 in the cavity 406. The saturable absorber element 409 can have a second axis 418. The saturable absorber element 409 can have a first surface, which can optionally be generally perpendicular to the second axis 418. The optical coupler 407 can be located on the first surface of the saturable absorber element 409. It is also possible to have the total reflector 405 on the saturable absorber element 409 side and the optical coupler 407 on the gain element 402 side. The saturable absorber element 409 can also have a second, inclined surface that is opposite the first surface. The inclined surface can be at an angle to the second axis 418. The inclined saturable absorber element surface can include a reflector 413, such as a coating on the inclined saturable absorber element surface.
As shown in
A pump beam path, as shown by a dashed line 410, can be directed to the cavity 406 from the total reflector 405 end. The total reflector 405 can be anti-reflective or substantially anti-reflective of the pump wavelength so that substantially all of the pump beam travel through the gain element 402 toward the inclined surface of the gain element 402. The reflector 403 can be reflective or highly reflective of the pump wavelength. The reflector 413 can also be reflective or highly reflective of the pump wavelength. The reflectors 403 and 413 can thus protect the saturable absorber element 409 from bleaching by the pump radiation.
Energy from the pump can produce gain and subsequent simulated emission of a fundamental and unwanted wavelength (such as about 1064 nm) and sub-optical and wanted wavelengths (such as from about 1340 nm to 1350 nm) in the gain element 402. The total reflector 405 can be anti-reflective of the unwanted wavelength. The optical coupler 407 can also be anti-reflective of the unwanted wavelength. The reflector 403 can be anti-reflective or have low reflectivity for the unwanted wavelength. Light of the fundamental and unwanted wavelength, upon reaching the non-inclined and/or inclined surfaces of the gain element 402 can be suppressed by the anti-reflective reflectors 403, 405, 407, 413, which can reduce feedback of the unwanted wavelengths. In addition, a small portion (for example, as low as about 0.25% or about 0.1%) of light of the unwanted wavelength can still be reflected by the reflectors 403, 413, as shown by the dotted line 430, away from the first axis 408 and/or the second axis 418, which can increase total losses in the cavity 406.
In the laser 400, the reflectors 413 can be reflective or have high reflectivity of the unwanted wavelength. In the gap 411, light of the unwanted wavelength incident on the inclined reflector 413 can be reflected away from the second axis 418, as indicated by the dotted line 432. The gap 411 allows the reflector 413 to be highly reflective or reflective of the unwanted wavelength without potentially increasing amplified spontaneous emission. In addition, although the reflector 403 is anti-reflective or have low reflectivity of the unwanted wavelength, the reflector 403 can still reflect a small portion of the light in the gap that is incident on the inclined reflector 403 away from the first axis 408. Because of the gap 411, the reflected light 432 of the unwanted wavelength travels into the atmosphere rather than into the gain element 402 or the saturable absorbable element 409, which can further reduce or suppress feedback of the unwanted wavelength along the axes 408, 418.
The total reflector 405 can be highly reflective of the wanted wavelength. The optical coupler 407 can be partially reflective or have a specified reflectivity (for example, 60%, 50%, 40%, or others) of the wanted wavelength. The reflectors 403, 413 can be anti-reflective of the wanted wavelength. At the gap 411, light of the wanted wavelengths can be amplified along the first and second axes 408, 418, being bent from the first axis 408 toward a slightly offset and generally parallel second axis 418 due to refraction. A laser beam of the wanted wavelength, as illustrated by the arrow 420, can be outputted from the optical coupler 407.
The reflectivity of the surfaces in
Turning to
The passively Q-switched microchip laser 500A can have a laser cavity 506 bound by a reflector 505 and a reflector 507. A gain element 502 can be located in the cavity 506. The gain element 502 can have a first axis 508. The gain element 502 can have a first gain element surface, which can optionally be generally perpendicular to the first axis 508. The reflector 505 is located on the first surface of the gain element 502. The gain element 502 can have a second, inclined gain element surface that is opposite the first surface. The inclined surface of the gain element 502 can be at an angle to the first axis 508. The inclined gain element surface can also include a reflector 503, such as a coating on the inclined gain element surface.
The laser 500A can also include a saturable absorber element 509 in the cavity 506. The saturable absorber element 509 can have a second axis 518. The saturable absorber element 509 can have a first surface, which can optionally be generally perpendicular to the second axis 518. The mirror 507 can be located on the first surface of the saturable absorber element 509. The saturable absorber element 509 can also have a second, inclined surface that is opposite the first surface. The inclined surface can be at an angle to the second axis 518. The inclined saturable absorber element surface can include a reflector 513, such as a coating on the inclined saturable absorber element surface.
As shown in
A pump beam path, as shown by a dashed line 510, can be directed to the cavity 506 from the reflector 505 end. The reflector 505 can be anti-reflective or substantially anti-reflective of the pump wavelength so that substantially all of the pump beam travels through the gain element 502 toward the inclined surface of the gain element 502. The reflector 503 can be reflective or have low reflectivity of the pump wavelength. The reflector 513 can also be reflective or highly reflective of the pump wavelength. As a result, the pumping beam incident on the reflector 503 travels to the reflector 513 and is reflected back into the gain element 502. This double-passing of the pump beam can increase excitation of the gain element 502. At the same time, the reflectivity of the pump wavelength at the reflector 513 can protect the saturable absorber element 509 from bleaching by the pump radiation.
Energy from the pump can produce gain and subsequent simulated emission of a fundamental and unwanted wavelength (such as about 1064 nm) and sub-optical and wanted wavelengths (such as from about 1340 nm to 1350 nm) in the gain element 502. The reflector 505 can be anti-reflective of the unwanted wavelength. The reflector 507 can also be anti-reflective of the unwanted wavelength. The reflector 503 can be anti-reflective or have low reflectivity for the unwanted wavelength. Light of the fundamental and unwanted wavelengths, upon reaching the inclined surface of the gain element 502 can be suppressed by the anti-reflective reflector 503, which can reduce feedback of the unwanted wavelength as substantially all of the light of the unwanted wavelength exits the gain element 502 and travels toward the inclined surface of the saturable absorber element 509. In addition, a small portion (for example, as low as about 0.25% or about 0.1%) of light of the unwanted wavelength in the gain element 502 can be reflected by the reflector 503, as shown by the dotted line 530, away from the first axis 508, which can increase total losses in the cavity 506.
In the laser 500A, the reflector 513 can be reflective or have high reflectivity of the unwanted wavelength. In the gap 511, light of the unwanted wavelength incident on the inclined reflector 513 can be reflected away from the second axis 508, as indicated by the dotted line 532. In the gap 511, a small portion of light of the unwanted wavelength incident on the inclined mirror 503 can also be reflected in a direction away from the first axis 508, as indicated by the dotted line 532. Because of the gap 511, the reflected light 532 of the unwanted wavelength travels into the atmosphere rather than into the gain element 502 or the saturable absorbable element 509, which can further reduce or suppress feedback of the unwanted wavelength along the first and/or second axis 508, 518.
The reflector 513 can also suppress the unwanted wavelengths by reflecting light of the unwanted wavelengths in the saturable absorber element 509 away from the second axis 518, as shown by the dotted line 530. The reflector 503 can also reflect a small portion of light of the unwanted wavelengths in the gain element 502 away from the first axis 508, as shown by the dotted line 530.
In some embodiments, the reflector 505 can be highly reflective of the wanted wavelength, functioning as the total reflector of the wanted wavelength, and the reflector 507 can be partially reflective or have a specified reflectivity (for example, 60%, 50%, 40%, or others) of the wanted wavelength, functioning as the output coupler. In some embodiments, the reflector 507 can be highly reflective of the wanted wavelength, functioning as the total reflector of the wanted wavelength, and the reflector 505 can be partially reflective or have a specified reflectivity of the wanted wavelength, functioning as the optical coupler. The reflectors 503, 513 can be anti-reflective of the wanted wavelength. As a result, the wanted wavelengths can be amplified along the first and second axes 508, 518 with the light of the wanted wavelengths being bent at the inclined surfaces of the gain element 502 and the saturable absorber element 509 from the first axis 508 to the generally parallel but offset second axis 518. When the reflector 505 is the total reflector and the mirror 507 is the output coupler, a laser beam of the wanted wavelength, as illustrated by the arrow 520a, can be outputted from the reflector 507 that is on the saturable absorber element 509 side. When the reflector 507 is the total reflector and the reflector 505 is the output coupler, a laser beam of the wanted wavelength, as illustrated by the arrow 520b, can be outputted from the reflector 505 that is on the gain element 502 side.
The reflectivity of the surfaces in
In
As a result, light of the pump wave length can be reflected back into the gain element 502 and double passing of the pump beam can be achieved. This double-passing of the pump beam can increase excitation of the gain element 502. At the same time, the reflectivity of the pump wavelength at the reflector 513 can protect the saturable absorber element 509 from bleaching by the pump radiation.
The reflectivity of the surfaces in
Turning to
The passively Q-switched microchip laser 600A can have a laser cavity 606 bound by a reflector 605 and a reflector 607. A gain element 602 can be located in the cavity 606. The gain element 602 can have a first axis 608. The gain element 602 can have a first gain element surface, which can optionally be generally perpendicular to the first axis 608. The reflector 605 is located on the first surface of the gain element 602. The gain element 602 can have a second, inclined gain element surface that is opposite the first surface. The inclined surface of the gain element 602 can be at an angle to the first axis 608. The inclined gain element surface can also include a reflector 603, such as a coating on the inclined gain element surface.
The laser 600A can also include a saturable absorber element 609 in the cavity 606. The saturable absorber element 609 can have a second axis 618. The saturable absorber element 609 can have a first surface, which can optionally be generally perpendicular to the second axis 618. The reflector 607 can be located on the first surface of the saturable absorber element 609. The saturable absorber element 609 can also have a second, inclined surface that is opposite the first surface. The inclined surface can be at an angle to the second axis 618. The inclined saturable absorber element surface can include a reflector 613, such as a coating on the inclined saturable absorber element surface.
As shown in
A pump beam path, as shown by a dashed line 610, can be directed into the gap 611 of the cavity 606 and can first reach the reflector 613. The laser 600A can include an exo-cavity folding and/or deflecting element 601. The folding and/or deflecting element 601 can be located outside the cavity 606. The pump beam can be deflected before entering the gap 611 of the cavity 606. The folding and/or deflecting element 601 can have a coated first surface 617 and a coated second surface 619. The coated first and second surfaces 617, 619 can be anti-reflective of the pump wavelength. The first surface 617 can be highly reflective or at least reflective of the unwanted wavelength. The second surface 619 can be optionally reflective of the unwanted wavelength. As shown in
As indicated by the dotted lines 633, the first surface 617 and/or the second surface 619 of the folding and/or deflecting element 601 can deflect, and thereby isolate, feedback of the unwanted wavelengths from the pump shaping optics (see
The reflector 613 can be highly reflective of the pump wavelength so that substantially all of the pump beam in the gap 611 can be reflected by the inclined surface of the saturable absorber element 609 toward the inclined surface of the gain element 602. The reflector 613 can protect the saturable absorber element 609 from bleaching by the pump radiation. Double passing of the pump beam can be achieved by the reflector 605 being highly reflective or at least reflective of the pump wavelength.
The reflectivity of the surfaces in
In the laser 600B, the exo-cavity folding and/or deflecting element 601 can be coupled to the cavity 606 via adhesion. The folding and/or deflecting element 601 can have a flat first surface 617 and a curved or dome-shaped second surface 619. The folding and/or deflecting element 601 can be positioned such that light incident on the curved second surface 619 from inside the folding and/or deflecting element 601 is normal to the curved second surface 619. As a result, light incident on the curved second surface 619 can be reflected along its incoming path (such as the pump beam) and/or continue past the second surface 619 undeflected (such as the unwanted wavelength).
In the laser 600B, the pump beam can be introduced from the reflector 605 side of the cavity, with the reflector 605 being anti-reflective of the pump wavelength. Double passing of the pump beam can be achieved by the coated flat surface 617 being anti-reflective of the pump wavelength and the coated curved surface 619 being highly reflective of the pump wavelength. The folding and/or deflecting element 601 can thus reflect back the pump beam along its incoming path into the cavity 606. The reflected pump beam can be redirected into the gain element 602 by the highly reflective reflector 613.
The first surface 617 can be highly reflective or at least reflective of the unwanted wavelength so that the first surface 617 can reflect or deflect the unwanted wavelength into the gap 611 to increase the total losses in the cavity 606. The second surface 619 can be anti-reflective of the unwanted wavelength. Light of the unwanted wavelength can incident on the second surface 619 can exit the folding and/or deflecting element 601 undeflected, which can increase total losses in the cavity 606. The second surface 619 needs not reflect the unwanted wavelength in the laser 600B as the pump shaping optics are located adjacent the reflector 605 rather than adjacent the second surface 619.
The reflectivity of the surfaces in
Turning to
In the laser 600C, the exo-cavity folding and/or deflecting element 601 can be located next to the reflector 605 and the gain element 602. The folding and/or deflecting element 601 can have a flat first surface 617 and an opposing curved or dome-shaped second surface 619, the first surface 617 facing the reflector 605. The folding and/or deflecting element 601 can be positioned such that light incident on the curved second surface 619 from inside the folding and/or deflecting element 601 is normal to the curved second surface 619. As a result, light incident on the curved second surface 619 can be reflected along its incoming path (such as the pump wavelength) and/or continue past the second surface 619 undeflected (such as the unwanted wavelengths). The position of the folding and/or deflecting element 601 can depend on the amount of bending of the light traveling across the air and element 601 interface. The flat first surface 617 can be inclined relative to the first axis 608 and/or the second axis 618.
The pump beam can be initially directed to the inclined reflector 613 and reflected toward the inclined surface 603, which is anti-reflective of the pump wavelength, similar to the laser 600A. In the laser 600C, the reflector 605 can have low reflectivity or even unspecified reflectivity of the pump wavelength. With the first surface 617 being anti-reflective of the pump wavelength and the second surface 619 being highly reflective of the pump wavelength, the folding and/or deflecting element 601 can reflect back or re-image the pump beam transmitted through the reflector 605 to achieve double-passing of the pump radiation through the gain element 602. Accordingly, the reflector 605 in the laser 600C can have a two-wavelength coating (wanted and unwanted wavelengths) instead of a triple-wavelength coating (wanted, unwanted, and pump wavelengths). The two-wavelength coating can reduce complexity of the coatings and/or improve parameters on other specifications, such as the reflectivity for the unwanted wavelength.
The first surface 617 can be highly reflective or at least reflective of the unwanted wavelength so that the first surface 617 can reflect or deflect the unwanted wavelength into the gap 611 to increase the total losses in the cavity 606. The second surface 619 can be anti-reflective of the unwanted wavelength. Light of the unwanted wavelength incident on the second surface 619 can exit the folding and/or deflecting element 601 undeflected, which can increase total losses in the cavity 606. The second surface 619 needs not reflect the unwanted wavelength in the laser 600C as the pump shaping optics are located adjacent the gap 611 rather than adjacent the reflector 605.
The first surface 617 can also be highly reflective of the wanted wavelength. When the reflector 605 is acting as the output coupler and the reflector 607 is acting as the total reflector, the folding and/or deflecting element 601 can also act as a steering mirror for the generated laser beam as indicated by the arrow 620b. The inclined first surface 617 can deflect the generated laser beam 620b, for example, toward an output fiber (see, for example,
The reflectivity of the surfaces in
As shown in
The inclined surface of the gain element 702 and the saturable absorber element 709 can be generally parallel (for example, at less than about 10 degree, or at less than about 5 degree). The first and second surfaces 717, 718 of the folding and/or deflecting element 701 can also be inclined. The exo-cavity folding and/or deflecting element 701, the gain element 702, and the saturable absorber element 709 can be generally collinear to form an in-line laser 700. The in-line laser 700 can improve the compactness, and/or portability of the laser system 70. The inclined surfaces of the gain element 702 and the saturable absorber element 709 need not be parallel to each other.
The coatings and/or spatial arrangement of the elements in the laser 700 can increase the output pulse energy and decreasing pulse duration for sub-optimal (desired) pulse wavelengths, and/or improve the lifetime of the laser 700 by having one or more of the features described above.
Turning to
In
In
In the lasers 800A and 800B, the inclined surface (and thus the reflector 813) of the saturable absorber element 809 is not generally parallel to the inclined surface (and thus the reflector 803) of the gain element 802. The saturable absorber element 809 is flipped about its axis 818 compared to the saturable absorber element 509. While in the lasers 500A, 500B, light travels through a longer portion of the gain element 502 followed by a shorter portion of the saturable absorber element and vice versa, in the lasers 800A, 800B, light travels through a longer portion of the gain element 502 followed by a longer portion of the saturable absorber element 809, and light travels through a shorter portion of the gain element 802 followed by a shorter portion of the saturable absorber element 809. The lasers 800A, 800B can have more symmetry for the oscillating beam of light because light of less gain (through the shorter portion of the gain element 802) encounters less absorption (through the shorter portion of the saturable absorber element 809) and vice versa. The amount of increased symmetry can be greater for larger angles of inclination of the inclined surfaces of the gain element 802 and the saturable absorber element 809.
In
In the system 800C, the gain element 802 and the saturable absorber element 809 can each include partially doped crystals. The doped portions are illustrated as the shaded areas in the gain element 802 and the saturable absorber element 809 and the undoped portions, which are the portions that cannot produce gain, are illustrated as the unshaded areas. As shown in
Turning to
The laser 900 can include an exo-cavity folding and/or deflecting element 901 have the same or similar features as the exo-cavity folding and/or deflecting element 601 in
The laser 900 can further include an intra-cavity folding and/or deflecting element 931 located between the inclined surface (and reflector 903) of the gain element 902 and the inclined surface (and reflector 913) of the saturable absorber element 909. The intra-cavity folding and/or deflecting element 931 can have a first coated surface 927 and an opposing second coated surface 929. The first surface 927 can be generally flat. The second surface 929 can be curved or dome-shaped. The first surface 927 can be facing the gap 911 between the gain element 902 and the saturable absorber element 909. The second surface 929 can be facing away from the gap 911.
The intra-cavity folding and/or deflecting element 931 can be positioned so that the flat first surface 927 can deflect or reflect light of the wanted wavelengths between the mirror 903 and the mirror 913. The first surface 927 and the second surface 929 can be anti-reflective of the pump wavelength to allow a pump beam entering the laser cavity 906 from the second surface 929 side of the intra-cavity folding and/or deflecting element 931 to be directed to the gain element 902. The intra-cavity folding and/or deflecting element 931 can act as a lens for focusing the pump beam to the inclined surface of the gain element 902. The reflectors 905 and 903 of the gain element 902 and the first surface 917 of the exo-cavity folding and/or deflecting element 901 can be anti-reflective of the pump wavelength. The second surface 919 of the exo-cavity folding and/or deflecting element 901 can be highly reflective of the pump wavelength to allow double-passing of the pump wavelength in the gain element 902. The second surface 919 of the exo-cavity folding and/or deflecting element 901 being highly reflective of the pump wavelength can allow the reflector 905 to be two-wavelength coated rather than triple-wavelength coated as described above, as any leaked pump beam can be reflected and re-imaged back by the second surface 918.
The intra-cavity folding and/or deflecting element 931 can be optionally positioned to also allow Brewster angle (a special angle of incidence that produces a 90 degree angle between the reflected and refracted light ray) to be employed to avoid anti-reflective coating on certain surfaces, such as the inclined surface of the saturable absorber element 909
The first surface 917 of the exo-cavity folding and/or deflecting element 901 can also act as a steering mirror for a laser beam of the wanted wavelengths as indicated by the arrow 620b, which can be produced when the reflector 905 is functioning as the output coupler and the mirror 907 is functioning as the total reflector of the wanted wavelengths.
The reflectivity of the surfaces in
Examples of Laser Generator for Malaria Detection
In
As shown in
The laser generator 1100 can have a housing 1150. In
The housing 1150 can enclose any of the passively Q-switched microchip lasers disclosed herein or obvious variations thereof based on the disclosure herein. As shown in
As shown in
Laser parameters of the laser generator 1100 can be adjusted. In some embodiments, the parameters can be adjusted using a controller (for example, a computer) via USB ports (or other types of data ports) on the housing 1150 of the generator 1100. The USB ports can be hidden by a control panel seal 1160 shown in
The laser 1200 can include pump shaping optics 1274, a laser cavity 1206 including a gain element and a saturable absorber element, and second harmonic generation and filtering elements 1276. The pump shaping optics 1274 can couple a pump fiber 1272 to the laser cavity 1206 on the side of the gain element 1202. The second harmonic generation and filtering elements 1276 can be coupled to the laser cavity 1206 on the side of the saturable absorber element 1209. A lens 1275 can be positioned between the laser cavity 1206 and the second harmonic generation and filtering elements 1276. The second harmonic generation and filtering elements 1276 can be coupled via beam delivery optics 1278 into an output fiber.
Terms of orientation used herein, such as “proximal,” “distal,” “radial,” “central,” “longitudinal,” and “end” are used in the context of the illustrated embodiment. However, the present disclosure should not be limited to the illustrated orientation. Indeed, other orientations are possible and are within the scope of this disclosure. Terms relating to circular shapes as used herein, such as diameter or radius, should be understood not to require perfect circular structures, but rather should be applied to any suitable structure with a cross-sectional region that can be measured from side-to-side. Terms relating to shapes generally, such as “circular” or “spherical” or “semi-circular” or “hemisphere” or any related or similar terms, are not required to conform strictly to the mathematical definitions of circles or spheres or other structures, but can encompass structures that are reasonably close approximations.
Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.
The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, in some embodiments, as the context may permit, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than or equal to 10% of the stated amount. The term “generally” as used herein represents a value, amount, or characteristic that predominantly includes or tends toward a particular value, amount, or characteristic. As an example, in certain embodiments, as the context may permit, the term “generally parallel” can refer to something that departs from exactly parallel by less than or equal to 15 degrees.
While a number of variations of the disclosure have been shown and described in detail, other modifications, which are within the scope of this disclosure, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the disclosure. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed.
Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.
Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings) may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination so disclosed.
For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
Some embodiments have been described in connection with the accompanying drawings. The figures are not drawn to scale where appropriate, but such scale should not be limiting, since dimensions and proportions other than what are shown are contemplated and are within the scope of the disclosed invention. Distances, angles, etc. are merely illustrative and do not necessarily bear an exact relationship to actual dimensions and layout of the devices illustrated. Components can be added, removed, and/or rearranged. Further, the disclosure herein of any particular feature, aspect, method, property, characteristic, quality, attribute, element, or the like in connection with various embodiments can be used in all other embodiments set forth herein. Additionally, any methods described herein may be practiced using any device suitable for performing the recited steps.
Although this invention has been disclosed in the context of certain embodiments and examples, the scope of this disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Any system, method, and device described in this application can include any combination of the preceding features described in this and other paragraphs, among other features and combinations described herein, including features and combinations described in subsequent paragraphs. While several variations of the invention have been shown and described in detail, other modifications, which are within the scope of this invention, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the invention. Various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57. This application is a continuation of U.S. patent application Ser. No. 17/662,559, filed May 9, 2022, which is a continuation of U.S. patent application Ser. No. 16/742,247, filed Jan. 14, 2020, which claims the priority benefit of U.S. Provisional Application No. 62/793,247, filed Jan. 16, 2019, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4174504 | Chenausky | Nov 1979 | A |
4960128 | Gordon et al. | Oct 1990 | A |
4964408 | Hink et al. | Oct 1990 | A |
5319355 | Russek | Jun 1994 | A |
5337744 | Branigan | Aug 1994 | A |
5341805 | Stavridi et al. | Aug 1994 | A |
5377676 | Vari et al. | Jan 1995 | A |
5431170 | Mathews | Jul 1995 | A |
5436499 | Namavar et al. | Jul 1995 | A |
5456252 | Vari et al. | Oct 1995 | A |
5479934 | Imran | Jan 1996 | A |
5482036 | Diab et al. | Jan 1996 | A |
5494043 | O'Sullivan et al. | Feb 1996 | A |
5533511 | Kaspari et al. | Jul 1996 | A |
5590649 | Caro et al. | Jan 1997 | A |
5602924 | Durand et al. | Feb 1997 | A |
5638816 | Kiani-Azarbayjany et al. | Jun 1997 | A |
5638818 | Diab et al. | Jun 1997 | A |
5645440 | Tobler et al. | Jul 1997 | A |
5671914 | Kalkhoran et al. | Sep 1997 | A |
5726440 | Kalkhoran et al. | Mar 1998 | A |
D393830 | Tobler et al. | Apr 1998 | S |
5743262 | Lepper, Jr. et al. | Apr 1998 | A |
5747806 | Khalil et al. | May 1998 | A |
5750994 | Schlager | May 1998 | A |
5758644 | Diab et al. | Jun 1998 | A |
5760910 | Lepper, Jr. et al. | Jun 1998 | A |
5890929 | Mills et al. | Apr 1999 | A |
5919134 | Diab | Jul 1999 | A |
5987343 | Kinast | Nov 1999 | A |
5997343 | Mills et al. | Dec 1999 | A |
6002952 | Diab et al. | Dec 1999 | A |
6010937 | Karam et al. | Jan 2000 | A |
6027452 | Flaherty et al. | Feb 2000 | A |
6040578 | Malin et al. | Mar 2000 | A |
6066204 | Haven | May 2000 | A |
6115673 | Malin et al. | Sep 2000 | A |
6124597 | Shehada et al. | Sep 2000 | A |
6128521 | Marro et al. | Oct 2000 | A |
6129675 | Jay | Oct 2000 | A |
6144868 | Parker | Nov 2000 | A |
6152754 | Gerhardt et al. | Nov 2000 | A |
6184521 | Coffin, IV et al. | Feb 2001 | B1 |
6232609 | Snyder et al. | May 2001 | B1 |
6241683 | Macklem et al. | Jun 2001 | B1 |
6253097 | Aronow et al. | Jun 2001 | B1 |
6255708 | Sudharsanan et al. | Jul 2001 | B1 |
6280381 | Malin et al. | Aug 2001 | B1 |
6285896 | Tobler et al. | Sep 2001 | B1 |
6308089 | von der Ruhr et al. | Oct 2001 | B1 |
6317627 | Ennen et al. | Nov 2001 | B1 |
6321100 | Parker | Nov 2001 | B1 |
6334065 | Al-Ali et al. | Dec 2001 | B1 |
6360114 | Diab et al. | Mar 2002 | B1 |
6368283 | Xu et al. | Apr 2002 | B1 |
6411373 | Garside et al. | Jun 2002 | B1 |
6415167 | Blank et al. | Jul 2002 | B1 |
6430437 | Marro | Aug 2002 | B1 |
6430525 | Weber et al. | Aug 2002 | B1 |
6463311 | Diab | Oct 2002 | B1 |
6470199 | Kopotic et al. | Oct 2002 | B1 |
6487429 | Hockersmith et al. | Nov 2002 | B2 |
6505059 | Kollias et al. | Jan 2003 | B1 |
6525386 | Mills et al. | Feb 2003 | B1 |
6526300 | Kiani et al. | Feb 2003 | B1 |
6534012 | Hazen et al. | Mar 2003 | B1 |
6542764 | Al-Ali et al. | Apr 2003 | B1 |
6580086 | Schulz et al. | Jun 2003 | B1 |
6584336 | Ali et al. | Jun 2003 | B1 |
6587196 | Stippick et al. | Jul 2003 | B1 |
6587199 | Luu | Jul 2003 | B1 |
6597932 | Tian et al. | Jul 2003 | B2 |
6606511 | Ali et al. | Aug 2003 | B1 |
6635559 | Greenwald et al. | Oct 2003 | B2 |
6639668 | Trepagnier | Oct 2003 | B1 |
6640116 | Diab | Oct 2003 | B2 |
6640117 | Makarewicz et al. | Oct 2003 | B2 |
6658276 | Kiani et al. | Dec 2003 | B2 |
6661161 | Lanzo et al. | Dec 2003 | B1 |
6697656 | Al-Ali | Feb 2004 | B1 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
RE38492 | Diab et al. | Apr 2004 | E |
6738652 | Mattu et al. | May 2004 | B2 |
6760607 | Al-Ali | Jul 2004 | B2 |
6788965 | Ruchti et al. | Sep 2004 | B2 |
6816241 | Grubisic | Nov 2004 | B2 |
6822564 | Al-Ali | Nov 2004 | B2 |
6850787 | Weber et al. | Feb 2005 | B2 |
6850788 | Al-Ali | Feb 2005 | B2 |
6876931 | Lorenz et al. | Apr 2005 | B2 |
6920345 | Al-Ali et al. | Jul 2005 | B2 |
6934570 | Kiani et al. | Aug 2005 | B2 |
6943348 | Coffin IV | Sep 2005 | B1 |
6956649 | Acosta et al. | Oct 2005 | B2 |
6961598 | Diab | Nov 2005 | B2 |
6970792 | Diab | Nov 2005 | B1 |
6985764 | Mason et al. | Jan 2006 | B2 |
6990364 | Ruchti et al. | Jan 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
7003338 | Weber et al. | Feb 2006 | B2 |
7015451 | Dalke et al. | Mar 2006 | B2 |
7027849 | Al-Ali | Apr 2006 | B2 |
D526719 | Richie, Jr. et al. | Aug 2006 | S |
7096052 | Mason et al. | Aug 2006 | B2 |
7096054 | Abdul-Hafiz et al. | Aug 2006 | B2 |
D529616 | Deros et al. | Oct 2006 | S |
7133710 | Acosta et al. | Nov 2006 | B2 |
7142901 | Kiani et al. | Nov 2006 | B2 |
7225006 | Al-Ali et al. | May 2007 | B2 |
RE39672 | Shehada et al. | Jun 2007 | E |
7230708 | Lapotko et al. | Jun 2007 | B2 |
7254429 | Schurman et al. | Aug 2007 | B2 |
7254431 | Al-Ali et al. | Aug 2007 | B2 |
7254434 | Schulz et al. | Aug 2007 | B2 |
7274955 | Kiani et al. | Sep 2007 | B2 |
D554263 | Al-Ali et al. | Oct 2007 | S |
7280858 | Al-Ali et al. | Oct 2007 | B2 |
7289835 | Mansfield et al. | Oct 2007 | B2 |
7292883 | De Felice et al. | Nov 2007 | B2 |
7341559 | Schulz et al. | Mar 2008 | B2 |
7343186 | Lamego et al. | Mar 2008 | B2 |
D566282 | Al-Ali et al. | Apr 2008 | S |
7356365 | Schurman | Apr 2008 | B2 |
7371981 | Abdul-Hafiz | May 2008 | B2 |
7373193 | Al-Ali et al. | May 2008 | B2 |
7377794 | Al-Ali et al. | May 2008 | B2 |
7395158 | Monfre et al. | Jul 2008 | B2 |
7415297 | Al-Ali et al. | Aug 2008 | B2 |
7438683 | Al-Ali et al. | Oct 2008 | B2 |
7483729 | Al-Ali et al. | Jan 2009 | B2 |
D587657 | Al-Ali et al. | Mar 2009 | S |
7500950 | Al-Ali et al. | Mar 2009 | B2 |
7509494 | Al-Ali | Mar 2009 | B2 |
7510849 | Schurman et al. | Mar 2009 | B2 |
7514725 | Wojtczuk et al. | Apr 2009 | B2 |
7519406 | Blank et al. | Apr 2009 | B2 |
D592507 | Wachman et al. | May 2009 | S |
7530942 | Diab | May 2009 | B1 |
7593230 | Abul-Haj et al. | Sep 2009 | B2 |
7596398 | Al-Ali et al. | Sep 2009 | B2 |
7606608 | Blank et al. | Oct 2009 | B2 |
7620674 | Ruchti et al. | Nov 2009 | B2 |
D606659 | Kiani et al. | Dec 2009 | S |
7629039 | Eckerbom et al. | Dec 2009 | B2 |
7640140 | Ruchti et al. | Dec 2009 | B2 |
7647083 | Al-Ali et al. | Jan 2010 | B2 |
D609193 | Al-Ali et al. | Feb 2010 | S |
D614305 | Al-Ali et al. | Apr 2010 | S |
7697966 | Monfre et al. | Apr 2010 | B2 |
7698105 | Ruchti et al. | Apr 2010 | B2 |
RE41317 | Parker | May 2010 | E |
RE41333 | Blank et al. | May 2010 | E |
7729733 | Al-Ali et al. | Jun 2010 | B2 |
7761127 | Al-Ali et al. | Jul 2010 | B2 |
7764982 | Dalke et al. | Jul 2010 | B2 |
D621516 | Kiani et al. | Aug 2010 | S |
7791155 | Diab | Sep 2010 | B2 |
RE41912 | Parker | Nov 2010 | E |
7880626 | Al-Ali et al. | Feb 2011 | B2 |
7909772 | Popov et al. | Mar 2011 | B2 |
7919713 | Al-Ali et al. | Apr 2011 | B2 |
7937128 | Al-Ali | May 2011 | B2 |
7937129 | Mason et al. | May 2011 | B2 |
7941199 | Kiani | May 2011 | B2 |
7957780 | Lamego et al. | Jun 2011 | B2 |
7962188 | Kiani et al. | Jun 2011 | B2 |
7976472 | Kiani | Jul 2011 | B2 |
7990382 | Kiani | Aug 2011 | B2 |
7999161 | Oraevsky et al. | Aug 2011 | B2 |
8008088 | Bellott et al. | Aug 2011 | B2 |
RE42753 | Kiani-Azarbayjany et al. | Sep 2011 | E |
8028701 | Al-Ali et al. | Oct 2011 | B2 |
8048040 | Kiani | Nov 2011 | B2 |
8050728 | Al-Ali et al. | Nov 2011 | B2 |
RE43169 | Parker | Feb 2012 | E |
8118620 | Al-Ali et al. | Feb 2012 | B2 |
8130105 | Al-Ali et al. | Mar 2012 | B2 |
8182443 | Kiani | May 2012 | B1 |
8190223 | Al-Ali et al. | May 2012 | B2 |
8203438 | Kiani et al. | Jun 2012 | B2 |
8203704 | Merritt et al. | Jun 2012 | B2 |
8219172 | Schurman et al. | Jul 2012 | B2 |
8224411 | Al-Ali et al. | Jul 2012 | B2 |
8229532 | Davis | Jul 2012 | B2 |
8233955 | Al-Ali et al. | Jul 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8265723 | McHale et al. | Sep 2012 | B1 |
8274360 | Sampath et al. | Sep 2012 | B2 |
8280473 | Al-Ali | Oct 2012 | B2 |
8315683 | Al-Ali et al. | Nov 2012 | B2 |
RE43860 | Parker | Dec 2012 | E |
8346330 | Lamego | Jan 2013 | B2 |
8353842 | Al-Ali et al. | Jan 2013 | B2 |
8355766 | MacNeish, III et al. | Jan 2013 | B2 |
8374665 | Lamego | Feb 2013 | B2 |
8388353 | Kiani et al. | Mar 2013 | B2 |
8401602 | Kiani | Mar 2013 | B2 |
8414499 | Al-Ali et al. | Apr 2013 | B2 |
8418524 | Al-Ali | Apr 2013 | B2 |
8428967 | Olsen et al. | Apr 2013 | B2 |
8430817 | Al-Ali et al. | Apr 2013 | B1 |
8437825 | Dalvi et al. | May 2013 | B2 |
8455290 | Siskavich | Jun 2013 | B2 |
8457707 | Kiani | Jun 2013 | B2 |
8471713 | Poeze et al. | Jun 2013 | B2 |
8473020 | Kiani et al. | Jun 2013 | B2 |
8509867 | Workman et al. | Aug 2013 | B2 |
8515509 | Bruinsma et al. | Aug 2013 | B2 |
8523781 | Al-Ali | Sep 2013 | B2 |
D692145 | Al-Ali et al. | Oct 2013 | S |
8571617 | Reichgott et al. | Oct 2013 | B2 |
8571618 | Lamego et al. | Oct 2013 | B1 |
8571619 | Al-Ali et al. | Oct 2013 | B2 |
8577431 | Lamego et al. | Nov 2013 | B2 |
8584345 | Al-Ali et al. | Nov 2013 | B2 |
8588880 | Abdul-Hafiz et al. | Nov 2013 | B2 |
8630691 | Lamego et al. | Jan 2014 | B2 |
8641631 | Sierra et al. | Feb 2014 | B2 |
8652060 | Al-Ali | Feb 2014 | B2 |
8666468 | Al-Ali | Mar 2014 | B1 |
8670811 | O'Reilly | Mar 2014 | B2 |
RE44823 | Parker | Apr 2014 | E |
RE44875 | Kiani et al. | Apr 2014 | E |
8688183 | Bruinsma et al. | Apr 2014 | B2 |
8690799 | Telfort et al. | Apr 2014 | B2 |
8702627 | Telfort et al. | Apr 2014 | B2 |
8712494 | MacNeish, III et al. | Apr 2014 | B1 |
8715206 | Telfort et al. | May 2014 | B2 |
8723677 | Kiani | May 2014 | B1 |
8740792 | Kiani et al. | Jun 2014 | B1 |
8755535 | Telfort et al. | Jun 2014 | B2 |
8755872 | Marinow | Jun 2014 | B1 |
8764671 | Kiani | Jul 2014 | B2 |
8768423 | Shakespeare et al. | Jul 2014 | B2 |
8771204 | Telfort et al. | Jul 2014 | B2 |
8781544 | Al-Ali et al. | Jul 2014 | B2 |
8790268 | Ai-Ali | Jul 2014 | B2 |
8801613 | Al-Ali et al. | Aug 2014 | B2 |
8821397 | Al-Ali et al. | Sep 2014 | B2 |
8821415 | Al-Ali et al. | Sep 2014 | B2 |
8830449 | Lamego et al. | Sep 2014 | B1 |
8840549 | Al-Ali et al. | Sep 2014 | B2 |
8852094 | Al-Ali et al. | Oct 2014 | B2 |
8852994 | Wojtczuk et al. | Oct 2014 | B2 |
8897847 | Al-Ali | Nov 2014 | B2 |
8911377 | Al-Ali | Dec 2014 | B2 |
8989831 | Al-Ali et al. | Mar 2015 | B2 |
8998809 | Kiani | Apr 2015 | B2 |
9066666 | Kiani | Jun 2015 | B2 |
9066680 | Al-Ali et al. | Jun 2015 | B1 |
9095316 | Welch et al. | Aug 2015 | B2 |
9106038 | Telfort et al. | Aug 2015 | B2 |
9107625 | Telfort et al. | Aug 2015 | B2 |
9131881 | Diab et al. | Sep 2015 | B2 |
9138180 | Coverston et al. | Sep 2015 | B1 |
9153112 | Kiani et al. | Oct 2015 | B1 |
9155497 | Plumley et al. | Oct 2015 | B1 |
9192329 | Al-Ali | Nov 2015 | B2 |
9192351 | Telfort et al. | Nov 2015 | B1 |
9195385 | Al-Ali et al. | Nov 2015 | B2 |
9211095 | Al-Ali | Dec 2015 | B1 |
9218454 | Kiani et al. | Dec 2015 | B2 |
9245668 | Vo et al. | Jan 2016 | B1 |
9267572 | Barker et al. | Feb 2016 | B2 |
9277880 | Poeze et al. | Mar 2016 | B2 |
9307928 | Al-Ali et al. | Apr 2016 | B1 |
9323894 | Kiani | Apr 2016 | B2 |
D755392 | Hwang et al. | May 2016 | S |
9326712 | Kiani | May 2016 | B1 |
9392945 | Al-Ali et al. | Jul 2016 | B2 |
9408542 | Kinast et al. | Aug 2016 | B1 |
9436645 | Al-Ali et al. | Sep 2016 | B2 |
9445759 | Lamego et al. | Sep 2016 | B1 |
9474474 | Lamego et al. | Oct 2016 | B2 |
9480435 | Olsen | Nov 2016 | B2 |
9510779 | Poeze et al. | Dec 2016 | B2 |
9517024 | Kiani et al. | Dec 2016 | B2 |
9532722 | Lamego et al. | Jan 2017 | B2 |
9560996 | Kiani | Feb 2017 | B2 |
9579039 | Jansen et al. | Feb 2017 | B2 |
9622692 | Lamego et al. | Apr 2017 | B2 |
D788312 | Al-Ali et al. | May 2017 | S |
9649054 | Lamego et al. | May 2017 | B2 |
9697928 | Al-Ali et al. | Jul 2017 | B2 |
9717458 | Lamego et al. | Aug 2017 | B2 |
9724016 | Al-Ali et al. | Aug 2017 | B1 |
9724024 | Al-Ali | Aug 2017 | B2 |
9724025 | Kiani et al. | Aug 2017 | B1 |
9749232 | Sampath et al. | Aug 2017 | B2 |
9750442 | Olsen | Sep 2017 | B2 |
9750461 | Telfort | Sep 2017 | B1 |
9775545 | Al-Ali et al. | Oct 2017 | B2 |
9778079 | Al-Ali et al. | Oct 2017 | B1 |
9782077 | Lamego et al. | Oct 2017 | B2 |
9787568 | Lamego et al. | Oct 2017 | B2 |
9808188 | Perea et al. | Nov 2017 | B1 |
9839379 | Al-Ali et al. | Dec 2017 | B2 |
9839381 | Weber et al. | Dec 2017 | B1 |
9847749 | Kiani et al. | Dec 2017 | B2 |
9848800 | Lee et al. | Dec 2017 | B1 |
9861298 | Eckerbom et al. | Jan 2018 | B2 |
9861305 | Weber et al. | Jan 2018 | B1 |
9877650 | Muhsin et al. | Jan 2018 | B2 |
9891079 | Dalvi | Feb 2018 | B2 |
9924897 | Abdul-Hafiz | Mar 2018 | B1 |
9936917 | Poeze et al. | Apr 2018 | B2 |
9955937 | Telfort | May 2018 | B2 |
9965946 | Al-Ali et al. | May 2018 | B2 |
D820865 | Muhsin et al. | Jun 2018 | S |
9986952 | Dalvi et al. | Jun 2018 | B2 |
D822215 | Al-Ali et al. | Jul 2018 | S |
D822216 | Barker et al. | Jul 2018 | S |
10010276 | Al-Ali et al. | Jul 2018 | B2 |
10086138 | Novak, Jr. | Oct 2018 | B1 |
10111591 | Dyell et al. | Oct 2018 | B2 |
D833624 | DeJong et al. | Nov 2018 | S |
10123729 | Dyell et al. | Nov 2018 | B2 |
D835282 | Barker et al. | Dec 2018 | S |
D835283 | Barker et al. | Dec 2018 | S |
D835284 | Barker et al. | Dec 2018 | S |
D835285 | Barker et al. | Dec 2018 | S |
10149616 | Al-Ali et al. | Dec 2018 | B2 |
10154815 | Al-Ali et al. | Dec 2018 | B2 |
10159412 | Lamego et al. | Dec 2018 | B2 |
10188348 | Al-Ali et al. | Jan 2019 | B2 |
RE47218 | Al-Ali | Feb 2019 | E |
RE47244 | Kiani et al. | Feb 2019 | E |
RE47249 | Kiani et al. | Feb 2019 | E |
10205291 | Scruggs et al. | Feb 2019 | B2 |
10226187 | Al-Ali et al. | Mar 2019 | B2 |
10231657 | Al-Ali et al. | Mar 2019 | B2 |
10231670 | Blank et al. | Mar 2019 | B2 |
RE47353 | Kiani et al. | Apr 2019 | E |
10279247 | Kiani | May 2019 | B2 |
10292664 | Al-Ali | May 2019 | B2 |
10299720 | Brown et al. | May 2019 | B2 |
10327337 | Schmidt et al. | Jun 2019 | B2 |
10327713 | Barker et al. | Jun 2019 | B2 |
10332630 | Al-Ali | Jun 2019 | B2 |
10383520 | Wojtczuk et al. | Aug 2019 | B2 |
10383527 | Al-Ali | Aug 2019 | B2 |
10388120 | Muhsin et al. | Aug 2019 | B2 |
D864120 | Forrest et al. | Oct 2019 | S |
10441181 | Telfort et al. | Oct 2019 | B1 |
10441196 | Eckerbom et al. | Oct 2019 | B2 |
10448844 | Al-Ali et al. | Oct 2019 | B2 |
10448871 | Al-Ali et al. | Oct 2019 | B2 |
10456038 | Lamego et al. | Oct 2019 | B2 |
10463340 | Telfort et al. | Nov 2019 | B2 |
10471159 | Lapotko et al. | Nov 2019 | B1 |
10505311 | Al-Ali et al. | Dec 2019 | B2 |
10524738 | Olsen | Jan 2020 | B2 |
10532174 | Al-Ali | Jan 2020 | B2 |
10537285 | Shreim et al. | Jan 2020 | B2 |
10542903 | Al-Ali et al. | Jan 2020 | B2 |
10555678 | Dalvi et al. | Feb 2020 | B2 |
10568553 | O'Neil et al. | Feb 2020 | B2 |
10608817 | Haider et al. | Mar 2020 | B2 |
D880477 | Forrest et al. | Apr 2020 | S |
10617302 | Al-Ali et al. | Apr 2020 | B2 |
10617335 | Al-Ali et al. | Apr 2020 | B2 |
10637181 | Al-Ali et al. | Apr 2020 | B2 |
D886849 | Muhsin et al. | Jun 2020 | S |
D887548 | Abdul-Hafiz et al. | Jun 2020 | S |
D887549 | Abdul-Hafiz et al. | Jun 2020 | S |
10667764 | Ahmed et al. | Jun 2020 | B2 |
D890708 | Forrest et al. | Jul 2020 | S |
10721785 | Al-Ali | Jul 2020 | B2 |
10736518 | Al-Ali et al. | Aug 2020 | B2 |
10750984 | Pauley et al. | Aug 2020 | B2 |
D897098 | Al-Ali | Sep 2020 | S |
10779098 | Iswanto et al. | Sep 2020 | B2 |
10827961 | Iyengar et al. | Nov 2020 | B1 |
10828007 | Telfort et al. | Nov 2020 | B1 |
10832818 | Muhsin et al. | Nov 2020 | B2 |
10849554 | Shreim et al. | Dec 2020 | B2 |
10856750 | Indorf | Dec 2020 | B2 |
D906970 | Forrest et al. | Jan 2021 | S |
D908213 | Abdul-Hafiz et al. | Jan 2021 | S |
10918281 | Al-Ali et al. | Feb 2021 | B2 |
10932705 | Muhsin et al. | Mar 2021 | B2 |
10932729 | Kiani et al. | Mar 2021 | B2 |
10939878 | Kiani et al. | Mar 2021 | B2 |
10956950 | Al-Ali et al. | Mar 2021 | B2 |
D916135 | Indorf et al. | Apr 2021 | S |
D917046 | Abdul-Hafiz et al. | Apr 2021 | S |
D917550 | Indorf et al. | Apr 2021 | S |
D917564 | Indorf et al. | Apr 2021 | S |
D917704 | Al-Ali et al. | Apr 2021 | S |
10987066 | Chandran et al. | Apr 2021 | B2 |
10991135 | Al-Ali et al. | Apr 2021 | B2 |
D919094 | Al-Ali et al. | May 2021 | S |
D919100 | Al-Ali et al. | May 2021 | S |
11006867 | Al-Ali | May 2021 | B2 |
D921202 | Al-Ali et al. | Jun 2021 | S |
11024064 | Muhsin et al. | Jun 2021 | B2 |
11026604 | Chen et al. | Jun 2021 | B2 |
D925597 | Chandran et al. | Jul 2021 | S |
D927699 | Al-Ali et al. | Aug 2021 | S |
11076777 | Lee et al. | Aug 2021 | B2 |
11114188 | Poeze et al. | Sep 2021 | B2 |
D933232 | Al-Ali et al. | Oct 2021 | S |
D933233 | Al-Ali et al. | Oct 2021 | S |
D933234 | Al-Ali et al. | Oct 2021 | S |
11145408 | Sampath et al. | Oct 2021 | B2 |
11147518 | Al-Ali et al. | Oct 2021 | B1 |
11185262 | Al-Ali et al. | Nov 2021 | B2 |
11191484 | Kiani et al. | Dec 2021 | B2 |
D946596 | Ahmed | Mar 2022 | S |
D946597 | Ahmed | Mar 2022 | S |
D946598 | Ahmed | Mar 2022 | S |
D946617 | Ahmed | Mar 2022 | S |
11272839 | Al-Ali et al. | Mar 2022 | B2 |
11289199 | Al-Ali | Mar 2022 | B2 |
RE49034 | Al-Ali | Apr 2022 | E |
11298021 | Muhsin et al. | Apr 2022 | B2 |
D950580 | Ahmed | May 2022 | S |
D950599 | Ahmed | May 2022 | S |
D950738 | Al-Ali et al. | May 2022 | S |
D957648 | Al-Ali | Jul 2022 | S |
11382567 | O'Brien et al. | Jul 2022 | B2 |
11389093 | Triman et al. | Jul 2022 | B2 |
11406286 | Al-Ali et al. | Aug 2022 | B2 |
11417426 | Muhsin et al. | Aug 2022 | B2 |
11439329 | Lamego | Sep 2022 | B2 |
11445948 | Scruggs et al. | Sep 2022 | B2 |
D965789 | Al-Ali et al. | Oct 2022 | S |
D967433 | Al-Ali et al. | Oct 2022 | S |
11464410 | Muhsin | Oct 2022 | B2 |
11504058 | Sharma et al. | Nov 2022 | B1 |
11504066 | Dalvi et al. | Nov 2022 | B1 |
D971933 | Ahmed | Dec 2022 | S |
D973072 | Ahmed | Dec 2022 | S |
D973685 | Ahmed | Dec 2022 | S |
D973686 | Ahmed | Dec 2022 | S |
D974193 | Forrest et al. | Jan 2023 | S |
D979516 | Al-Ali et al. | Feb 2023 | S |
D980091 | Forrest et al. | Mar 2023 | S |
11596363 | Lamego | Mar 2023 | B2 |
11627919 | Kiani et al. | Apr 2023 | B2 |
11637437 | Al-Ali et al. | Apr 2023 | B2 |
D985498 | Al-Ali et al. | May 2023 | S |
11653862 | Dalvi et al. | May 2023 | B2 |
D989112 | Muhsin et al. | Jun 2023 | S |
D989327 | Al-Ali et al. | Jun 2023 | S |
11678829 | Al-Ali et al. | Jun 2023 | B2 |
11679579 | Al-Ali | Jun 2023 | B2 |
11684296 | Vo et al. | Jun 2023 | B2 |
11692934 | Normand et al. | Jul 2023 | B2 |
11701043 | Al-Ali et al. | Jul 2023 | B2 |
D997365 | Hwang | Aug 2023 | S |
11721105 | Ranasinghe et al. | Aug 2023 | B2 |
11730379 | Ahmed et al. | Aug 2023 | B2 |
D998625 | Indorf et al. | Sep 2023 | S |
D998630 | Indorf et al. | Sep 2023 | S |
D998631 | Indorf et al. | Sep 2023 | S |
D999244 | Indorf et al. | Sep 2023 | S |
D999245 | Indorf et al. | Sep 2023 | S |
D999246 | Indorf et al. | Sep 2023 | S |
11766198 | Pauley et al. | Sep 2023 | B2 |
D1000975 | Al-Ali et al. | Oct 2023 | S |
11803623 | Kiani et al. | Oct 2023 | B2 |
11832940 | Diab et al. | Dec 2023 | B2 |
20010034477 | Mansfield et al. | Oct 2001 | A1 |
20010039483 | Brand et al. | Nov 2001 | A1 |
20020010401 | Bushmakin et al. | Jan 2002 | A1 |
20020058864 | Mansfield et al. | May 2002 | A1 |
20020133080 | Apruzzese et al. | Sep 2002 | A1 |
20030013975 | Kiani | Jan 2003 | A1 |
20030018243 | Gerhardt et al. | Jan 2003 | A1 |
20030144582 | Cohen et al. | Jul 2003 | A1 |
20030156288 | Barnum et al. | Aug 2003 | A1 |
20030212312 | Coffin, IV et al. | Nov 2003 | A1 |
20040106163 | Workman, Jr. et al. | Jun 2004 | A1 |
20050055276 | Kiani et al. | Mar 2005 | A1 |
20050234317 | Kiani | Oct 2005 | A1 |
20060073719 | Kiani | Apr 2006 | A1 |
20060189871 | Al-Ali et al. | Aug 2006 | A1 |
20060241459 | Tai | Oct 2006 | A1 |
20070073116 | Kiani et al. | Mar 2007 | A1 |
20070180140 | Welch et al. | Aug 2007 | A1 |
20070244377 | Cozad et al. | Oct 2007 | A1 |
20080064965 | Jay et al. | Mar 2008 | A1 |
20080094228 | Welch et al. | Apr 2008 | A1 |
20080103375 | Kiani | May 2008 | A1 |
20080221418 | Al-Ali et al. | Sep 2008 | A1 |
20080247425 | Welford | Oct 2008 | A1 |
20090000614 | Carrano | Jan 2009 | A1 |
20090036759 | Ault et al. | Feb 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090095926 | MacNeish, III | Apr 2009 | A1 |
20090141997 | Lee et al. | Jun 2009 | A1 |
20090247984 | Lamego et al. | Oct 2009 | A1 |
20090275844 | Al-Ali | Nov 2009 | A1 |
20090304033 | Ogilvy | Dec 2009 | A1 |
20100004518 | Vo et al. | Jan 2010 | A1 |
20100030040 | Poeze et al. | Feb 2010 | A1 |
20100099964 | O'Reilly et al. | Apr 2010 | A1 |
20100121163 | Vestel et al. | May 2010 | A1 |
20100222774 | Hegg et al. | Sep 2010 | A1 |
20100234718 | Sampath et al. | Sep 2010 | A1 |
20100270257 | Wachman et al. | Oct 2010 | A1 |
20110028806 | Merritt et al. | Feb 2011 | A1 |
20110028809 | Goodman | Feb 2011 | A1 |
20110040197 | Welch et al. | Feb 2011 | A1 |
20110082711 | Poeze et al. | Apr 2011 | A1 |
20110087081 | Kiani et al. | Apr 2011 | A1 |
20110118561 | Tari et al. | May 2011 | A1 |
20110137297 | Kiani et al. | Jun 2011 | A1 |
20110172498 | Olsen et al. | Jul 2011 | A1 |
20110172508 | Chickering, III et al. | Jul 2011 | A1 |
20110176127 | Kanda et al. | Jul 2011 | A1 |
20120046593 | Oraevsky et al. | Feb 2012 | A1 |
20120069860 | Inbar | Mar 2012 | A1 |
20120123231 | O'Reilly | May 2012 | A1 |
20120165629 | Merritt et al. | Jun 2012 | A1 |
20120165801 | Bragagna | Jun 2012 | A1 |
20120209084 | Olsen et al. | Aug 2012 | A1 |
20120226117 | Lamego et al. | Sep 2012 | A1 |
20120283524 | Kiani et al. | Nov 2012 | A1 |
20130023775 | Lamego et al. | Jan 2013 | A1 |
20130060147 | Welch et al. | Mar 2013 | A1 |
20130096405 | Garfio | Apr 2013 | A1 |
20130296672 | O'Neil et al. | Nov 2013 | A1 |
20130345921 | Al-Ali et al. | Dec 2013 | A1 |
20140049190 | Oh | Feb 2014 | A1 |
20140120167 | Lapotko et al. | May 2014 | A1 |
20140163353 | Razansky et al. | Jun 2014 | A1 |
20140166076 | Kiani et al. | Jun 2014 | A1 |
20140180160 | Brown et al. | Jun 2014 | A1 |
20140182385 | Oh et al. | Jul 2014 | A1 |
20140187973 | Brown et al. | Jul 2014 | A1 |
20140275871 | Lamego et al. | Sep 2014 | A1 |
20140275872 | Merritt et al. | Sep 2014 | A1 |
20140316217 | Purdon et al. | Oct 2014 | A1 |
20140316218 | Purdon et al. | Oct 2014 | A1 |
20140323897 | Brown et al. | Oct 2014 | A1 |
20140323898 | Purdon et al. | Oct 2014 | A1 |
20150005600 | Blank et al. | Jan 2015 | A1 |
20150011907 | Purdon et al. | Jan 2015 | A1 |
20150072337 | Lapotko et al. | Mar 2015 | A1 |
20150073241 | Lamego | Mar 2015 | A1 |
20150080754 | Purdon et al. | Mar 2015 | A1 |
20150099950 | Al-Ali et al. | Apr 2015 | A1 |
20150351841 | Whiteside et al. | Dec 2015 | A1 |
20160166185 | Liepmann et al. | Jun 2016 | A1 |
20160287141 | Sidlesky | Oct 2016 | A1 |
20160341747 | Ewert | Nov 2016 | A1 |
20160341945 | Ou et al. | Nov 2016 | A1 |
20170016827 | Gervais et al. | Jan 2017 | A1 |
20170024748 | Haider | Jan 2017 | A1 |
20170251974 | Shreim et al. | Sep 2017 | A1 |
20180000351 | Zharov | Jan 2018 | A1 |
20180242926 | Muhsin et al. | Aug 2018 | A1 |
20180247712 | Muhsin et al. | Aug 2018 | A1 |
20180344228 | Yelin | Dec 2018 | A1 |
20190320906 | Olsen | Oct 2019 | A1 |
20190345478 | Lapotko et al. | Nov 2019 | A1 |
20190388069 | Weber et al. | Dec 2019 | A1 |
20200060869 | Telfort et al. | Feb 2020 | A1 |
20200111552 | Ahmed | Apr 2020 | A1 |
20200113520 | Abdul-Hafiz et al. | Apr 2020 | A1 |
20200138368 | Kiani et al. | May 2020 | A1 |
20200163597 | Dalvi et al. | May 2020 | A1 |
20200253474 | Muhsin et al. | Aug 2020 | A1 |
20200253544 | Belur Nagaraj et al. | Aug 2020 | A1 |
20200275841 | Telfort et al. | Sep 2020 | A1 |
20200288983 | Telfort et al. | Sep 2020 | A1 |
20200329983 | Al-Ali et al. | Oct 2020 | A1 |
20200329993 | Al-Ali et al. | Oct 2020 | A1 |
20210022628 | Telfort et al. | Jan 2021 | A1 |
20210104173 | Pauley et al. | Apr 2021 | A1 |
20210117525 | Kiani et al. | Apr 2021 | A1 |
20210121582 | Krishnamani et al. | Apr 2021 | A1 |
20210161465 | Barker et al. | Jun 2021 | A1 |
20210236729 | Kiani et al. | Aug 2021 | A1 |
20210256835 | Ranasinghe et al. | Aug 2021 | A1 |
20210275101 | Vo et al. | Sep 2021 | A1 |
20210290072 | Forrest | Sep 2021 | A1 |
20210290080 | Ahmed | Sep 2021 | A1 |
20210290120 | Al-Ali | Sep 2021 | A1 |
20210290177 | Novak, Jr. | Sep 2021 | A1 |
20210290184 | Ahmed | Sep 2021 | A1 |
20210296008 | Novak, Jr. | Sep 2021 | A1 |
20210330228 | Olsen et al. | Oct 2021 | A1 |
20210386382 | Olsen et al. | Dec 2021 | A1 |
20210402110 | Pauley et al. | Dec 2021 | A1 |
20220039707 | Sharma et al. | Feb 2022 | A1 |
20220053892 | Al-Ali et al. | Feb 2022 | A1 |
20220071562 | Kiani | Mar 2022 | A1 |
20220096603 | Kiani et al. | Mar 2022 | A1 |
20220151521 | Krishnamani et al. | May 2022 | A1 |
20220218244 | Kiani et al. | Jul 2022 | A1 |
20220287574 | Telfort et al. | Sep 2022 | A1 |
20220296161 | Al-Ali et al. | Sep 2022 | A1 |
20220361819 | Al-Ali et al. | Nov 2022 | A1 |
20220379059 | Yu et al. | Dec 2022 | A1 |
20220392610 | Kiani et al. | Dec 2022 | A1 |
20230028745 | Al-Ali | Jan 2023 | A1 |
20230038389 | Vo | Feb 2023 | A1 |
20230045647 | Vo | Feb 2023 | A1 |
20230058052 | Al-Ali | Feb 2023 | A1 |
20230058342 | Kiani | Feb 2023 | A1 |
20230069789 | Koo et al. | Mar 2023 | A1 |
20230087671 | Telfort et al. | Mar 2023 | A1 |
20230110152 | Forrest et al. | Apr 2023 | A1 |
20230111198 | Yu et al. | Apr 2023 | A1 |
20230115397 | Vo et al. | Apr 2023 | A1 |
20230116371 | Mills et al. | Apr 2023 | A1 |
20230135297 | Kiani et al. | May 2023 | A1 |
20230138098 | Telfort et al. | May 2023 | A1 |
20230145155 | Krishnamani et al. | May 2023 | A1 |
20230147750 | Barker et al. | May 2023 | A1 |
20230210417 | Al-Ali et al. | Jul 2023 | A1 |
20230222805 | Muhsin et al. | Jul 2023 | A1 |
20230222887 | Muhsin et al. | Jul 2023 | A1 |
20230226331 | Kiani et al. | Jul 2023 | A1 |
20230284916 | Telfort | Sep 2023 | A1 |
20230284943 | Scruggs et al. | Sep 2023 | A1 |
20230301562 | Scruggs et al. | Sep 2023 | A1 |
20230346993 | Kiani et al. | Nov 2023 | A1 |
20230368221 | Haider | Nov 2023 | A1 |
20230371893 | Al-Ali et al. | Nov 2023 | A1 |
20230389837 | Krishnamani et al. | Dec 2023 | A1 |
Number | Date | Country |
---|---|---|
WO 2007104098 | Sep 2007 | WO |
WO 2013109722 | Jul 2013 | WO |
WO 2019224822 | Nov 2019 | WO |
Entry |
---|
Anderson et al., “Optically Guided Controlled Release from Liposomes with Tubable Plasmonic Nanobubbles,” Journal of Controlled Release, vol. 144, Issue 2, Jun. 1, 2010, in 22 pages. |
Brusnichkin et al., “Determination of Various Hemoglobin Species with Thermal-Lens Spectrometry,” Moscow University Chemistry Bulletin, vol. 64, Issue 1, Feb. 2009, pp. 45-54. |
Conjusteau et al., “Metallic Nanoparticles as Optoacoustic Contrast Agents for Medical Imaging,” SPIE Proceedings, vol. 6086, Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, Mar. 6, 2006, in 9 pages. |
Danysh et al., “The MUCI Ectodomain: A Novel and Efficient Target for Gold Nanoparticle Clustering and Vapor Nanobubble Generation,” Theranostics, 2, No. 8, Ivyspring International Publisher, 2012, pp. 777-787. |
Lapotko et al., “Clusterization of Nanoparticles During their Interaction with Living Cells,” Nanomedicine, vol. 2, No. 2, Apr. 2007, pp. 241-253. |
Lapotko et al., “Elimination of Leukemic Cells from Human Transplants by Laser Nano-Thermolysis,” SPIE Proceedings, vol. 6086, Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, Mar. 6, 2006, in 8 pages. |
Lapotko et al., “Lantcet: Novel Laser Nanotechnology for Graft Purging,” Biology of Blood and Marrow Transplantation, Feb. 2006, in 2 pages. |
Lapotko et al., “Laser Activated Nanothermolysis of Leukemia Cells Monitored by Photothermal Microscopy,” SPIE Proceedings, vol. 5697, Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, May 5, 2005, pp. 82-89. |
Lapotko et al., “Laser Heating Diagnoses and Treats Cancerous Cells,” SPIE Newsroom, The International Society for Optical Engineering, 2006, in 3 pages. |
Lapotko et al., “Method of Laser Activated Nano-Thermolysis for Elimination of Tumor Cells,” Cancer Letters, vol. 239, Issue 1, Jul. 28, 2006, pp. 36-45. |
Lapotko, “Monitoring of Apoptosis in Intact Single Cells with Photothermal Microscope,” Journal of the International Society for Advancement of Cytometry, vol. 58A, Issue 2, Apr. 2004, pp. 111-119. |
Lapotko, “Optical Excitation and Detection of Vapor Bubbles Around Plasmonic Nanoparticles,” Optics Express, vol. 17, Issue 4, Feb. 16, 2009, pp. 2538-2556. |
Lapotko et al., “Photothermal and Photoacoustic Processes in Laser Activated Nano-Thermolysis of Cells,” SPIE Proceedings, vol. 6437, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, Mar. 2007, in 13 pages. |
Lapotko et al., “Photothermal Detection of Laser-Induced Damage in Single Intact Cells,” Lasers in Surgery and Medicine, vol. 33, Issue 5, Dec. 2003, pp. 320-329. |
Lapotko et al., “Photothermal Image Cytometry of Human Neutrophils,” Journal of the International Society for Advancement of Cytometry, vol. 24, Issue 3, Jul. 1, 1996, pp. 198-203. |
Lapotko et al., “Photothermal Response of Live Cells Depends Upon Cell Metabolic State,” SPIE Proceedings, vol. 4618, Biomedical Optoacoustics III, Jun. 10, 2002, in 8 pages. |
Lapotko et al., “Photothermal Time-Resolved Imaging of Living Cells,” Lasers in Surgery and Medicine, vol. 31, Issue 1, Jul. 2002, pp. 53-63. |
Lapotko et al., “Photothermolysis by Laser-Induced Microbubbles Generated Around Gold Nanorod Clusters Selectively Formed in Leukemia Cells,” SPIE Proceedings, vol. 6856, Photons Plus Ultrasound: Imaging and Sensing 2008: The Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, Feb. 28, 2008, in 10 pages. |
Lapotko, “Plasmonic Nanobubbles as Tunable Cellular Probes for Cancer Theranostics,” Cancers, vol. 3, No. 1, 2011 pp. 802-840. |
Lapotko, “Plasmonic Nanoparticle-Generated Photothermal Bubbles and their Biomedical Applications,” Nanomedicine, vol. 4, No. 7, Oct. 2009, pp. 813-845. |
Lapotko, “Nanophotonics and Theranostics: Will Light do the Magic?” Theranostics 2013, vol. 3, Issue 3, pp. 138-140. |
Lapotko et al., “Nonstationary Heating and Phase Transitions in a Live Cell in Absorption of Laser Radiation,” Heat Transfer Research, vol. 38, Issue 8, Jan. 2007, pp. 695-708. |
Lapotko et al., “Selective Laser Nano-Thermolysis of Human Leukemia Cells with Microbubbles Generated Around Clusters of Gold Nanoparticles,” Lasers in Surgery and Medicine, vol. 38, Issue 6, Jul. 2006, pp. 631-642. |
Lapotko, “Therapy with Gold Nanoparticles and Lasers: What Really Kills the Cells?” Nanomedicine, vol. 4, No. 3, Apr. 2009, pp. 253-256. |
Lukianova-Hleb et al., “All-in-one Processing of Heterogeneous Human Cell Grafts for Gene and Cell Therapy,” Molecular Therapy—Methods & Clinical Development , vol. 3, Article 16012, 2016, in 8 pages. |
Lukianova-Hleb et al., “Cell-Specific Multifunctional Processing of Heterogeneous Cell Systems in aSingle Laser Pulse Treatment,” ACS Nano, vol. 6, Issue 12, Dec. 21, 2012, p. 10973-10981. |
Lukianova-Hleb et al., “Cell-Specific Transmembrane Injection of Molecular Cargo with Gold Nanoparticle-Generated Transient Plasmonic Nanobubbles,” Biomaterials, vol. 33, Issue 21, Jul. 2012, pp. 5441-5450. |
Lukianova-Hleb et al., “Experimental Techniques for Imaging and Measuring Transient Vapor Nanobubbles,” Applied Physics Letters, vol. 101, Dec. 2012, pp. 264102-1-264102-5. |
Lukianova-Hleb et al., “Generation and Detection of Plasmonic Nanobubbles in Zebrafish,” Nanotechnology, vol. 21, No. 22, Jun. 4, 2010, in 22 pages. |
Lukianova-Hleb et al., “Hemozoin-Generated Vapor Nanobubbles for Transdermal Reagent andNeedle-Free Detection of Malaria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, No. 3, Jan. 21, 2014, pp. 900-905. |
Lukianova-Hleb et al., “Improved Cellular Specificity of Plasmonic Nanobubbles versus Nanoparticles in Heterogeneous Cell Systems,” PLoS One, vol. 7, Issue 4, Apr. 2012, in 10 pages. |
Lukianova-Hleb et al., “Intraoperative Diagnostics and Elimination of Residual Micro-Tumours with Plasmonic Nanobubbles,” Nature Nanotechnology, 2015, in 31 pages. |
Lukianova-Hleb et al., “Influence of Transient Environmental Photothermal Effects on Optical Scattering by Gold Nanoparticles,” Nano Letters, vol. 9, Issue 5, May 2009, pp. 2160-2166. |
Lukianova-Hleb et al., “Laser Pulse Duration is Critical for the Generation of Plasmonic Nanobubbles,” Langmuir, vol. 30, Issue 25, 2014, pp. 7425-7434. |
Lukianova-Hleb et al., “Malaria Theranostics Using Hemozoin-Generated Vapor Nanobubbles,” Theranostics, vol. 4, Issue 7, 2014, pp. 761-769. |
Lukianova-Hleb et al., “Multifunctional Cell Processing with Plasmonic Nanobubbles,” International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, vol. 7, No. 11, 2013, pp. 677-681. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles Enhance Efficacy and Selectivity of Chemotherapy Against Drug-Resistant Cancer Cells,” Advanced Materials, vol. 24, Issue 28, Jul. 24, 2012, pp. 3831-3837. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles for Intracellular Targeting and Gene Therapy,” NTSI-Nanotech 2011, vol. 3, pp. 291-294. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles as Transient Vapor Nanobubbles Generated Around Plasmonic Nanoparticles,” ACS Nano, vol. 4, Issue 4, Apr. 27, 2010, pp. 2109-2123. |
Lukianova-Hleb et al., “Plasmonic Nanobubble-Enhanced Endosomal Escape Processes for Selective and Guided Intracellular Delivery of Chemotherapy to Drug-Resistant Cancer Cells,” Biomaterials, vol. 33, Issue 6, Feb. 2012, pp. 1821-1826. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors,” Theranostics, vol. 2, No. 10, 2012, pp. 976-787. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles for Cell Theranostic,” Proceedings of SPIE, 2012, vol. 8234, pp. 82341F-1-82341F-10. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles as Tunable Theranostic Agents,” NSTI-Nanotech 2011, vol. 3, pp. 367-370. |
Lukianova-Hleb et al., “Plasmonic Nanobubbles: Tunable and Transient Probes for Cancer Diagnosis, Therapy and Theranostics,” NSTI-Nanotech 2010, vol. 3, 2010 in 5 pages. |
Lukianova-Hleb et al., “Rainbow Plasmonic Nanobubbles: Synergistic Activation of Gold Nanoparticle Clusters,” Journal of Nanomedicine & Nanotechnology, vol. 2, Issue 104, Jan. 1, 2011, in 21 pages. |
Lukianova-Hleb et al., “Safety and Efficacy of Quadrapeutics Versus Chemoradiation in Head and Neck Carcinoma Xenograft Model,” American Journal of Cancer Research, vol. 5, Issue 12, 2015, pp. 3534-3547. |
Lukianova-Hleb et al., “Selective Gene Transfection of Individual Cells In Vitro with Plasmonic Nanobubbles,” Journal of Controlled Release, vol. 152, Issue 2, Jun. 10, 2011, pp. 286-293. |
Lukianova-Hleb et al., “Selective and Self-Guided Micro-Ablation of Tissue with Plasmonic Nanobubbles,” Journal of Surgical Research, vol. 166, Issue 1, Mar. 2011, pp. e3-e13. |
Lukianova-Hleb et al., “Short Laser Pulse-Induced Irreversible Photothermal Effects in Red Blood Cells,” Lasers in Surgery and Medicine, vol. 43, Issue 3, Mar. 2011, pp. 249-260. |
Lukianova-Hleb et al., “Transdermal Diagnosis of Malaria Using Vapor Nanobubbles,” Emerging Infectious Diseases, vol. 21, No. 7, Jul. 2015, pp. 1122-1127. |
Lukianova-Hleb et al., “Transient Enhancement and Spectral Narrowing of the Photothermal Effect of Plasmonic Nanoparticles Under Pulsed Excitation,” Advanced Materials, vol. 25, Issue 5, Feb. 6, 2013, pp. 772-776. |
Lukianova-Hleb et al., “Transient Photothermal Spectra of Plasmonic Nanobubbles,” Langmuir, vol. 28, Issue 10, Feb. 2012, pp. 4858-4866. |
Lukianova-Hleb et al., “Tunable Plasmonic Nanobubbles for Cell Theranostics,” Nanotechnology, vol. 21, No. 8, Feb. 26, 2010, in 19 pages. |
Lukianova-Hleb et al., “Tunable Plasmonic Nanoprobes for Theranostics of Prostate Cancer,” Theranostics, vol. 1, 2011, pp. 3-17. |
Potkin et al., “The Influence of Heterocyclic Compound-Pamam Dendrimer Complexes on EvokedElectrical Responses in Slices of Hypoxic Brain Tissue,” Cellular & Molecular Biology Letters, vol. 19, 2014, pp. 243-248. |
Vasiliev et al., “Bubble Generation in Micro-Volumes of ‘nonofluids’,” International Journal of Heat and Mass Transfer, vol. 52, Issues 5-6, Feb. 2009, pp. 1534-1539. |
Number | Date | Country | |
---|---|---|---|
62793247 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17662559 | May 2022 | US |
Child | 18483083 | US | |
Parent | 16742247 | Jan 2020 | US |
Child | 17662559 | US |