The invention relates to gas turbines and, more particularly, to a method of effectively removing residual liquid fuel to reduce fuel coking.
When a gas turbine is shut down or transferred to gas-fuel operation after running on liquid fuel, a significant amount of liquid fuel may be left in or on the passages, crevices and walls of the liquid fuel system components, including the mixing valves and combustion nozzles. It is important for the residual liquid fuel to be sufficiently removed from inside the mixing valve assembly and combustion nozzles so that fuel coking and subsequent component malfunction does not occur. That is, when exposed to the high temperatures around the gas turbine, residual liquid fuel in those components tends to cook down into a thick sludge or varnish or “coke.” That layer of coked fuel can inhibit valve operation and clog combustion passages, greatly reducing system reliability and operability.
It would be desirable to provide a methodology by which the liquid fuel is more completely removed from the valves and nozzles so that fuel no longer remains present in locations where it may be susceptible to coking. Prevention of coke formation is important to the reliability and operability of the liquid fuel system.
In an exemplary embodiment, a mixing valve in a gas turbine includes a pilot fuel inlet, a water inlet, a main fuel inlet, a pilot discharge, and a main discharge. A method of flushing liquid fuel from valves and nozzles via the mixing valve includes the steps of (a) flowing water through at least one of (1) the water inlet to the pilot discharge, (2) the water inlet to the main discharge, (3) the water inlet to the pilot fuel inlet and the pilot discharge, and (4) the water inlet to the main fuel inlet and the main discharge; (b) interrupting step (a) for a period of no flow; and (c) repeating steps (a) and (b).
In another exemplary embodiment, the mixing valve has a plurality of flow valves cooperable with the flow passages including a first flow valve positioned between the pilot fuel inlet and the pilot discharge, a second flow valve positioned between the water inlet and the pilot discharge, a third flow valve positioned between the water inlet and the main discharge, and a fourth flow valve positioned between the main fuel inlet and the main discharge. The method includes the steps of (a) flowing water in a pilot forward flush mode by closing the first, third and fourth flow valves and opening the second flow valve such that the water flows through the water inlet to the pilot discharge; (b) flowing water in a pilot forward/reverse flush mode by closing the third and fourth flow valves and opening the first and second flow valves such that the water flows through the water inlet to the pilot fuel inlet and the pilot discharge; (c) flowing water in a main forward flush mode by closing the first, second and fourth flow valves and opening the third flow valve such that the water flows through the water inlet to the main discharge; (d) flowing water in a main forward/reverse flush mode by closing the first and second flow valves and opening the third and fourth flow valves such that the water flows through the water inlet to the main fuel inlet and the main discharge; (e) interrupting steps (a)-(d) for a period of no flow; and (f) repeating steps (a)-(e).
In yet another exemplary embodiment, a method of flushing liquid fuel from valves and nozzles in a gas turbine via a mixing valve includes the steps of (a) flowing water through flow passages of the mixing valve, (b) interrupting the flow for a period of no flow, and (c) repeating steps (a) and (b) such that the water flow is pulsed through the flow passages.
The flushing method of the preferred embodiments uses water as the medium with which to flush any residual liquid fuel from the valve and nozzle passages, rather than using air or another gas or liquid. Water is flushed either forward or both forward and backward through the main or pilot mixing valve circuits as shown in
Testing has shown that steady flushing of the mixing valve assembly 10 may not sufficiently remove residual liquid fuel from the passageways, even with high flow rates. According to tests, flush effectiveness is greatly increased if the flushing is non-continuous; that is, if the flushing flow is interrupted by periods of no flow. These flow pulses are more effective for flushing the liquid fuel. In the method, combinations of the various flush modes are interrupted for a specified period of no flow, e.g., 10-30 seconds, and the flushing modes are subsequently repeated.
In the pulsed water flushing method, the flow rates, flow direction (forward or forward and backward), flow duration, pause duration and total number of pulses may all be varied to optimize the flush effectiveness for a particular system or hardware configuration. An exemplary flow schedule is shown in
With reference to
With the methodology of the preferred embodiments, liquid fuel removal is achieved by flushing the various mixing valve passages and nozzles with water in accordance with a prescribed pulsing schedule. Water is flushed through the mixing valve at the maximum flow rates allowed by the combustion system or water pump capability. Water flows forward through the mixing valve outlet circuits (and through the combustion nozzles) as well as backward through the mixing valve fuel inlets (and through the liquid fuel supply manifolds) at various stages of the flush sequence. At a given stage of the flush sequence, water may flow forward through the pilot circuit, main circuit, or both circuits; or forward and backward through either the pilot circuit, main circuit, or both circuits. The water flushing flow is interrupted by intervals of no flow, providing a pulsed flow effect that has been shown to greatly increase the amount of fuel successfully removed from the component passages as compared to a constant, uninterrupted flush.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3128779 | Morris | Apr 1964 | A |
4214435 | Campbell | Jul 1980 | A |
6216439 | Nakamoto | Apr 2001 | B1 |
6250065 | Mandai et al. | Jun 2001 | B1 |
6256975 | Dobbeling et al. | Jul 2001 | B1 |
8104258 | Jansen et al. | Jan 2012 | B1 |
8573245 | Jansen | Nov 2013 | B1 |
20110146807 | Bassmann et al. | Jun 2011 | A1 |
20110289927 | Wagner | Dec 2011 | A1 |
20130097991 | Zhang et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
0 939 220 | Sep 1999 | EP |
2001059427 | Mar 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20140305512 A1 | Oct 2014 | US |