The present invention relates to a pulverizer and an operating method for a pulverizer.
Pulverizers, such as for example cutting mills, are known and serve for the reduction of plastic wastes and corresponding cuttable materials in form of fibres, pieces, hollow bodies, foils and profile material but also of natural and synthetic rubber, vulcanised rubber, cable wastes, glass fibre wastes, leather or paper to state but a few concrete examples.
DE 199 54 998 A1 discloses a cutting mill which includes a cutting rotor with a multiplicity of cutting blades evenly distributed over its circumference, a cutting stator surrounding the cutting rotor with a plurality of stator blades, a milling stock inlet for milling stock feed and a discharge screen. As for the rest, this publication deals with the configuration of an additionally included rotating classifying device and its arrangement together with the cutting rotor in a common housing.
The present invention therefore has the objective of further developing a pulverizer and an operating method therefor in such a manner that better and more even milling of milling stock is achieved.
This objective is achieved with a pulverizer and operating methods of a pulverizer according to the present invention.
With a generic pulverizer including a cutting rotor with a multiplicity of cutting blades more preferably evenly distributed over its circumference, a cutting stator surrounding the cutting rotor with a plurality of stator blades, a milling stock inlet for milling stock feed and a discharge screen located in direction of rotation of cutting rotor after the milling stock inlet, it is thus further provided according to the invention that all stator blades are arranged in direction of rotation of cutting rotor between the milling stock inlet and the discharge screen.
Preferentially with such a pulverizer it can be further provided that a housing is included in which the discharge screen is permanently installed.
A further preferred embodiment is to be seen in that the milling stock inlet is a first milling stock inlet and that in the direction of rotation of the cutting rotor after the first milling stock inlet and before the discharge screen at least one further milling stock inlet for milling stock feed is arranged, wherein furthermore preferentially in direction of rotation of the cutting rotor after the first milling stock inlet and before the discharge screen a plurality of milling stock inlets for milling stock feed can be arranged. These versions can be further developed in that the housing in front of the second milling stock inlet in direction of rotation of the cutting rotor located after the first milling stock inlet is designed coolable, wherein additionally preferentially for the cooling of the housing cooling devices are provided which include a hollow shaped body in front of the second milling stock inlet and wherein furthermore more preferably the cooling devices are designed so that a gas or a fluid flows through the hollow shaped body.
Yet another preferential embodiment consists in that a separate process gas inlet for the process gas feed can be assigned to each milling stock inlet, wherein more preferably each process gas inlet in direction of rotation of the cutting rotor can be arranged in front of the corresponding milling stock inlet.
A further embodiment thereof can provide that the housing in front of the second process gas inlet located in direction of rotation of the cutting rotor after the first process gas inlet is embodied coolable, wherein further preferably for the cooling of the housing cooling devices are provided, include a hollow shaped body in front of the second process gas inlet and wherein more preferably in addition the cooling devices are designed so that a gas or a fluid flows through the hollow shaped body.
It can further be preferentially provided that at least one process gas inlet for the process gas feed is arranged between the if applicable first milling stock inlet and the discharge screen.
According to yet another preferred embodiment an end wedge can be associated with the end of the discharge screen located in direction of location of the cutting rotor, wherein the end wedge preferentially is designed knife-like and/or in direction of rotation of the cutting rotor following the discharge screen a process gas inlet for the process gas feed, the end wedge and then the if applicable first milling stock inlet can be arranged in succession.
Furthermore the pulverizer can be designed or serve for the reduction of fibrous goods.
Through the invention, in order to achieve the above objective, an operating method for a pulverizer is additionally created which includes a cutting rotor with a multiplicity of cutting blades more preferably evenly distributed over its circumference, a cutting stator surrounding the cutting rotor with a plurality of stator blades, a milling stock inlet for the milling stock feed and a discharge screen in direction of rotation of the cutting rotor located after the milling stock inlet, wherein all stator blades in direction of rotation of the cutting rotor are arranged between the milling stock inlet and the discharge screen, and wherein at least two process gas inlets for the process gas feed are provided, and with which method process gas through all existing process gas inlets is fed into the pulverizer in at least approximately equal parts.
A preferred further embodiment of the above method can be achieved in that a first process gas inlet is assigned to the milling stock inlet and more preferably in direction of rotation of the cutting rotor is connected upstream, and that all other process gas inlets are arranged between the milling stock inlet or the first process gas inlet and the discharge screen.
To achieve the above objective the invention also creates an operating method for a pulverizer including a cutting rotor with a multiplicity of cutting blades more preferably distributed evenly over its circumference, a cutting stator surrounding the cutting rotor with a plurality of stator blades, a plurality of milling stock inlets for the milling stock feed and a discharge screen in direction of rotation of the cutting rotor located after the milling stock inlets, wherein all stator blades are arranged in direction of rotation of the cutting rotor between the direction of rotation of the cutting rotor first milling stock inlet and the discharge screen, and which method further provides that milling stock is fed into the pulverizer through all existing milling stock inlets in at least approximately equal parts.
Further preferred and/or advantageous embodiments of the invention are obtained from the claims and their combinations as well as from the entire application documents in hand.
In the following, the invention is explained in more detail by means of an exemplary embodiment merely exemplarily making reference to the drawing, wherein
By means of the exemplary embodiments and exemplary applications described in the following and shown in the drawings the invention is explained in more detail merely exemplarily, i.e. it is not restricted to these exemplary embodiments and exemplary applications or to the respective feature combinations within said exemplary embodiments and exemplary applications. Method and device features in each case are similarly also obtained from device and method descriptions.
Individual features which state and/or are shown in connection with a concrete exemplary embodiment are not restricted to this exemplary embodiment or the combination with the remaining features of this exemplary embodiment, but can be combined within the scope of the technical possibilities with other exemplary embodiments and exemplary applications or individual features and feature combinations thereof and/or any known versions even if these are not separately treated in the documents in hand.
By means of the representations in the drawing features which are not provided with reference symbols also become clear irrespective of whether such features are described in the following or not. On the other hand, features which are included in the present description but are not visible or shown in the drawing are understandable to a person skilled in the art without any problems.
With the first embodiment version shown in
According to the method it is hereby divided that milling stock is fed into the pulverizer 1 through all existing or in the present case specifically the two milling stock inlets 7 and 7a in at least approximately equal parts. Additional milling stock inlets in direction of rotation of the cutting rotor 3 according to the arrow B can be arranged after the first milling stock inlet 7 and in front of the discharge screen 8. As alternative method embodiment it can also be provided that milling stock is fed into the pulverizer 1 completely, more preferably optionally through a milling stock inlet 7 or 7a, wherein both method versions can be realised with one and the same pulverizer 1 through suitable control possibilities. Such control possibilities including the appropriate structural prerequisites and requirements are known to the person skilled in the art per se, so that this does not require further discussion here.
The pulverizer 1 according to the first exemplary embodiment shown in
Furthermore, the pulverizer 1 of the first exemplary embodiment according to
In addition to the configuration possibilities of the operating method for a pulverizer 1 according to the present invention explained further up, yet further method versions are created.
With a pulverizer 1 which includes a cutting rotor 3 with a multiplicity of cutting blades 4 more preferably evenly distributed over its circumference, a cutting stator 5 surrounding the cutting rotor 3 with a plurality of stator blades, a milling stock inlet 7 for the milling stock feed and a discharge screen 8 located in direction of rotation of the cutting rotor 3 according to the arrow B after the milling stock inlet 7, wherein according to the present invention all stator blades 6 in direction of rotation of the cutting rotor 3 are arranged between the milling stock inlet 7 and the discharge screen 8 and wherein at least two process gas inlets 9 for the process gas feed are provided, the operating method can be such that process gas is fed into the pulverizer 1 through all existing process gas inlets 9, 9a in at least approximately equal parts. In a corresponding version, this method also applies to an embodiment of the pulverizer 1, wherein the first process gas inlet 9 is assigned to the first milling stock inlet 7 and more preferably in direction of rotation of the cutting rotor 3 according to the arrow B connected upstream, and wherein all other process gas inlets 9a are arranged between the first milling stock inlet 7 or the first process gas inlet 9 and the discharge screen 8.
For the sake of completeness reference is additionally made to an auxiliary air inlet 11 for the entry of auxiliary air according to the arrow D and a product run-out according to the arrow E, which are provided with this exemplary embodiment according to the representation in
A second exemplary embodiment of a pulverizer 1 is shown in
Insofar as with the second exemplary embodiment according to
In addition to the features of the first exemplary embodiment according to
By means of the exemplary embodiments in the description and in the drawing the invention is merely shown exemplarily and not restricted to that, but comprises all variations, modifications, substitutions and combinations which the person skilled in the art can glean from the present documents, more preferably within the context of the claims and the general representations in the introduction of this description as well as the description of the exemplary embodiments and their representations in the drawing and combine with his expert knowledge and the prior art. More preferably, all individual features and embodiment possibilities of the invention and its embodiment versions are combinable.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 059 114.9 | Nov 2008 | DE | national |
10 2009 012 743.7 | Mar 2009 | DE | national |
The present application claims priority of German patent application No. 10 2009 012 743.7 filed on Mar. 12, 2009 and German patent application No. 10 2008 059 114.9 filed on Nov. 26, 2008, the content of which is incorporated herein by reference.