Pulverizer assembly

Information

  • Patent Grant
  • 6202949
  • Patent Number
    6,202,949
  • Date Filed
    Thursday, August 26, 1999
    24 years ago
  • Date Issued
    Tuesday, March 20, 2001
    23 years ago
Abstract
There is disclosed a pulverizing assembly having paired interconnecting cylindrical chambers wherein each chamber is provided with a rotatable shaft having a plurality of discs mounted thereon and wherein each disc is provided with a plurality of arcuately-shaped shoe members mounted in abutting relationship about the periphery of each disc member to facilitate the stage wise circulation of a slurry introduced into the assembly and to induce particle collision of the solids contained in the slurry so as to reduce the size of the particulate solids before exiting the assembly.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention is related to a pulverizer assembly, and more particularly to a pulverizer assembly having the capability of receiving materials in a slurry condition, such as drill cuttings from a wellbore and to significantly reduce the particle size of particulate material included in the slurry.




2. Description of the Prior Art




The disposal of drill cuttings has been a longstanding problem in the field of well drilling and this problem has recently received attention due to increased concern regarding the environment. Offshore drilling operations, in particular, are problematic because the transport of the cuttings to a landfill or a shore-based processing system is required.




One solution to this problem is disclosed in U.S. Pat. Nos. 5,109,933 and 5,129,469. The prior art system for disposing of drill cuttings as described in these patents involves the mixing and cuttings with a carrier liquid such as water, and reducing the size of the cuttings in a pump having an impeller of a backward swept blade type to form a slurry of the particles and the carrier liquid for injection into a well for disposal. Other types of pulverizers and material breaking machinery are described, for example, in the following U.S. Pat. Nos. 310,940 to Gould; 315,064 to Pratt; 345,408 to Birge; 359,630 to Pratt; 666,404 to Wurster; 2,049,920 to McNitt; 3,927,840 to Nash; 3,931,936 to Petry; and 4,947,906 to Schroeder.




In U.S. Pat. No. 5,400,977 to Applicant of the present invention there is disclosed a design of a pulverizer having pivotally mounted blade members; however there remains continuing requirements for assemblies to provide improved rates of pulverization of material with minimal down time for servicing equipment.




SUMMARY OF THE INVENTION




These and other objects of the present invention are achieved in a pulverizing assembly comprised of a tank having a chamber for rotatably mounted shaft members having a plurality of disc members about which are mounted a plurality of arcuately-shaped shoe members formed with lateral outwardly-extending curvilinearly-shaped vanes for accelerating a slurry of particulate material being processed within the chamber as more fully hereinafter disclosed.




OBJECTS OF THE INVENTION




It is an object of the present invention to provide for an improved apparatus and process for pulverizing particulate solid materials.




It is another object of the present invention to provide for an improved pulverizer for use in a drill cutting disposal system wherein one pass of the cuttings through the pulverizer is sufficient to reduce the cuttings to appropriate size.




It is a still further object of the present invention to provide an improved pulverizer for use in pulverizing various materials, such as drill cuttings, agricultural products and various types of minerals with reduced downtimes and turnarounds.











BRIEF DESCRIPTION OF THE DRAWINGS




A better understanding of the present invention as well as other objects and advantages thereof will become apparent upon consideration of the detailed disclosure thereof, especially when taken with the accompanying drawings, wherein:





FIG. 1

is an elevational view, partially in section, of the pulverizer assembly of the present invention.





FIG. 2

is a sectional top plan view of the interior of the tank of the pulverizer assembly of the present invention;





FIG. 3

is a sectional side view taken along the lines


3





3


of

FIG. 2

;





FIG. 4

is an enlarged sectional side view of a disc member taken along the lines


4





4


of

FIG. 3

;





FIG. 5

is an enlarged elevational view of a shoe member;





FIG. 6

is a right side view of the shoe member of

FIG. 4

;





FIG. 7

is a cross-sectional side view of the shoe member as mounted on a disc member; and





FIG. 8

is a left side view of the shoe member of FIG.


4


.











DETAILED DESCRIPTION OF THE DRAWINGS




Referring now to the drawings, and particularly

FIGS. 1 and 3

, there is illustrated a pulverizer assembly of the present invention, generally indicated as


10


, comprised of overlapping cylindrical tank portions


12


and


14


in a figure eight configuration in section defining chamber portions


16


and


18


and enclosed by end walls


20


and


22


having an inlet and an outlet conduit


24


and


26


, respectively. In each tank portion


12


and


14


, there is mounted for rotation a shaft


28


and


30


, respectively, extending in parallelled relationship throughout the length of the tank portions


12


and


14


. Each shaft is driven for rotation by a respective motor assembly, generally indicated as


34


, under the control of respective control breaker panels


36


and


38


.




A plurality of disc members, generally indicated as


40


, comprised of a disc


42


are mounted in spaced-apart relationship on each shaft


28


and


30


in interdigitating relationship between disc member


40


mounted on the shaft


28


with respect to the disc members


40


on the shaft


30


as more fully hereinafter described.




A disc


42


is formed with side surfaces


44


and


46


and an outer circularly-shaped outer surface


48


, referring now to

FIGS. 4-8

. Each disc


42


of the disc member


40


is mounted on a respective shaft


28


and


30


, such as by welding. Each disc


42


mounted on the shaft


28


is provided with a plurality of arcuately-shaped shoe members


50


(eight illustrated) peripherally mounted in abutting relationship about the outer end surface


48


of the disc


42


, such as by nut and bolt assemblies


54


. Each disc


42


mounted on the shaft


30


is provided with a plurality of arcuated-shaped shoe members


52


similarly mounted on the disc


42


as the disc members


40


on the shaft


28


.




The arcuately-shaped shoe member


50


is formed of one piece construction and is generally U-shaped in cross-section, referring now to

FIGS. 5

to


8


, and is comprised of side leg portions


56


and


58


including inner radial surfaces


60


, and an outer circularly-shaped outer wall portion


62


having an inner radial surface


64


defining a chamber


66


for positioning on the shoe member


50


on the disc


42


. The shoe member


50


is preferably formed with a leading edge


66


and a trailing edge


68


at an angle from a perpendicular line from the inner radial surfaces


60


of each leg portion


56


and


58


to an outer radial surface


70


of the outer wall portion


62


thereby providing a form of interlocking relationship between adjacent shoe members


50


when mounted in the abutting relationship on the disc


42


of each disc member


40


. It is understood that the leading edge


66


and trailing edge


68


may be in perpendicular relationship to the inner radial surface


60


and outer radial surface


70


of the shoe member


50


.




From the outer surfaces


72


and


74


of the leg portions


56


and


58


of the shoe member


50


, there is integrally-formed a plurality of laterally-extending, curvilinearly-shaped vanes


76


and


78


, respectively, having a convex leading surface


80


in the direction of rotation contoured to accelerate a fluid being processed from the inner radial edges


60


of the shoe member


50


outwardly towards the inner surface of the tank members


12


and


14


.




The outer radial surface


70


of the outer wall portion


62


of the shoe member


50


is formed with a plurality of turbulence inducers


82


, preferably in the shape of a teardrop with an apex


84


directed towards the leading edge of each shoe member


50


to affect turbulent flow about the periphery of the disc member


50


with respect to the inner surface of the chamber portions


16


and


18


of the tank portions


12


and


14


.




In one manner of operation, material in slurry form, such as drill cuttings from a wellbore, is introduced into the pulverizer assembly


10


through the inlet conduit


24


of the pulverizer assembly


10


. Generally, such drill cuttings will contain particles of a size larger than about 50 mesh. Once inside the tanks


12


and


14


, the particle material is broken up by continual particulate collisions, caused by the action of the counter-rotating shafts


28


and


30


and disc members


40


in opposing rotational relationship to cause the material to be forced by the vanes


76


and


78


of the shoe members concomitantly with the action produced by the depressions


82


in an overlapping, interdigitating manner, as hereinabove discussed. In this manner of operation, while the particulate matter in the slurry material may be undergoing continuous collision with other particulate matter within the slurry material, a prime collision area would be at the top of the pulverizer assembly


10


where disc members


40


would be inducing flow angularly, downwardly, such that fluid and particulate matter driven by shaft


28


and the discs


40


mounted thereon would angularly collide with fluid and particulate matter driven by shaft


30


and the discs mounted thereon in the upper portion of pulverizer


10


proximate the longitudinal intersection of tanks


12


and


14


.




In another manner of operation, the shoe members


50


on discs


40


of one shaft member, either shaft member


28


or


30


, would be reversed with shafts


28


and


30


then operating in the same rotational direction. This would induce a slurry flow of fluid and particulate matter which would induce the primary particulate collision in the vertical plane formed by the intersection of cylindrical tank portions


12


and


14


.




In either one of the operational embodiments described above, the leading surface


80


of vane


76


and


78


would be convex. However, shafts


28


and


30


may be rotated such that the leading surface of vanes


76


and


78


would be the concave surface


79


.




In the operational embodiments of the invention set forth above, a pair of 75 HP motors


34


are used to rotate the shafts


28


and


30


with horsepower being varied as a function of the size of the pulverizer assembly


10


. Generally, the shafts


28


and


30


operate at the same rpm, generally in the range of 1400 to 1900 rpm.




The action of the vanes


76


and


78


of the shoe member


50


force the particulate material of the slurry to collide with and thereby break into smaller pieces, particularly as the process continues throughout the length of the tanks


12


and


14


until a slurry containing particles of reduced size is withdrawn via outlet conduit


26


for further treatment.




Generally, only one pass through the pulverizer assembly


10


is adequate to reduce the particulate material to a predetermined size.




While the present invention has been described in connection with an exemplary embodiment thereof, it will be understood that many modifications will be apparent to those of ordinary skill in the art; and that this application is intended to cover any adaptations or variations thereof. Therefore, it is manifestly intended that this invention be only limited by the claims and the equivalents thereof.



Claims
  • 1. A pulverizing assembly for producing finely ground material, comprising:a tank member formed by interconnected cylindrical chambers in fluid communication and in overlapping relation along the length thereof, said tank member having a conduit for receiving material to be processed and a conduit for processed material discharge; a shaft mounted for rotation in each cylindrical chamber and parallelly-disposed to one another; means for rotating said shafts; a plurality of disc members mounted in spaced-apart relationship on each shaft, each disc member comprised of a disc mounted on each shaft and having a plurality of arcuately-shaped shoe members mounted in abutting relationship about a periphery of said disc of said disc member, means on said shoe members for accelerating material to be processed within said tank member.
  • 2. The pulverizing assembly as defined in claim 1 wherein said means for accelerating material to be processed are formed by side surfaces of said shoe member having outwardly-extending curvilinearly-shaped vanes, said vanes having a convexly-shaped leading surface in a direction of rotation of said shaft.
  • 3. The pulverizing assembly as defined in claim 1 or 2 wherein an outer circumferential surface of said shoe member are formed with a plurality of turbulence inducers.
  • 4. The pulverizing assembly as defined in claim 3 wherein said turbulence inducers are indentations in the shape of a teardrop.
  • 5. The pulverizing assembly as defined in claim 4 wherein an apex of said teardrop is coincident to said leading edge of said curvilinearly-shaped vanes.
  • 6. The pulverizing assembly in accordance with claim 1 wherein said disc members mounted on one said parallelly-disposed shaft being an interdigitating relationship to said disc members mounted on said other parallelly-disposed shaft.
  • 7. The pulverizing assembly in accordance with claim 1 wherein said means for rotating said shafts comprises a power means for rotating one of said shafts in a clockwise direction and the other of said shafts in a counterclockwise direction at a speed to cause said particulate material to flow about the inner surfaces of said chambers in a manner to cause respective flows to contact each other in particle/particle contact to affect particle size reduction.
  • 8. The pulverizing assembly in accordance with claim 1 wherein said means for rotating said shafts comprises a power means for rotating said shafts in the same direction at a speed to cause said particulate material to flow about the inner surfaces of said chambers in a manner to cause respective flows to contact each other in particle/particle contact to affect particle size reduction.
  • 9. A shoe member for mounting on a disc member of a pulverizing assembly for producing finely ground material, said shoe member comprising an arcuately-shaped circumferential outer surface having parallel leg members depending from the edges thereof in spaced apart relationship defining a channel for slidably mounting in abutting relationship with identical shoe members about the periphery of a disc member wherein the outer side surfaces of said leg members are formed with outwardly extending curvilinearly-shaped vanes, said vanes having a convexly-shaped leading surface in a direction of rotation of said disc member.
  • 10. The shoe member in accordance with claim 9 wherein said circumferential outer surface of said shoe member is formed with a plurality of turbulance inducers.
  • 11. The shoe member in accordance with claim 10 wherein said turbulance inducers are indentations in the shape of a tear drop.
  • 12. The shoe member in accordance with claim 11 wherein an apex of said tear drop is coincident to said leading edge of said curvilinear-shaped vanes.
US Referenced Citations (2)
Number Name Date Kind
5188303 Hoof Feb 1993
5400977 Hayles Mar 1995