This patent application is based on and claims priority pursuant to 35 U.S.C. §119 to Japanese Patent Application No. 2012-063377, filed on Mar. 21, 2012, in the Japan Patent Office, the entire disclosure of which is hereby incorporated by reference herein.
1. Technical Field
The present disclosure relates to a pulverizer.
2. Description of Related Art
In image forming methods such as electrophotography and electrostatic photography, visible images are formed by developing electrostatic latent images with toner. Toner is comprised of fine particles. Fine particles of toner are generally produced by melting and kneading raw materials of the toner, such as binder resins and colorants (e.g., dyes, pigments, magnetic materials), cooling and solidifying the kneaded product, pulverizing the solidified product, and classifying the pulverized product by size. In the above processes of pulverizing and classifying, a collision-type airflow pulverization-classification apparatus, such as an impact dispersion separator illustrated in
In a collision-type airflow pulverization-classification apparatus 107 illustrated in
The fine particles are sent to a next process. The coarse particles fall down by their own weight to a returning chamber 108 and flow into a pulverizer 109 through a casing hopper 103.
In the pulverizer 109, the coarse particles 110 are sucked from a supply aperture 104, accelerated in an acceleration tube 114 of a pulverization nozzle 105, and brought into collision with a collision member 106 ahead to be pulverized. The pulverization product then goes up from a pulverization chamber 111 and flows into the dispersion chamber 102 again together with a newly-input powdery material input from an inlet opening 101, resulting in formation of a closed circuit pulverization.
One end of the acceleration tube 114 is connected to a jet nozzle 112 that supplies compressed air. The other end, i.e., an exit 115, of the acceleration tube 114 is facing the collision member 106. The coarse particles 110 are sucked from a supply opening 116 into the acceleration tube 114 by the flux of a high-speed airflow 113 that is a jet flow. The coarse particles are then conveyed to the pulverization chamber 111 by the injection of the high-speed airflow 113 and brought into collision with a collision surface 117 of the collision member 106 to be pulverized by the collision force.
Recently, image forming apparatuses have been improved in terms of image quality and colorization. In accordance with such improvements, there is a demand for a toner having a smaller particle size and a lower melting point. However, there are concerns that the production efficiency of such a toner is lowered in a case in which the toner is produced by an airflow-type pulverization-classification apparatus and the raw materials are fixedly adhered to such a production apparatus. These concerns also arise when the high-speed airflow 113 (i.e., jet flow) is neither sufficient nor uniform and therefore the pulverization object is dispersed within the acceleration tube 114 neither sufficiently nor uniformly.
JP-H08-052376-A (corresponding to JP-3219955-B2) discloses a collision-type airflow pulverizer illustrated in
JP-2010-155224-A discloses an airflow-type pulverization-classification apparatus illustrated in
JP-3016402-B2 (corresponding to JP-H04-326952-A) discloses a collision-type airflow pulverizer having an acceleration tube and a collision member. The acceleration tube is in the form of a de Laval nozzle provided with an inlet for high-pressure gas upstream from the throat part. A high-pressure gas introduced into the acceleration tube from the inlet conveys and accelerates a raw material. The collision member has a collision surface disposed facing the exit of the acceleration tube. The raw material is brought into collision with the collision member to be pulverized by the collision force. The collision surface has a cone-shaped tip whose apex angle is between 110 and 175 degrees.
JP-3114040-B2 (corresponding to JP-H07-60150-A) discloses a collision-type airflow pulverizer illustrated in
JP-3219918-B2 (corresponding to JP-H07-136543-A) discloses a pulverizer including a jet nozzle that injects a jet flow in a pulverization chamber; an acceleration tube, one end of which is connected to the front end of the jet nozzle and the other end is opened to the pulverization chamber; a supply tube opened to the acceleration tube to supply a pulverization object to the jet flow; and a collision member having a pulverization surface disposed facing the jet nozzle. The pulverization object along with the jet flow is brought into direct collision with the pulverization surface to be finely pulverized. The supply tube has an introduction part vertical to the acceleration tube; and an injection part, one end of which is connected to the introduction part and the other end is opened to the acceleration tube, slanted in the direction of the jet flow. The injection part includes a first air supply opening opened to the injection part; a first air supply means for supplying the air to the injection part through the first air supply opening; a second air supply opening opened to the injection part; and a second air supply means for supplying the air to the injection part through the second air supply opening. The central axis of the second air supply opening is parallel to that of the injection part.
JP-H03-086257-A discloses a collision-type airflow pulverizer including an acceleration tube that conveys and accelerates a powder material by a high-pressure gas; a pulverization chamber; and a collision member that pulverizes the powder material injected from the acceleration tube by a collision force. The collision member is provided within the pulverization chamber with facing the exit of the acceleration tube. The acceleration tube is provided with a powder material inlet. A secondary air inlet is provided between the powder material inlet and the exit of the acceleration tube. This apparatus satisfies the following inequations: 0.2≦y/x≦0.9 and 10°≦Ψ≦80°, wherein x represents the distance between the powder material inlet and the exit of the acceleration tube, y represents the distance between the raw material inlet and the secondary air inlet, Ψ represents the installation angle of the secondary air inlet to the acceleration tube in the axial direction of the acceleration tube.
JP-2000-140675-A discloses pulverizers illustrated in
In the above-described arts, generally, a pulverization object is supplied from a hopper to an acceleration tube through a supply aperture and accelerated by a jet flow in the acceleration tube. The ability of pulverizing pulverization object generally improves when the acceleration speed of the jet flow is kept constant during the supply of pulverization object to the acceleration tube.
In the related arts, the supply aperture is generally connected to the acceleration tube forming a relatively large angle therebetween. This means that the cross-sectional area of the supply aperture is relatively small and therefore the ability of supplying pulverization object to the acceleration tube is relatively low. In a case in which the pulverization object is pulverized into very fine particles, the ability of pulverizing pulverization object is more lowered because the ability of supplying pulverization object is lowered by changes in bulk density of the pulverization object, which may cause clogging of the hopper.
In accordance with some embodiments, a pulverizer equipped with a pulverization nozzle that injects jet flow is provided. The pulverizer uniformly pulverizes a pulverization object with a high degree of efficiency without lowering the acceleration speed of the jet flow without causing concretion, adhesion, or aggregation of the pulverization product.
The pulverizer includes a pulverization chamber, a jet nozzle, a pulverization nozzle, and a collision member. The jet nozzle is adapted to generate a jet flow toward the pulverization chamber. The pulverization nozzle includes an acceleration tube and a supply aperture. The acceleration tube includes an acceleration part A and an acceleration part B. One end of the acceleration part A is connected to a front end of the jet nozzle, and a cross-sectional area of the acceleration part A is gradually enlarged from said end toward the other end. The cross-sectional area is perpendicular to a central axis of the acceleration tube. One end of the acceleration part B is connected to the acceleration part A and the other end is opened to the pulverization chamber, and the cross-sectional area of the acceleration part B is constant. The supply aperture is opened to the acceleration tube to supply a pulverization object to the jet flow. The collision member is disposed within the pulverization chamber. The collision member has a pulverization surface, and the pulverization surface faces the pulverization nozzle so that the pulverization object conveyed by the jet flow directly collides with the pulverization surface to be finely pulverized. A center (a) of the supply aperture is positioned within the acceleration part A. A point of intersection (b) where central axes of the acceleration tube and the supply aperture intersect is positioned within the acceleration part B. An angle θ formed between the central axes of the acceleration tube and the supply aperture satisfies an inequation 30°≦θ<60°.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
Embodiments of the present invention are described in detail below with reference to accompanying drawings. In describing embodiments illustrated in the drawings, specific terminology is employed for the sake of clarity. However, the disclosure of this patent specification is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner and achieve a similar result.
For the sake of simplicity, the same reference number will be given to identical constituent elements such as parts and materials having the same functions and redundant descriptions thereof omitted unless otherwise stated.
A pulverizer illustrated in
The pulverization object 9 is input from a certain part on a circulation path 18, for example, from a pulverization object hopper 10 in the present embodiment. The pulverization object 9 is then supplied to the pulverization nozzle 1 through the supply aperture 3 that is connected to a lower part of the pulverization object hopper 10. The pulverization object 9 supplied through the supply aperture 3 is accelerated in the acceleration tube 2 and brought into collision with the pulverization surface 17 of the collision member 8 ahead to be pulverized. The pulverization product is introduced into a classifier 11 through the circulation path 18 and is classified into fine particles and coarse particles. The fine particles are collected as a product. The coarse particles are introduced into the pulverization nozzle 1 through the supply aperture 3 again together with a newly-input pulverization object 9.
Referring to
The center (a) of the supply aperture 3 is positioned within the acceleration part A. In some embodiments, the center (a) of the supply aperture 3 is positioned between two points at distances of 1/5×L and 2/5×L from the jet-nozzle-5-side end of the pulverization nozzle 1, where L represents the length of the pulverization nozzle 1.
When the angle θ is less than 30°, the distance of the point of intersection (b) from the jet-nozzle-5-side end of the pulverization nozzle 1 exceeds 4/5×L or more. In this case, the point of intersection (b) is shifted in the direction of injection of the jet flow and therefore the pulverization object is brought into collision without being satisfactorily accelerated, resulting in poor pulverization efficiency. When the angle θ exceeds 60°, the distance of the point of intersection (b) from the jet-nozzle-5-side end of the pulverization nozzle 1 is 2/5×L or less. In this case, the pulverization object reaches the acceleration tube by a shorter distance and therefore the supply speed of the pulverization object is decreased. As a result, the acceleration speed of the injection nozzle may be also decreased.
The cross-sectional area Z is determined from the following formula.
Z=(πr2)/cos(90°−θ)
wherein r represents a perpendicular line drawn from an edge of the supply aperture 3 toward the central axis X2 of the supply aperture 3.
According to an embodiment, the pulverization nozzle 1 is comprised of a metal. Metals are relatively easy to process, repair, and maintain, and have great strength.
According to an embodiment, the source pressure for generating the jet flow 6 is within a range from 0.4 to 0.7 MPa. When the source pressure is less than 0.4 MPa, the jet flow may not be sufficiently accelerated, resulting in poor pulverization ability. When the source pressure exceeds 0.7 MPa, the ejector effect may disappear and the pulverization object may be brought into collision with the collision member without sufficient acceleration, resulting in poor pulverization ability.
According to an embodiment, the pulverization object to be supplied from the supply aperture 3 of the pulverization nozzle 1 has a weight average particle diameter of 4 μm or more. When the weight average particle diameter is less than 4 μm, the pulverization object cannot be sufficiently supplied because the bulk density thereof is too small. According to an embodiment, the pulverizer is used in combination with a classifier for producing toner.
Having generally described this invention, further understanding can be obtained by reference to certain specific examples which are provided herein for the purpose of illustration only and are not intended to be limiting. In the descriptions in the following examples, the numbers represent weight ratios in parts, unless otherwise specified.
The pulverizer illustrated in
Melt and knead a mixture of 75% of a polyester resin, 10% of a styrene-acrylic copolymer resin, and 15% of a carbon black by a roll mill. Cool and solidify the kneaded product. Coarsely pulverize the solidified product by a hammer mill and further pulverize it by the apparatus illustrated in
Repeat the procedure in Example 1 except for replacing the apparatus with another apparatus equipped with a straight nozzle with an angle θ of 55°, a point of intersection (b) at a length of 2.37/5×L, and a cross-sectional area Z of 1.4. As a result, a pulverization product comprising 90% by number of fine particles having a weight average particle diameter of from 4.6 to 5 μm and 1.8% by weight of coarse particles having a weight average particle diameter of 8 μm or more is obtained in an amount of 38 kg per hour.
Repeat the procedure in Example 1 except for replacing the apparatus with another apparatus equipped with a straight nozzle with an angle θ of 45°, a point of intersection (b) at a length of 3.02/5×L, and a cross-sectional area Z of 1.6. As a result, a pulverization product comprising 90% by number of fine particles having a weight average particle diameter of from 4.6 to 5 μm and 1.8% by weight of coarse particles having a weight average particle diameter of 8 μm or more is obtained in an amount of 30 kg per hour.
Repeat the procedure in Example 1 except for replacing the apparatus with another apparatus equipped with a straight nozzle with an angle θ of 35°, a point of intersection (b) at a length of 2.64/5×L, and a cross-sectional area Z of 1.8. As a result, a pulverization product comprising 90% by number of fine particles having a weight average particle diameter of from 4.6 to 5 μm and 1.8% by weight of coarse particles having a weight average particle diameter of 8 μm or more is obtained in an amount of 41 kg per hour.
Repeat the procedure in Example 1 except for replacing the apparatus with another apparatus equipped with a straight nozzle with an angle θ of 60°, a point of intersection (b) at a length of 2.26/5×L, and a cross-sectional area Z of 1.2. As a result, a pulverization product comprising 90% by number of fine particles having a weight average particle diameter of from 4.6 to 5 μm and 1.8% by weight of coarse particles having a weight average particle diameter of 8 μm or more is obtained in an amount of 25 kg per hour.
Repeat the procedure in Example 1 except for replacing the apparatus with another apparatus equipped with a straight nozzle with an angle θ of 70°, a point of intersection (b) at a length of 1.98/5×L, and a cross-sectional area Z of 1.1. As a result, a pulverization product comprising 90% by number of fine particles having a weight average particle diameter of from 4.6 to 5 μm and 1.8% by weight of coarse particles having a weight average particle diameter of 8 μm or more is obtained in an amount of 23 kg per hour, with 10 kg of the pulverization product being clogged within the hopper.
Repeat the procedure in Example 1 except for replacing the apparatus with another apparatus equipped with a straight nozzle with an angle θ of 70°, a point of intersection (b) at a length of 1/5×1, and a cross-sectional area Z of 1.0. As a result, a pulverization product comprising 90% by number of fine particles having a weight average particle diameter of from 4.6 to 5 μm and 1.8% by weight of coarse particles having a weight average particle diameter of 8 μm or more is obtained in an amount of 18 kg per hour, with 16 kg of the pulverization product being clogged within the hopper. The above results are summarized in Table 1.
According to an embodiment, by changing the angle θ, the position of the point of intersection (b) can be changed such that the supply quantity and pulverization capacity are improved. When the angle θ, the position of the center of the supply aperture (a), and the point of intersection (b) are set as described above, a pulverization object can be constantly supplied to a jet flow while the acceleration speed of the jet flow is kept constant, which results in improvement in pulverization capacity and yield. The supply quantity can be controlled depending on the properties of the pulverization object, which is advantageous in terms of production efficiency and cost. The pulverization product may comprise small-sized particles which can be used as a toner for forming images with high quality.
When the cross-sectional area Z of the supply aperture satisfies the inequation 1.1≦Z<1.8, a greater amount of pulverization object can be supplied to the pulverization nozzle while the acceleration speed is kept constant. Owing to the straight tube part of the acceleration tube that is parallel to the central axis of the pulverization nozzle, the pulverization object is kept being accelerated constantly and pulverization capacity and yield are improved, which is advantageous in terms of production efficiency and cost. When the pulverization nozzle is comprised of materials such as SUS303 or SUS304, which are easy to process and low in cost, the pulverization nozzle is prevented from being damaged and thus the pulverization ability is kept constant for an extended period of time. When the source pressure for generating the jet flow is within a range from 0.4 to 0.7 MPa, fine particles with a desired particle size are obtained with a high degree of efficiency.
Additional modifications and variations in accordance with further embodiments of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced other than as specifically described herein.
Number | Date | Country | Kind |
---|---|---|---|
2012-063377 | Mar 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5765766 | Yoshida et al. | Jun 1998 | A |
20010010888 | Izu et al. | Aug 2001 | A1 |
20030178514 | Makino et al. | Sep 2003 | A1 |
20100170966 | Makino | Jul 2010 | A1 |
20120228414 | Makino et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
3-086257 | Apr 1991 | JP |
4-326952 | Nov 1992 | JP |
7-060150 | Mar 1995 | JP |
7-136543 | May 1995 | JP |
8-052376 | Feb 1996 | JP |
2000-140675 | May 2000 | JP |
2010-155224 | Jul 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20130248628 A1 | Sep 2013 | US |