Field of the Invention
The present invention relates to rock crushers and tumblers. More specifically, the present invention relates to a rock crushing apparatus and a method of pulverizing rocks into fine powder for subsequent sluicing.
Many rocks and ore contain fine particles of precious metals and other coveted minerals. However, these rocks generally need to be broken down or pulverized into smaller, more granular particles in order to separate the desired elements from the undesired earth or rock. This process was traditionally done by hand using a hammer or pickaxe, whereafter the rocks are broken down into the smaller sizes using impact tools as a means. Once the rock has been pulverized or broken down (either by hand or by alternate means), the process of sluicing is engaged to draw the desired minerals from the rock powder.
Rock crushing assemblies exist in the art and range in complexity and effectiveness. One drawback to most systems is that they require a user to remain present to supervise the crushing process, which is an unnecessarily frivolous task that takes time away from other, more productive activities. Furthermore rocks placed in some modern crushers must go through stages, or even run through a system multiple times before they produce particles of the desired size. The present invention is designed to address these drawbacks while maintaining a simple construction that can be easily maintained and refurbished after a period of use.
Specifically, the present invention provides a rock crushing assembly and method of pulverizing rocks that includes a powered tumbler and a pulverizing media therein. The tumbler is a rotary crushing assembly that rotates and includes faceted outer surfaces. A drivetrain rotates the tumbler at a given rotational velocity, which slings rocks toward the outer surfaces of the tumbler. Within the tumbler, the rocks are joined with a quantity of pulverizing media, which comprises a plurality of hardened spheres or pellets that have a higher hardness and stiffness than the rock being pulverized. The pulverizing media impacts the rocks as they rotate within the tumbler. Over a period of operation, the rocks are completely pulverized into a fine powder for subsequent extraction and further processing for precious minerals. To prevent the powder from softening impacts against the tumbler, the powder is allowed to escape the tumbler at a given point in its rotational sequence and into a collector. Overall, the system is user independent and requires no oversight once initiated.
Description of the Prior Art
Devices have been disclosed in the prior art that relate to rock crushing assemblies. These include devices that have been patented and published in patent application publications. The following is a list of devices deemed most relevant to the present disclosure, which are herein described for the purposes of highlighting and differentiating the unique aspects of the present invention, and further highlighting the drawbacks existing in the prior art.
One such device in the prior art is U.S. Pat. No. 6,032,889 to Thrasher, which discloses a rocker crusher device that comprises a rotor surrounded by a container, wherein the rotor is mounted to a vertical shaft that is supported via bearings. The shaft is driven such that the rotor rotates within the container. Rocks are fed into the rotor and slung from ports in the rotor to an impact anvil. Steel balls are positioned within the device to crush the rocks as they are slung against the impact anvil. While sharing the use of steel pulverizing balls, the structure and operation of the Thrasher assembly diverges significantly from that of the present invention. The present invention utilizes a tumbler with faceted outer surfaces and an open interior, wherein the inner surfaces and a pulverizing media is used break down larger rocks into finer powder.
Another device is U.S. Pat. No. 6,123,279 to Stafford, which discloses a rock crusher assembly that utilizes a cone having hardened, tapering inserts therein to crush rocks by way of impact. Rocks are placed on the cone, which in turn travel down the side of the cone along a crushing surface and into a tapered area. The hardened inserts act as pick-axes to shatter the rock, wherein the cone is rotating and the inserts impact the rocks as they move down the crushing surface. This assembly is effective for crushing rocks; however its method of crushing and the construction of the assembly of Stafford diverges from that provided herein. The Stafford device uses a crushing surface with projections. The present invention relates to a tumbler apparatus and a crushing media placed within the tumbler to break down large rocks into fine powder over a period of operation.
U.S. Pat. No. 6,783,092 to Robson discloses a rotary impact rock crusher that is disposed at an angle and includes an adjustable table that can update the angle while in operation. The device comprises a chamber with a rotor that slings rocks within the housing. Within the chamber is an anvil for crushing the moving rocks upon impact therewith. The anvil has rectangular cavities to break up the rocks, and the angular position of the anvil can be adjusted while the device is spinning. The Robson device utilizes a stationary anvil within the chamber as an impact surface. The present invention contemplates a spinning housing that utilizes faceted surfaces and a pulverizing media comprising hardened balls or pellets as a means of pulverizing the rocks into a powder.
Finally, U.S. Pat. No. 5,360,174 to Persson discloses a means of measuring the volume of a grinding charge in a rotating drum of a drum mill. The drum mill includes inward bars with sensors that can detect the load placed thereon. The load on the bars is used to calculate the amount of grinding charge therein. While disclosing a drum with a grinding charge, the Persson device fails to contemplate the faceted surfaces of the present drum or the grinding media used therein. Furthermore, the present invention contemplates a means of dispensing small quantities of pulverized rock from the drum during operation, thereby eliminating any impact attenuation or damping that powder can provide within the tumbler during operation.
The present invention provides a rock crushing and a mineral pulverizing assembly that utilizes a faceted tumbler and a hardened pulverizing media within the tumbler to break down larger rocks into granular material. The tumbler rotates and the rocks impact the pulverizing media and the faceted interior surfaces of the tumbler. After a period of operation, the end result is a granular material that can be processed for retrieving precious mineral deposits therein. The granular material is allowed to escape the tumbler during operation, thereby preventing fine powder build-up therein and maintaining high energy impacts between the rocks, tumbler and the pulverizing media.
It is submitted that the present invention is substantially divergent in design elements from the prior art, and consequently it is clear that there is a need in the art for an improvement to existing rock pulverizing assemblies. The present invention offers a simple, yet elegant solution that can easily be maintained and used on a continual basis to reduce rocks into a fine powder for further mineral extraction processes. In this regard the instant invention substantially fulfills these needs.
In view of the foregoing disadvantages inherent in the known types of rock pulverizing assemblies now present in the prior art, the present invention provides a new assembly that can be utilized for pulverizing rocks into a fine powder using a tumbler and a replaceable pulverizing media, whereby the end result in a fine powder that can be processed for precious minerals.
It is therefore an object of the present invention to provide a new and improved rock pulverizing assembly that has all of the advantages of the prior art and none of the disadvantages.
It is another object of the present invention to provide a rock pulverizing assembly comprising a faceted pulverizing tumbler, wherein the shape of the tumbler is used to maximize the energy of impacts with the rocks and pulverizing media placed therein.
Another object of the present invention is to provide a rock pulverizing assembly that can operate largely without user oversight once the process is initiated, wherein a quantity of rocks are reduced to a fine powder over a period of time and without continual supervision.
Yet another object of the present invention is to provide a rock pulverizing assembly that regulates the effectiveness of the tumbler by allowing pulverized rocks in the form of fine powder to escape the tumbler while in operation, thereby preventing a build-up of material that can reduce the effectiveness of the tumbler and the pulverizing media.
Another object of the present invention is to provide a rock pulverizing assembly that utilizes a pulverizing media comprising a plurality of hardened pellets or spheres that form discrete objects that break apart the rocks into smaller proportions when impacted or when sandwiched between the pellets and the tumbler walls.
Another object of the present invention is to provide a pulverizing media having a higher hardness and failure stress than the mineral rocks to be pulverized, whereby the rocks shatter or break apart when impacted by the pulverizing media.
Another object of the present invention is to provide a rock pulverizing assembly that may be readily fabricated from materials that permit relative economy and are commensurate with durability.
Other objects, features and advantages of the present invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings.
Although the characteristic features of this invention will be particularly pointed out in the claims, the invention itself and manner in which it may be made and used may be better understood after a review of the following description, taken in connection with the accompanying drawings wherein like numeral annotations are provided throughout.
Reference is made herein to the attached drawings. Like reference numerals are used throughout the drawings to depict like or similar elements of the rock pulverizing assembly of the present invention. For the purposes of presenting a brief and clear description of the present invention, the preferred embodiment will be discussed as used for reducing mineral rocks into fine powder for further processing. The figures are intended for representative purposes only and should not be considered to be limiting in any respect.
Referring now to
The tumbler 11 is used to support mineral rocks to be reduced, along with a pulverizing media that is placed therein with the rocks. The pulverizing media clashes and impacts the rocks as the tumbler 11 rotates, while the faceted shape of the tumbler increases the energy of the impacts when the rocks impact the inner walls thereof. The rocks and the pulverizing media cannot nestle into any curved portion, therefore the impacts are abrupt and cause a sharp change in momentum that causes stress on the rocks, pulverizing them into smaller proportions and eventually into a fine powder.
The tumbler 11 is comprised of a faceted shape with a pair of sidewalls 12 and a plurality of end walls 13 disposed therebetween. The end walls 13 are joined to one another at an angle (shown in
The tumbler 11 is preferably mounted from a workstation 50 or similar support structure, wherein the first and second sidewall 12 are rotatable supported by about the central axis of the tumbler. Off-axis mounting is also contemplated to increase pulverizing effectiveness; however harmonics of the overall assembly and stress on the power source 40 and drivetrain 41 may favor a more balanced support. The power input 40 is preferably an internal combustion engine or electric motor that drives a belt pulley 42 or chain. The power input 40 may directly secure to the tumbler 11, however it is contemplated and shown effective to reduce the speed of the power input 40 by using a drivetrain assembly 41.
The drivetrain assembly 41 comprises a plurality of gears or pulley wheels that are used to reduce the speed of the input to one that is desirable at the output in connection with the tumbler 11. Effective prototypes have shown that a tumbler rotational speed of 21 to 24 revolutions per minute (RPM) is an effective for processing a volume of rocks in the area of four to five gallons using an approximately twenty gallon tumbler with roughly four gallons of pulverizing media (by volume) therein. The exact ratio of pulverizing media to mineral rocks may vary, along with the size of the tumbler and the rotation speed thereof. The numbers stated show but one example that has been demonstrated as an effective implementation of the present invention in a production environment. Speeds between 10-70 RPM have been shown effective for pulverizing rocks using the process of the present invention. The drivetrain assembly 41 of the design prototype, and one contemplated as a configuration falling within the scope of the present invention, comprises a first 44 and second 45 pulley wheel sharing a common shaft, wherein the first pulley wheel 44 is driven by a belt 42 from the power source 40, and the second pulley wheel 45 drives another belt 42 secured to a final drive pulley wheel 43 sharing a common shaft with the input to the tumbler 11. This configuration allows the input to be changed to a specific ratio without compromising the torque input on the tumbler. If the power source comprises an internal combustion engine, the engine can run at an ideal speed while the tumbler rotates at a relatively low RPM. Furthermore, the engine and drivetrain may be coupled by a clutch assembly or controlled by tensioners, whereby the power source can be operably coupled and decoupled from the drivetrain if necessary during start-up and the like.
Referring now to
Referring now to
The openings 25 are adapted to allow fine powder to escape the interior of the tumbler 11 while the same is spinning. The openings 25 may be disposed along the surface of the end walls, or preferably there may be provided a gap between the access door 14 and the sidewalls of the tumbler. As the access door 14 rotates below the rotational center of the tumbler, the powder 70 falls through the openings and into a collection area 71 disposed therebelow. The powder 70 deposits in the collection area and can be processed thereafter. This process reduces the build-up of fine powder in the tumbler and eliminates the need to stop the tumbler operation to clean out the same.
Referring now to
Referring now to
The pulverizing media is mixed with mineral rocks to be broken down within the interior of the tumbler, whereby the assembly efficiently breaks down the rocks into powder form such that a user can further process the powder for precious minerals. In use, rocks are inserted into the tumbler and the motor is run at a slow speed for several hours. Once the cycle is complete, the fine powder is dispensed into a bucket or another suitable container. The tumbler is preferably supported via a shaft on each side thereof, which are secured in position by pillow block bearings for free rotation. Steel balls or round stock media are used as weights to crush the rocks, turning the rocks into a fine powder. The device pulverizes rocks for sluicing in a highly efficient manner while eliminating the need for individuals to manually hammer rocks into smaller pieces. Moreover, the present invention allows users to leave the machine unattended during the process while reducing the amount of time and effort needed to transform rocks into dust.
It is submitted that the instant invention has been shown and described in what is considered to be the most practical and preferred embodiments. It is recognized, however, that departures may be made within the scope of the invention and that obvious modifications will occur to a person skilled in the art. With respect to the above description then, it is to be realized that the optimum dimensional relationships for the parts of the invention, to include variations in size, materials, shape, form, function and manner of operation, assembly and use, are deemed readily apparent and obvious to one skilled in the art, and all equivalent relationships to those illustrated in the drawings and described in the specification are intended to be encompassed by the present invention.
Therefore, the foregoing is considered as illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 61/928,212 filed on Jan. 16, 2014, entitled “Rock Crusher.” The above identified patent application is herein incorporated by reference in its entirety to provide continuity of disclosure.
Number | Name | Date | Kind |
---|---|---|---|
981445 | Whitcomb | Jan 1911 | A |
1388462 | Hardinge | Aug 1921 | A |
1427234 | Sherban | Aug 1922 | A |
1430432 | Bittner | Sep 1922 | A |
1431475 | MacDonald | Oct 1922 | A |
1720024 | Young | Jul 1929 | A |
1903166 | Bryant | Mar 1933 | A |
1946511 | Van Pelt | Feb 1934 | A |
2069731 | Trumpler | Feb 1937 | A |
2074233 | Moussette, Sr. | Mar 1937 | A |
2098054 | McBerty | Nov 1937 | A |
2189312 | Frisch | Feb 1940 | A |
2376820 | Saumenicht | May 1945 | A |
2416746 | Gavin | Mar 1947 | A |
2431870 | Huenerfauth | Dec 1947 | A |
2545202 | Hartshorn | Mar 1951 | A |
2546247 | Wolf | Mar 1951 | A |
2675967 | Mote | Apr 1954 | A |
2681210 | Schaefer | Jun 1954 | A |
2978850 | Gleszer | Apr 1961 | A |
3027105 | Hall | Mar 1962 | A |
3146557 | Smith | Sep 1964 | A |
3513604 | Kobayashi | May 1970 | A |
3542300 | Arthur | Nov 1970 | A |
3627279 | Barton | Dec 1971 | A |
3728825 | Barrett, Jr. | Apr 1973 | A |
3815287 | Walker | Jun 1974 | A |
3837301 | Falling | Sep 1974 | A |
4032075 | Tyer, Sr. | Jun 1977 | A |
4248390 | Toole | Feb 1981 | A |
4638600 | Kobayashi | Jan 1987 | A |
4776522 | Hoffmann | Oct 1988 | A |
5064292 | Sutton | Nov 1991 | A |
5360174 | Persson | Nov 1994 | A |
5709345 | Yamamoto | Jan 1998 | A |
5848755 | Zickell | Dec 1998 | A |
6032889 | Thrasher | Mar 2000 | A |
6123279 | Stafford | Sep 2000 | A |
6189819 | Racine | Feb 2001 | B1 |
6547171 | Fontanille | Apr 2003 | B1 |
6783092 | Robson | Aug 2004 | B1 |
6887135 | Lim | May 2005 | B2 |
7093782 | Artru | Aug 2006 | B2 |
20100102151 | Gerl | Apr 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20150196919 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61928212 | Jan 2014 | US |