Information
-
Patent Grant
-
6293760
-
Patent Number
6,293,760
-
Date Filed
Tuesday, March 14, 200024 years ago
-
Date Issued
Tuesday, September 25, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Freay; Charles G.
- Gray; Michael K.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 417 53
- 417 4101
- 417 351
- 417 4241
- 417 4237
- 417 4231
- 417 356
- 417 3
- 417 10
-
International Classifications
-
Abstract
A pump and motor unit 100 and method for pumping fluid is provided. The pump and motor unit 100 has a rotor element 102 which provides both pumping force and motor force. The rotor element 102 contains a fluid flow channels 200 which pump the fluid through the pump and motor 100 when rotated using centrifugal pump principles. The rotor element 102 further includes magnets 108, preferably permanent magnets, which generate a rotor magnetic field. First and second stator seconds 104 and 106 generate a stator magnetic field using coils 300-314. The rotor and stator magnetic fields interact and generate a torque which rotates the rotor element 102 using brushless DC motor principles.
Description
BACKGROUND OF THE INVENTION
The present invention relates generally to pumps and methods for pumping fluids and, more particularly, to a pump and motor unit and method for cooling of electronics.
As electronic components continue to become smaller and smaller with more and more functionality, they become increasingly sensitive to changes in temperature, and more particularly, to heat generated by their operation. Accordingly, systems for cooling electronic components have been developed in the art. For example, a simple fan driven by an electric motor, has been used to force air over electronic components for cooling. In addition, finned heat sink devices have been connected to electronic components, thereby increasing the surface area of the component from which heat is dissipated.
An additional method of cooling electronic components involves the use of compact, miniature pump and motor systems which pump dielectric fluids over high heat flux electronics. These systems desirably produce a low flow rate at a high pressure. Current motor and pump systems have various designs incorporating a variety of technologies. For example, DC motors, brushless DC motors, AC motors and switched reluctance motors (SRMs) have been used to power the pump. Various types of pumps, such as gear pumps, have been advantageously employed. However, further improvements in efficiency of operation and a reduction in size of these motor and pump systems are needed in the art.
Accordingly, this need is met by a pump and motor unit and method of the present invention which incorporates a motor and pump into a single unit, which employs centrifugal pump technology and which uses a rotor element for both pumping force generation and motor rotation.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
FIG. 1
is a cross sectional view of a pump and motor unit having a rotor element and first and second stator sections encased in a enclosure in accordance with the present invention;
FIG. 2
a
is a perspective view of the rotor element shown in
FIG. 1
;
FIG. 2
b
is a plan view of the rotor element shown in
FIG. 1
;
FIG. 3
a
is a plan view of the first stator section shown in
FIG. 1
; and
FIG. 3
b
is a plan view of the second stator section shown in FIG.
1
.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
In accordance with one aspect of the present invention, a pump and motor unit for pumping fluid is provided in which a rotor element operates as both a rotor for the motoring function and a pump impeller for the pumping function. The pump and motor unit comprises a rotor element for forcing fluid into and out of the pump and motor unit and for generating a rotor magnetic field and a stator assembly for generating a stator magnetic field which interacts with the rotor magnetic field to move the rotor element to force the fluid into and out of the pump.
The rotor element may have one or more magnets mounted thereon for generating the rotor magnetic field. Preferably, the rotor element is rotatably mounted between a first and second stator section of the stator assembly, in a “pancake” type arrangement. The rotor element may include one or more fluid flow channels which generate a centrifugal force to pump the fluid when the rotor element is rotated.
In accordance with another aspect of the present invention, a pump and motor unit for pumping a fluid is provided. A rotor element includes at least one magnet for generating a rotor magnetic field and at least one fluid flow channel for generating a centrifugal force which forces fluid into and out of the pump and motor unit when the rotor element is moved, or preferably rotated. A stator generates a stator magnetic field which interacts with the rotor magnetic field to cause the rotor element to move.
In accordance with yet another aspect of the present invention,
FIG. 1
is a cross sectional view of a pump and motor unit
100
in accordance with the present invention.
FIG. 2
is an exploded view of the pump and motor unit
100
. The pump and motor unit
100
includes a rotor element
102
which is rotatably mounted between a first, or top, stator section
104
and a second, or bottom, stator section
106
. The first and second stator sections
104
and
106
comprise a stator assembly. The rotor element
102
is preferably interposed between the first and second stator sections
104
and
106
, in a sandwich type design. A plurality of magnets
108
are mounted on the rotor element
102
. As discussed more fully below, the first and second stator sections
104
and
106
generate a revolving magnetic field which interacts with a rotor magnetic field generated by the magnets
108
causing the rotor element
102
to move and, more particularly, to rotate.
The pump and motor unit
100
may be enclosed in an enclosure
110
which is preferably fabricated from aluminum. The enclosure
110
may include a plurality of cooling fins
112
which help cool the fluid and the pump and motor unit
100
. A device to be cooled, such as a laser diode-power chip
152
, may be mounted on a top cover
113
of the enclosure
110
. Fluid pumped by the pump and motor unit
100
flows against the under surface of the power chip
152
or the area of the top cover
113
on which the power chip
152
is mounted to cool the power chip
152
.
The enclosure
110
includes a bottom cover
115
. As those skilled in the art will readily appreciate, the top cover
113
, the bottom cover
115
and the cooling fins
112
may be manufactured as one piece or a plurality of pieces. A pump-motor casing
116
of the pump and motor unit
100
has an input opening
120
generally along its bottom for permitting fluid to enter the casing
116
. The input opening
120
may be formed between a bottom plate
117
and the casing
116
. The second stator
106
sits on a pair of mounts
121
to form the opening
120
. The input opening
120
may be one or more holes in the casing
116
. The fluid enters the input opening
120
and is directed to two inlets
122
and
124
. The inlets
122
and
124
enter into respective chambers
126
and
128
. As will be apparent to those skilled in the art, chambers
126
and
128
is preferably a single chamber in which the rotor element
102
is rotatably mounted. In particular, the rotor element
102
is mounted on a bearing
130
, preferably a nyliner bearing, which is mounted on a shaft
132
. Although the shaft
132
may be a separately manufactured part, it is preferably formed out of the second stator section
106
.
The fluid flows from the chambers
126
and
128
through one or more fluid flow channels
200
, shown in
FIG. 2
a,
formed in the rotor element
102
. Due to centrifugal force generated by the rotating rotor element
102
, the fluid is forced from the fluid flow channels
200
and pumped out of the chambers
126
and
128
through passageways
134
,
136
,
138
and
140
adjacent the magnets
108
. Exit passageways
142
and
144
then transport the fluid into an exit chamber
146
and out a nozzle
148
. The exit passageways
142
and
144
are isolated from the input opening
120
via respective blocks
143
and
145
. The nozzle
148
directs the pumped fluid onto the portion of the top cover
113
under the power chip
152
. The fluid is then partially guided back to the input opening
120
by a conical screen
118
.
It should be understood that the present invention may have fluid flow passageways which differ from those shown in FIG.
1
. For example, passageways could be placed in the bottom cover
115
for permitting fluid flow into the pump and motor unit
100
.
FIGS. 2
a
and
2
b
are respectively perspective and plan views of the rotor element
102
. The magnets
108
which generate the rotor magnetic field are mounted on the rotor element
102
in a general pie shaped fashion. The fluid flow channels
200
are formed in the rotor element
102
between adjacent magnets
108
. As those skilled in the art will readily comprehend, other magnet and channel placements may also be employed in the present invention. Preferably, the magnets
108
are permanent magnets mounted on the rotor element
102
. The magnets
108
could be incorporated into the material of the rotor element
102
or separately made and mounted thereon. In this preferred embodiment, there are eight magnets uniformly spaced around the rotor element
102
. The fluid flow channels
200
extend outwardly from a center mounting hole
202
in the rotor element
102
. The bearing
130
and the shaft
132
are positioned in the center mounting hole
202
when assembled.
FIGS. 3
a
and
3
b
are plan views of the respective first and second stator sections
104
and
106
. In particular, sides of the respective first and second stator sections
104
and
106
which are adjacent the rotor element
102
are shown. The first, or top, stator section
104
has four top coils
300
,
302
,
304
and
306
and the second, or bottom, stator section
106
has four bottom coils
308
,
310
,
312
and
314
. Each of the coils
300
,
302
,
304
,
306
,
308
,
310
,
312
and
314
are preferably uniformly positioned around the perimeter of its respective stator section
104
or
106
. The bottom coils
308
,
310
,
312
and
314
are rotated approximately one half a coil from the top coils
300
,
302
,
304
and
306
. By passing current through the coils
300
through
314
the magnetic torque produces by each coil will be out of phase with each other. For purposes of this disclosure, the top coils
300
,
302
,
304
and
306
are designated as phase 1 and the bottom coils
308
,
310
,
312
and
314
are designated as phase 2. The top and bottom coils
300
through
314
comprise a stator magnetic field circuit which produces phase 1 and phase 2 torques. The generated stator magnetic field and the rotor magnetic field interact to rotate the rotor element
102
.
The interaction of the stator and rotor magnetic fields to rotate the rotor element
102
uses known brushless DC motor technology and, therefore, will be briefly discussed herein. For example, if a square wave is input into the top coils
300
,
302
,
304
and
306
, the torque (T
1
) produced will follow a trapezoidal shaped curve over the degree of rotation. Since the coils of the respective stator sections
104
and
106
are rotated with respect to each other, the torque (T
2
) produced when the square wave is applied to the bottom coils
308
,
310
,
312
and
314
follows a trapezoidal shaped curve over the degree of rotation, but is offset to the torque generated by the top coils
300
,
302
,
304
and
306
.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modification, equivalents and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
Claims
- 1. A pump and motor unit for pumping fluid comprising:a rotor element for forcing fluid into and out of the pump and motor unit and for generating a rotor magnetic field; a stator assembly comprising a first stator section and a second stator section for generating a stator magnetic field which interacts with the rotor magnetic field to move the rotor element to force the fluid into and out of the pump; and wherein the first stator section is axially adjacent to a first side of the rotor element and the second stator section is axially adjacent to a second side of the rotor element.
- 2. The pump and motor unit as recited in claim 1 wherein the rotor element comprises:at least one magnet for generating the rotor magnetic field.
- 3. The pump and motor unit as recited in claim 1 wherein the rotor element rotates in a direction substantially perpendicular to the fluid flow through the pump and motor unit.
- 4. The pump and motor unit as recited in claim 1 wherein the rotor element comprises:a fluid flow channel through which the rotor element forces the fluid into and out of the pump and motor unit.
- 5. The pump and motor unit as recited in claim 1 wherein the stator assembly comprises:a stator magnetic field circuit for generating the stator magnetic field using current having at least two phases.
- 6. The pump and motor unit as recited in claim 5 wherein the stator magnetic field circuit comprises a plurality of wedge-shaped coils mounted on the first and second stator sections.
- 7. The pump and motor unit as recited in claim 1, wherein the rotor element rotates in a plane that is disposed between the first stator section and the second stator section.
- 8. The pump and motor unit as recited in claim 1, wherein the stator magnetic field is axially oriented.
- 9. The pump and motor unit as recited in claim 4, wherein the fluid flow channel is radially oriented in the rotor element.
- 10. A method for pumping fluid through a pump and motor unit comprising the steps of:moving a rotor element to force fluid into and out of the pump and motor unit; generating a rotor magnetic field by the rotor element; generating, by a stator element, a stator magnetic field which interacts with the rotor magnetic field to cause the rotor element to rotate; and wherein the stator element comprises a first stator section that is axially adjacent to a first side of the rotor element and a second stator section that is axially adjacent to a second side of the rotor element.
- 11. The method as recited in claim 10 wherein the step of generating a rotor magnetic field comprises the step of:providing the rotor element with at least one magnet.
- 12. The method as recited in claim 10 wherein the step of moving a rotor element comprises the step of:providing a fluid flow channel in the rotor element which generates a centrifugal force to pump the fluid when the rotor element is moved.
- 13. The method as recited in claim 8, wherein the rotor element rotates in a plane that is disposed between the is first stator section and the second stator section.
- 14. A pump and motor unit for pumping fluid comprising:a rotor element comprising at least one magnet for generating a rotor magnetic field and at least one fluid flow channel for generating a centrifugal force which forces fluid into and out of the pump and motor unit when the rotor element is moved, wherein the at least one fluid flow channel is radially oriented in the rotor element; and a stator for generating a stator magnetic field which interacts with the rotor magnetic field to cause the rotor element to rotate.
- 15. The pump and motor unit as recited in claim 14 wherein the rotor element is rotatably mounted in the pump and motor unit.
- 16. The pump and motor unit as recited in claim 14, wherein the stator comprises:a first stator section disposed axially adjacent to a first side of the rotor element; a second stator section disposed axially adjacent to a second side of the rotor element; and wherein the rotor element rotates in a plane that is disposed between the first stator section and the second stator section.
- 17. The pump and motor unit as recited in claim 16 wherein the first stator comprises a plurality of coils through which a square wave current is passed to generate a portion of the stator magnetic field.
- 18. The pump and motor unit as recited in claim 16 wherein the rotor element comprises a bearing on which the rotor element rotates.
- 19. The pump and motor unit as recited in claim 18 wherein the bearing is a nyliner bearing.
- 20. The pump and motor unit as recited in claim 14, wherein the stator magnetic field is axially oriented.
- 21. A method for pumping fluid through a pump and motor unit comprising the steps of:moving a rotor element to force fluid into and out of the pump and motor unit; generating a rotor magnetic field by the rotor element; and generating an axially-oriented stator magnetic field which interacts with the rotor magnetic field to cause the rotor element to move.
US Referenced Citations (5)
Number |
Name |
Date |
Kind |
5692882 |
Bozeman, Jr. et al. |
Dec 1997 |
|
5832986 |
Kenny et al. |
Nov 1998 |
|
6019165 |
Batchelder |
Feb 2000 |
|
6100618 |
Schoeb et al. |
Aug 2000 |
|
6149404 |
Dobler et al. |
Nov 2000 |
|
Foreign Referenced Citations (1)
Number |
Date |
Country |
11-210668 |
Aug 1999 |
JP |