1. Field of the Invention
The invention relates to an improved pump apparatus, and more particularly, to an apparatus, system and method of delivering fluids used for infusion and similar therapies using an improved pump.
2. Description of the Related Art
In the field of medical devices used in infusion and similar therapies, medicinal or other fluidic treatments are delivered from a fluidic source via tubular lines to treatment areas within a patient via one or more needles or catheters inserted in the patient. In such medical devices, the tubular lines are interconnected via various connector assemblies such as luer connectors and other components. When fluidic therapy is delivered to a patient, a fluidic source and the means to deliver the fluidic treatment to the patient are required. Fluids may be sourced by a syringe and pump, a hanging bag, or other fluidic source. The fluidic delivery means may comprise a tubing set comprised of one or more tubular lines connects the fluid source (i.e., the proximal end) to the patient (i.e., the distal end). At the proximal end, tubular lines are terminated by connectors (usually female luer connectors) to permit their connection to the source of the fluid. At the distal end of the tubular lines, needles (such as subcutaneous, intramuscular, intravenous, epidural/spinal or similar types) deliver the fluidic treatment to the patient's treatment areas.
Fluids may be sourced by a syringe, a hanging bag, or other fluidic source, which are impelled by a variety of means out of the distal end of the fluidic source into the tubing set or other fluidic delivery means. Such impelling mechanisms include an electrical or mechanical pump, or even gravity.
Multiple pumps have been developed for the controlled infusion of pharmaceuticals over the last few decades. The state-of-the art has rapidly advanced and infusion pumps have been gradually improved relative to accuracy, user friendliness and ergonomics among other performance parameters. Infusion pumps can be categorized into ambulatory and hospital based devices. In terms of principle of operation, pumps can generally be electronic or mechanical devices. While electronic pumps have generally more accuracy than mechanical pumps, the latter offer sufficient control of drug delivery at a significant operation cost savings.
Elastomeric pumps are mechanical pumps based on the ability of a balloon to produce a relatively constant force as it deflates. Elastomeric devices are based on a flexible balloon (elastomer) that, when inflated exerts pressure during deflation that results in a relatively constant flow rate controlled by a microbore tubing connected between the elastomer and the patient port/connector. The balloon is filled with a specific pharmaceutical fluid which is gently pushed into the patient via a small diameter tubing set that connects the elastomer to the patient, thus controlling the flow rate. One such pump is illustrated in U.S. Pat. No. 7,322,961 to Forrest, that patent being incorporated herein in its entirety.
Elastomeric devices have been developed in various form factors as well as outer shell materials including hard and soft enclosures. Typical devices have a soft long shape that optimizes the form factor of the elastomer-pump/drug-reservoir combination. Outer shells are typically designed to match the overall geometry to serve as a case for the system device to be transported easily.
The nature of pharmaceutical products and their chemical interaction with plastics is an important factor in the design of drug delivery platforms. Regulatory agencies around the world are raising thresholds of drug-reservoir compatibility as more in-depth toxicological ramifications of leachables related to drug reservoirs become better understood.
In addition, pharmaceutical companies are continuously developing new drugs that demand increasingly more inert reservoirs, as these drugs' chemical compositions make them more prone to chemical reactions with not only the containers in which they are packaged but also those used to transfer and then deliver them at the clinical site.
Because known elastomeric devices make contact with the drug, they are discarded after use. What is needed is an elastomeric device that can be reused, so as to optimize the cost of such an elastomeric device.
It is accordingly an object of the invention to provide a system and method of delivering fluids used for infusion and similar therapies using an improved elastomeric pump. In one particular embodiment, an elastomeric pump is provided that eliminates drug-reservoir chemical incompatibility issues, or leaching of the container material into the drug.
In another embodiment of the invention, a pump is provided having mechanical/geometrical compatibility with multiple factory-shipped drug reservoirs without requiring the transfer of medicinal fluid from the factory-shipped reservoir into a delivery reservoir, thus simplifying the transfer procedures and manipulation.
In one embodiment, a cost benefit is provided based on the re-use of elastomeric components. In another embodiment, the size of the pump delivery system is optimized.
As used herein, the term “or” may be construed in either an inclusive or exclusive sense. Similarly, the term “exemplary” is construed merely to mean an example of something or an exemplar and not necessarily a preferred or ideal means of accomplishing a goal. Additionally, although various exemplary embodiments discussed below focus on verification of experts, the embodiments are given merely for clarity and disclosure. Alternative embodiments may employ other systems and methods and are considered as being within the scope of the present invention.
Reference in the specification to “one embodiment”, “one particular embodiment”, “an embodiment”, “another embodiment” or “another particular embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
The present invention may address one or more of the problems and deficiencies of the prior art discussed above. However, it is contemplated that the invention may prove useful in addressing other problems and deficiencies in a number of technical areas. Therefore the claimed invention should not necessarily be construed as limited to addressing any of the particular problems or deficiencies discussed herein.
Although the invention is illustrated and described herein as embodied in a pump apparatus, system and method of use, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
For the purpose of illustrating the invention, there is shown in the drawings an exemplary embodiment that is presently preferred, it being understood however, that the invention is not limited to the specific methods and instrumentality's disclosed. Additionally, like reference numerals represent like items throughout the drawings. In the drawings:
Referring now to
In one particular embodiment of the invention, the interface adapter 20 is used to establish a fluid-tight seal and impelling chamber that connects the pump 10 at one end 22 of the interface adapter 20 with the drug reservoir at the other end 24 of the interface adapter 20. In one particular embodiment, a fluid-tight impelling chamber of the interface adapter 20 contains the impelling fluid as the pump 10 discharges the impelling fluid into the interface adapter 20 under pressure. Within the impelling chamber of the interface adapter 20, as the impelling fluid's volume and pressure increase, it pushes against the proximal end of the lumen of the drug reservoir 30 and forces the medicinal fluid out of the distal end of the drug reservoir 30 and into a tubing set or other delivery device 32, from which it is delivered into the patient 40. In this way, the pressurized impelling fluid becomes an engine that drives the medicinal fluid out of the drug reservoir 30 and into the patient 40.
Referring now to
The infusion pump 10 includes an elastomeric sleeve 110 surrounding a support member 112 and inlet and outlet ports 114, 116, respectively. In one particular embodiment, the support member 112 is cylindrical, but other shapes may be used, as desired. The elastomeric sleeve 110 is expandable in a radial direction about the support member 112. An inlet 114, connecting with a channel in the support member 112, is used to fill the elastomeric sleeve 110 with an impelling fluid 119, thus expanding the elastomeric sleeve 110. In one particular embodiment, the inlet 114 includes a one-way valve (not shown) to prevent fluid 119 within the sleeve 110 from exiting back through the inlet 114. The inlet 114 can be sealed with a cap 115. If desired, the pump 10 can be made, configured and operate as described in connection with the infusion pump of U.S. Pat. No. 7,322,961, incorporated herein by reference.
Once expanded, the elastomeric sleeve 110 exerts a pressure on the impelling fluid 119 contained therein. The pump 10 additionally includes an outlet 116 in fluid communication with channels 117, 118 permitting a pressurized stream of impelling fluid 119 to flow in the direction of arrow “A” and into the interface adapter 20, when a force is applied to the sleeve 110. A connector (not shown) is provided external to the outlet 116. In one particular embodiment, the connector is a luer lock connector.
The interface adapter 20 is connected at a first side 22 to the outlet 116 of the pump 10 by a mating, fluid-tight connector, which in one particular embodiment is a luer lock connector 122 mating with the luer lock connector of the outlet 116. At its other end 24, the interface adapter 20 connects to the drug reservoir 30 with a fluid-tight mechanical connector 124. In particular embodiments, the connector 124 may be a screw lock or a tongue-and-groove lock connector, as desired. A lumen of an impelling chamber 120 is connected between the connectors 122 and 124. The length, volume and cross-sectional area of the lumen of the impelling chamber can be configured to impose a desired pressure and/or rate of flow on the impelling fluid passing into and through the impelling chamber 120.
In one particular embodiment of the invention, the impelling fluid 119 of the interface adapter 20 is fluidly isolated from the medicinal fluid 135 contained in the drug reservoir 30, so that the medicinal fluid 135 does not make contact with the impelling fluid 119, nor with the interface adaptor 20 or pump 10. More particularly, in the embodiment illustrated in
The rubber gasket 132 is configured as a plunging element to plunge the medicinal fluid 135 from the reservoir 30 in response to a driving force pushing (i.e., moving) the gasket 132 from one end of the reservoir 30 towards the other end. The gasket 132 has an outer diameter that closely approximates the inner diameter of the drug reservoir 30 of the syringe 132, so as to permit movement within the drug reservoir 130 without permitting impelling fluid and medicinal fluid to mix on either side of the gasket 132. In other words, although the impelling fluid 119 will enter the syringe 130 on one side of the gasket 132, it does not pass through to the other side of the gasket 132. The gasket 132 thus acts as an element, isolating the medicinal fluid 135 from the impelling fluid 119, while driving the medicinal fluid 135 from the reservoir 30.
In use, medicinal fluid 135 is driven out of the drug reservoir 30 of the syringe 130 when a force applied to the elastomeric sleeve 110 forces pressurized impelling fluid out of the sleeve 110, through the impelling chamber 120 and into the syringe 130 on one side of the rubber gasket 132. The pressurized fluid 119 forced from the impelling chamber 120 thus drives the rubber gasket 132 from one end (i.e., the filled position) of the drug reservoir 30 to the other end (i.e., the empty position), and drives the medicinal fluid 135 from the outlet 137 and into the patient 40, via a tubing set or other delivery device 32. The gasket 132, thus driven, both empties the medicinal fluid 135 from the drug reservoir 30 and isolates the medicinal fluid 135 from the impelling fluid 119. In this way, the pump 10 and interface adapter 20 do not come into fluidic contact with the medicinal fluid 135, thus eliminating chemical incompatibility between the medicinal fluid 135 and the sleeve 110, and/or leaching of the container material from the pump 10 into the medicinal fluid 135.
Although illustrated as being contained in a syringe 130, it should be understood that the drug reservoir 30 can configured in any shape and from any material desired, including but not limited to, a regular syringe, a prefilled syringe, a glass syringe, a drug vial and/or a bag or similar reservoir, without departing from the scope of the present invention.
Referring now to
In one further alternate embodiment, not shown, the gasket 132 is omitted and the walls of the balloon 128 are used to isolate the impelling fluid 119 from the medicinal fluid 135 and to drive the fluid 135 from the chamber 30, as the balloon 128 is inflated into and through the chamber 30. Thus, in the present embodiment, the balloon 128 acts as an isolation element, isolating the medicinal fluid 135 from the impelling fluid 119, while driving the medicinal fluid 135 from the reservoir 30.
Referring back to
More particularly, a non-elastomeric pump 10 would operate in the same manner as described in connection with the elastomeric pump 10 of
As can be seen from the foregoing, the present invention provides a system including a pump wherein at least some of the components are reusable. An impelling fluid is used to drive the medicinal fluid from a drug reservoir, without interacting with the medicinal fluid. Similarly, in one particular embodiment, the pump of the system is operated without its elastomeric or other pump elements interacting directly with the medicinal fluid. This provides a cost savings by permitting reuse of the pump components, and additionally advantageously prevents leaching from the pump components into the medicinal fluid.
The present invention provides an improved pump apparatus, system and method of use as described herein. Accordingly, while a preferred embodiment of the present invention is shown and described herein, it will be understood that the invention may be embodied otherwise than as herein specifically illustrated or described, and that within the embodiments certain changes in the detail and construction, as well as the arrangement of the parts, may be made without departing from the principles of the present invention as defined by the appended claims.
The present application claims priority from co-pending Provisional Patent Application No. 62/002,818, entitled “Improved Elastomeric Pump Apparatus, System and Method of Use and filed on May 24, 2014; that application being incorporated herein, by reference, in its entirety.
Number | Date | Country | |
---|---|---|---|
62002818 | May 2014 | US |