The subject invention relates to internal combustion engines, and, more particularly, pump assemblies for internal combustion engines.
Internal combustion engines typically include an oil pump and vacuum pump. The oil pump is adapted to pump pressurized oil to lubricate various portions of the engine and/or supply working fluid for actuators in the engine. The vacuum pump is adapted to provide a vacuum directed to assist in operation of various devices in a vehicle, such as brakes or actuators.
In some cases, the oil pump and vacuum pump are driven by a shared drive mechanism. Arrangement and alignment of the pumps and the drive mechanism can be complex and may present a challenge for packaging in today's compact vehicles with smaller engine compartments.
In one exemplary embodiment of the invention, an assembly for an internal combustion engine includes a crankshaft, a drive mechanism coupled to the crankshaft and an oil pump actuated by the drive mechanism. The engine also includes a vacuum pump actuated by the drive mechanism, wherein the drive mechanism, oil pump and vacuum pump are disposed in an oil pan and a housing disposed between the oil pump and vacuum pump configured to enclose at least a portion the drive mechanism and restrict a flow of oil from the oil pan into the housing to reduce aeration of the oil during operation of the internal combustion engine.
In another exemplary embodiment of the invention, a pump assembly for an internal combustion engine includes a gear mechanism, an oil pump actuated by the gear mechanism and a vacuum pump actuated by the gear mechanism, wherein the gear mechanism, oil pump and vacuum pump are disposed beneath the internal combustion engine. The assembly also includes a housing disposed between the oil pump and vacuum pump configured to enclose a portion the drive mechanism and restrict a flow of oil into the housing to reduce aeration of the oil during operation of the internal combustion engine.
The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.
Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
In accordance with an exemplary embodiment of the invention,
The housing 114 encloses the drive mechanism 108 to restrict flow of oil from the oil pan 106 into a cavity 119 formed by the vacuum pump 102 adjoining the housing 114. The cavity 119 receives a driven gear 122 and driving gear 124 of the driving mechanism 108. In an embodiment, the housing 114 provides a barrier to restrict oil flow and resulting oil aeration during movement of the drive mechanism 108. Specifically, in an embodiment without the housing 114, the oil level in the oil pan 106 is such that a portion of the gears 122, 124 are submersed in the oil. Thus, during rotation of the gears 122, 124, aeration and/or foaming occurs as the oil is churned by the gears. The housing 114 may be partially sealed or fully sealed to restrict fluid flow into cavity 119. In an embodiment, the housing 114 has one or more small passages or clearances that allow a small amount of fluid to leak into the cavity 119. When the gears 122, 124 rotate, they may cause oil that has leaked through the small passages into the cavity 119 to be directed outside the housing 114 and into the main reserve of oil in the oil pan 106. In an exemplary operation, the housing 114 shields the moving gears 122, 124 from churning through oil in the oil pan 106 reducing or discouraging aeration of the oil. In embodiments, the upper portions of the “U-shaped” radially outer wall 116 are configured to extend above the oil level in the oil pan 106. In other embodiments, the housing 114 fully encloses the drive mechanism 108 and, thereby, further restricts oil flow into the housing 114 and reduces oil aeration.
An oil distribution housing 126 is coupled to the oil pump 104 to receive and distribute oil to the engine (not shown). The oil distribution housing 126 couples to an engine block (not shown) via bolts 128 and is configured to direct pressurized oil through channels 132 to provide lubrication to various locations in the engine. In addition, the vacuum pump 102 includes vacuum line couplings 130 to connect to lines that provide vacuum pressure to selected locations in the vehicle. In an embodiment, the positions of the vacuum pump 102 and oil pump 104 may be reversed relative to the drive mechanism 108 and housing 114. The parts of the pump assembly 100 may be made from any suitable durable material, such as aluminum and/or steel alloys. For example, the housing 114 may be a single piece cast from an aluminum alloy. The housing 114 may also be machined to improve clearances and fit. In an embodiment, the housing 114 may be formed as separate pieces that are coupled together by a weld or other suitable technique. In an embodiment, the drive mechanism 108 may be any suitable mechanism capable of receiving rotational input and transmitting the input to the vacuum pump 102 and the oil pump 104. The drive mechanism 108 may use any suitable parts, including, but not limited to, gears, chains, sprockets, belts, pulleys or any combination thereof. The drive mechanism 108 is driven by any suitable driving force produced by an internal engine, such as rotational outputs of the crankshaft 112 or a camshaft. The drive mechanism may be coupled to the driving force, such as the crankshaft 112, directly or indirectly, via any suitable mechanism, such as shafts (e.g., drive shaft 110), gears, chains, sprockets, belts, pulleys or any combination thereof.
Embodiments of the pump assembly 100 and housing 114 restrict flow of oil from the oil pan 106 into the housing 114 to reduce oil aeration in the oil pan 106 during engine operation. Oil aeration can lead to various issues in the engine, including reduced oil compressibility for pumping, reduced oil density, oil pump cavitation and interruptions in oil flow to selected parts of the engine. Thus, by reducing incidence of oil aeration, the pump assembly 100 provides improved engine performance. Further, by positioning the drive mechanism 108 between the vacuum pump 102 and oil pump 104, the arrangement reduces parts and materials while providing a simplified design. In addition, by being placed between the vacuum pump 102 and the oil pump 104, the housing 114 uses a reduced amount of materials.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.
This patent application claims priority to U.S. Patent Application Ser. No. 61/548,524 filed Oct. 18, 2011 which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4586468 | Dzioba | May 1986 | A |
4827881 | Baker et al. | May 1989 | A |
5791311 | Ozeki | Aug 1998 | A |
6345600 | Schneider | Feb 2002 | B1 |
20040247471 | Lee et al. | Dec 2004 | A1 |
20070059187 | Lo Biundo et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
1174948 | Mar 1998 | CN |
102006030917 | Dec 2007 | DE |
Entry |
---|
Chinese Office Action for CN Application No. 201210396552.X, dated Jun. 26, 2014, pp. 1-8. |
English Abstract of Japanese Publication No. 63-259121, published Oct. 26, 1988, Titled: “Vacuum Generating Device for Internal Combustion Engine for Automobile”, 1 page. |
Number | Date | Country | |
---|---|---|---|
20130092117 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
61548524 | Oct 2011 | US |