The present invention pertains to a spraying apparatus for spraying a liquid onto a surface.
Spray bottles may be used to dispense a liquid onto a surface. One such type of spray bottles includes a container or bottle, having a neck, that contains the liquid and a head attached to the neck of the bottle. The head includes a nozzle, a pump assembly, a trigger, and a tube. When the trigger is pulled, the pump assembly draws the liquid from the bottle via the tube and sprays the liquid out of the nozzle.
Lawn-and-garden sprayers and the like have a tank for storing a liquid therein and a wand connected to the tank by a hose. A pump system is provided on the tank and is used to pressurize a reservoir within the tank. The wand includes a valve that is operated by depressing a lever. Upon depressing the lever, the valve opens, and the liquid is expelled from the wand so long as the pressure within the reservoir is above atmospheric pressure.
Additionally, while each of the devices disclosed above are suitable for the uses and problems they intend to solve, there is an ongoing need for improvements in the design of a spraying apparatus, such as one that does not require a buildup of pressure within the tank of a sprayer, yet delivers a sufficiently strong stream of liquid.
It is to this to which the present invention is directed.
According to one embodiment, a spraying apparatus for spraying a liquid onto a surface is disclosed. The spraying apparatus includes a tank defining a reservoir that stores a liquid; a hose; and a wand independently moveable of the tank and connected in fluid communication with the reservoir via the hose. The wand includes a body defining a barrel having a first fluid passageway in fluid communication with the hose and terminating at an outlet port; and a nozzle assembly having a hub and an array of nozzles circumferentially arranged around the hub. At least some of the array of nozzles each defining at least one aperture having a different configuration than the others. The hub is rotatable relative to the barrel to position one of the nozzles in fluid communication with the outlet port to select a corresponding configuration.
According to another embodiment, a spraying apparatus for spraying a liquid onto a surface is disclosed. The spraying apparatus includes a tank that stores a liquid; a neck extending from the tank and defining an opening; a pump assembly including a collar removably attached to the neck, a pump drawing the liquid from the tank when actuated, and a housing defining a cavity therethrough to provide a carrying handle; and a wand separate from the tank including a body and a nozzle assembly, the nozzle assembly having a hub rotatably attached to the body and a plurality of nozzles circumferentially arranged around the hub extending radially outward from the hub; and an elongate hose having a first end attached the pump assembly and a second end connected to the body. The pump assembly, the wand, and the elongate hose are separable from the tank by detaching the collar.
According to yet another embodiment, a spraying apparatus for spraying a liquid onto a surface is disclosed. The spraying apparatus includes a tank defining a reservoir that stores a liquid; and a pump assembly separate of the tank and connected to a hose. The pump assembly includes a body connected to the hose and defines a fluid passageway having an outlet port in fluid communication with the hose. The spraying apparatus further includes a nozzle assembly including a hub rotatably attached to the body and a plurality of nozzles circumferentially arranged around the hub and extending radially outward from the hub. At least some of the array of nozzles each defining at least one aperture having a different configuration from the others. The hub rotates relative to the body to place a desired one of the nozzles in fluid communication with the outlet port to select a corresponding configuration.
For a better understanding of the present invention, reference is made to the accompanying drawing and detailed description. In the drawing, like reference characters refer to like parts through the several views, in which:
Embodiments of the present disclosure are described herein. It is to be understood, however, that the disclosed embodiments are merely examples and other embodiments can take various and alternative forms. The figures are not necessarily to scale; some features could be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the embodiments. As those of ordinary skill in the art will understand, various features illustrated and described with reference to any one of the figures can be combined with features illustrated in one or more other figures to produce embodiments that are not explicitly illustrated or described. The combinations of features illustrated provide representative embodiments for typical applications. Various combinations and modifications of the features consistent with the teachings of this disclosure, however, could be desired for particular applications or implementations.
Referring to
The tank 22 may be made of any material suitable to hold a liquid such as metal, plastic, glass, ceramic, composite, or other material. The tank 22 may be available in a plurality of different materials to suit the specific chemical solution being utilized in order to provide a nonreactive and/or noncorrosive vessel for a range of different chemical solutions. The main portion 24 may include a window 34 allowing a user to see inside the tank to assess the fullness of the reservoir. The window 34 may be a transparent or translucent material such as glass or plastic. Alternatively, the tank 22 may include a gauge to measure the amount of liquid in the reservoir. The main portion 24 may also include a plurality of loops 46 that allow the tank 22 to be secured with bungee cords or other tie-downs to prevent the tank from moving or tipping during transporting or during use. Each of the plurality of loops 46 may have an internal cavity, which, in certain examples, the internal cavity is separated from the tank 22 through a dividing wall (not shown). The dividing walls inhibit liquid inside the tank 22 from entering the internal cavities of the loops 46 so that the inner surfaces of the loops 46 do not have to be cleaned. The carrying handle 41 may also have an internal cavity with a dividing wall (not shown) so that cleaning of the inner surface of the carrying handle 41 is not necessary.
The pump assembly 48 may include a pump housing 50 having an upper end 52 and a lower end 54. The lower end 54 may include a collar 56 that is attachable to the neck 40. Referring to
Referring to
Referring back to
Referring now to
A nozzle assembly 76 is rotatably attached to the body 68. For example, the nozzle assembly 76 may include a disk shaped hub 78 having a rounded sidewall that is rotatably attached to the barrel 70. An array of nozzles 80 circumferentially arranged around the hub 78 and extend outwardly from the sidewall of the hub 78. Each nozzle 80 has a distal end 81. Each of the nozzles 80 is in fluid communication with the reservoir of the tank 22 and is configured to spray the liquid from the distal end 81 of the nozzle 80. Each of the distal ends 81 may define at least one aperture 160 that creates a unique configuration. Preferably, one of the distal ends 81 do not include any apertures 160, thereby acting as a safety nozzle to close off the liquid spray. Each of the nozzles 80 has an individual configuration, thereby providing a user with several choices of spraying and stream options from the wand 66. In the illustrated embodiment, the wand 66 includes three different spray patterns, three different stream sizes, and a safety nozzle. It is to be understood that the nozzle assembly 76 may include greater or fewer than six nozzles 80. Non-limiting examples of different configurations 80a-80f for the distal end 81 of the nozzles 80 are shown in
The wand 66 also includes a valve assembly 82 for regulating the flow of the liquid through the body 68 and the nozzle assembly 76. The valve assembly 82 includes a tubular body 84 that connects with the second projection 74 on one end and the hose 72 on the other end. The valve assembly 82 may have a ball valve disposed on a shaft 88 and may be pivotable between fully open, fully closed, and a plurality of partially open positions. The shaft 88 may be connected with a lever 86 that allows a user to rotate the ball valve on the shaft 88 between different positions to control the flow of the liquid. The valve assembly 82 can also include one or more optional O-rings (not shown).
A wand handle 90 may be connected to the body 68 for further directing the wand 66. In one embodiment, the wand handle 90 includes a gripping rod 92. A clamp 94 secures the gripping rod 92 to the first projection 73. The clamp 94 may be C-shaped to include a projection-receiving portion and a pair of arms 100. The gripping rod 92 may include a perpendicular sleeve 98 that fits between the arms 100 such that a fastener 96 may extend through the arms 100 and through the sleeve 98 to connect the gripping rod 92 to the first projection 73. The fastener 96 may be loosened to allow the clamp 94 to pivot about the first projection 73 and to allow the sleeve 98 to pivot about the fastener 96. The axial direction of the first projection 73 and the axial direction of the fastener 96 may be substantially perpendicular to each other providing a large range of different positions for the gripping rod 92.
Referring to
As described above, the nozzle assembly 76 is rotatably attached to the body 68 to allow a different one of the nozzles 80 to be selectively used. The position of the hub 78 and the barrel 70 may be variably fixed and rotated by interlocking teeth, or, alternatively, by a detent and pocket, or a ball and socket.
Referring to
Each of the nozzles 80 may include a barrel 156 that projects outwardly from the outer surface 150 of the hub 78. The barrels 156 may be integrally formed with the hub 78. The barrel 156 may extend in an axial direction that is substantially perpendicular to axial direction 136. A cap 158 may be disposed over a portion of each barrel 156. One or more of the caps 158 may include a grip to allow the cap 158 to be rotated relative to the barrel 156. This rotatable movement, whether aided by a grip or not, allows the configuration of the nozzle 80 to be moved from an open position to a closed position and therebetween. The caps 158 and the barrels 156 may be integrally formed as a single piece for caps not intended to rotate. In some embodiments, the caps 158 are optional.
The caps 158 or the barrels 156 may define the distal end 81, which is oriented substantially perpendicular to the axial direction of the barrel 70. Depending upon the embodiment, the distal end 81 may define one or more apertures, or may not include any apertures.
Referring to
The hub 78 defines a bore 180 having an inner surface 182. When assembled, the hub 78 is received on the spindle 170 such that the inner surface 182 is slidably received on the outer surface 172 of the spindle 170. As noted above, a spring assembly 154 connects with the bottom of the spindle 170 and retains the hub 78 on the spindle 170. The hub 78 can slide axially (e.g., up and down) along the spindle 170 to engage and disengage the teeth 134, 144 through adjusting the spring assembly 154 between a relaxed state to a flexed state. When the spring assembly 154 is in the flexed state, the hub 78 can rotate around the spindle 170 to cycle through the nozzles 80. Once the desired nozzle 80 is selected, the spring assembly 154 can be released, thereby returning the spring assembly 154 to its relaxed state, wherein the barrel 70 and hub 78 are contacting each other. As shown in
Each of the caps 158 may include an inner surface 190 that is received on the outer surface 188 of a corresponding barrel 156. The caps 158 may be slidably received on the barrels 156, or may be fixed relative to the barrels with adhesive or other means.
Each of the barrels 156 defines a portion of a third fluid passage 184 that includes an inlet port 186 defined by the inner surface 182 of the bore 180. The third fluid passage 184 extends from the inlet port 186 to the distal end 81. In order to selectively provide liquid to only one of the nozzles 80, the spindle 170 only includes a single outlet port 178. During use, the user rotates the hub 78 relative to the spindle 170 to place a desired nozzle 80 in fluid communication with the outlet port 178.
During operation, liquid flows from the valve assembly 82 and into the barrel 70 via the inlet port 176. The liquid then flows downwardly through the second fluid passage 174 and out the outlet port 178. The outlet port 178 is adjacent to one of the inlet ports 186, allowing the liquid to flow into the third fluid passage 184 and out one or more of the apertures 160. The spindle 170 and the bore 180 may be sized to create a liquid-tight fit between the outer surface 172 of the spindle 170 and the inner surface 182 of the bore 180 to force the liquid flowing through the outlet port 178 into the third fluid passage 184.
The hose 72 includes a proximal end 102, which connects to the upper end 52 of the pump housing 50, and a distal end 104, which includes a fitting 106 that connects with the valve assembly 82 of the wand 66. In one example, the fitting 106 and the distal end 104 of the hose 72 are adhesively connected, although in other examples, other connections can be used such as press-fit or threaded connections. The fitting 106 and the nozzle assembly 76 are in threaded connection, although other connections are contemplated, such as friction fit or adhesive connection. The proximal end 102 may also include a threaded connection for connecting to the pump housing 50, but other connections are contemplated, such as friction fit or adhesive connection. The hose 72 may be made out of any material for flexible tubing and can have more than one layer, such as a double-wall with two layers. A sleeve 108 may surround the hose 72 near the distal end 104. The sleeve 108 may be padded to provide comfort to the user. The sleeve 108 may also be stiff and, therefore, usable as an elongated handle for extra reach and control. A Velcro® strap 110 can also be used to bundle and reduce the length of the hose 72 when the spraying apparatus 20 is in use.
Referring now to
The trigger 60 is actuatable between a released position (shown in solid lines) and a squeezed position (shown in broken lines). A spring 228 holds the trigger 60 in the released position. Actuation of the trigger 60 slides the piston 206 within the cylinder 202. When the trigger 60 is in the released position, the piston 206 is located in a retracted position creating the largest volume in the chamber 204. When in the squeezed position, the piston 206 is located in an extended position creating the smallest volume in the chamber 204.
When the trigger 60 is squeezed, the piston 206 extends to pressurize fluid or air in the chamber 204. The positive pressure within the chamber 204 forces the fluid out of an outlet port 232 defined in a wall of the cylinder 202 into the siphon tube 208, and then into the hose 72. A lower one-way valve 210, which includes a ball 210a, that sits within a lower restriction 211, and a stopper 210b disposed on (or in) the siphon tube 208, prevents fluid from flowing from the chamber 204 into the reservoir of the tank 22. When the trigger 60 is released, the piston 206 retracts creating suction within the chamber 204 to draw liquid from the reservoir of the tank 22 into the chamber 204. An upper one-way valve 212, which includes a ball 212a, that sits within an upper restriction 213, and a stopper 212b, prevents fluid from flowing from the hose 72 to the chamber 204. Beneficially, the siphon tube 208 and hose 72, once primed, remains full for at least the current use period. The stoppers 210b, 212b may include a plurality of perforations to allow fluid to flow through the siphon tube into the hose 72.
Unlike typical lawn-and-garden sprayers and the like that pressurize the tank, the tank 22 of the present invention remains near atmospheric pressure because the squeezing of the trigger 60 pressurizes the cylinder 204 and the hose 72 without pressurizing the tank 22. The lower one-way valve 210 prevents the piston 206 from driving fluid or air into the tank 22, thereby preventing the piston 206 from pressurizing the tank 22. A third one-way valve 236 is provided on the top 26 of the tank 22 and is configured to let air flow from only outside of the tank 22 to inside the tank 22 preventing a negative pressure from being created in the tank 22. Accordingly, a user may operate the spraying apparatus 20 when it is detached from the tank 22. In contrast, the typical lawn-and-garden sprayer cannot be used without the tank because the tank is the portion of the sprayer that is pressurized. Moreover, the hose is typically attached to the tank and not to a pump assembly.
While the figures illustrate the one-way valves 210, 212, 236 as being ball valves, other one-way valves are contemplated, the structure of which is known to those of ordinary skill in the art.
As shown in
As shown in
As noted above, the optional arm strap 900 further includes a short strip portion 904. The short strip portion 904 includes a first side 922 and a second side 924. The short strip portion 904 is constructed of a base material, such as a stretch elastic material. The first and second sides 922, 924 are characterized in that an attachment material, such as a Velcro® material, is attached to the base material. The first side 922 includes a first, second, and third portion 926, 928, 930, respectively. The first and third portions 926, 930 have a male fastening material attached to the base material. The male fastening material may be the hook side of a Velcro® material. The second portion 928 is exposed to the base material. The second side 924 includes a female fastening portion 932 that runs the length and the width of the second side 924. Wherever a female or male fastening material is utilized, the opposite type of fastening material can be utilized provided that the two materials are opposite each other in a fastening area. The lengths and widths of any of the portions can be adjusted based on the diameter of the object, e.g., a user's forearm or upper arm.
As shown in
An exemplary use of the spraying apparatus 20 will now be described. The user can add the desired fluid to the tank 22 and either store the tank 22 with the provided cap 57, or if ready for use, use the threaded collar 56. The user than selects a desired configuration 80a-80d by rotating the nozzle assembly 76 so that the desired configuration is aligned with the outlet port 178. The user can then rotate the lever 86 to the open position. The spraying apparatus 20 is now ready for use. The user can squeeze and release the trigger 60 to generate linear motion of the piston 206 within the cylinder 202. This creates an alternating vacuum and positive pressure scenario within the siphon tube 208 inside the tank 22. When the trigger 60 is squeezed, the upper one-way valve 212 is open while the lower valve 210 is closed, and vice versa when the trigger 60 is released.
When the trigger 60 is squeezed, the piston 206 moves forward causing a positive pressure build up in the chamber 204 and the lower one-way valve 210 at the bottom region of the siphon tube 208 is forced closed. Meanwhile, the upper one-way valve 212 at the top region of the siphon tube 208 is pressurized and opened.
When the trigger 60 is released, the spring 228 pulls the trigger 60 back to the released position. This action draws the piston 206 outward, creating a vacuum in the chamber 204, which draws fluid up the siphon tube 208 from the tank 22 and into the chamber 204. The continuous action of cycling the trigger 60, cycles the valves 210, 212 in the open and closed positions opposite to one another, allowing a continuous flow of liquid through the hose 72 and into the nozzle assembly 76. While the fluid is being pumped from the tank 22 into the nozzle assembly 76, a third one-way valve 236 on the tank 22 also cycles between open and closed positions, allowing air to enter the tank 22 to maintain an atmospheric pressure.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms encompassed by the claims. The words used in the specification are words of description rather than limitation, and it is understood that various changes can be made without departing from the spirit and scope of the disclosure. As previously described, the features of various embodiments can be combined to form further embodiments of the invention that may not be explicitly described or illustrated. While various embodiments could have been described as providing advantages or being preferred over other embodiments or prior art implementations with respect to one or more desired characteristics, those of ordinary skill in the art recognize that one or more features or characteristics can be compromised to achieve desired overall system attributes, which depends on the specific application and implementation. These attributes can include, but are not limited to cost, strength, durability, life cycle cost, marketability, appearance, packaging, size, serviceability, weight, manufacturability, ease of assembly, etc. As such, to the extent any embodiments are described as less desirable than other embodiments or prior art implementations with respect to one or more characteristics, these embodiments are not outside the scope of the disclosure and can be desirable for particular applications.
This application relates to co-pending U.S. patent application Ser. No. ______, for “Spraying Apparatus,” filed on even date herewith; and Ser. No. ______, for “Nozzle Assembly for Spraying Apparatus,” filed on even date herewith, the entire disclosures of which are hereby incorporated by reference in their entirety including the drawings.