The field of the present invention is pumps.
Many pumps have the capability of operating in multiple orientations. An advantage of this capability is that the pump may be oriented to most conveniently interface with plumbing and other devices associated with the pump. The pump also may be oriented to most conveniently be stably supported or fixedly mounted to existing structure.
Many applications for certain types of pumps such as air driven diaphragm pumps are advantaged by secure attachment because of unbalanced accelerations during operation. At the same time, such pumps have versatile capabilities and operate in multiple orientations, making them useful as tools taken from application to application. A secure and versatile mounting can be advantageous.
The present invention is directed to the assembly of a pump with a base. To accomplish the assembly, a mount includes a retainer and a seat on the base to mount the pump having two mutually-displaced engagements. A bracket cooperates with the seat to capture one of the engagements. The bracket includes a jaw and a locking device with a surface facing the jaw. The locking device engages with a socket in the base. The jaw and the seat thus retain the pump. A fastener engages both the bracket and the base to retain the bracket locked with the engagement of the mount. With multiple mounts, the base can be mountable in various orientations to the pump engagements.
In the preferred embodiment, an air driven diaphragm pump has a generally cylindrical shape with inlet and outlet manifolds adjacent to one another extending from the periphery. The pump has a plurality of angularly spaced mounts, each with two engagements. Each engagement is defined by opposite facing, uniformly spaced surfaces on the pump. There are three mounts angularly spaced at 90° from the most adjacent mount, allowing three pump orientations. The engagements of each mount being opposite facing, uniformly spaced surfaces, the pump may be engaged with the base in either direction with any of the three mounts.
The base is a functional plate. A hole therethrough accommodates the ports in one pump orientation. The base retainer is conveniently a passive hook spaced from the base to receive the spaced surfaces of an engagement on the pump. A seat also passively receives the associated engagement. The bracket includes a jaw that is spaced from the seat to meet the spaced surfaces of the associated engagement of the mount when the bracket is positioned on the seat. There are two locking pins on the bracket that engage the socket in the seat with the bracket positioned on the base. These locking pins include lugs facing the jaw which engage undercut sections in the socket by sliding the bracket on the base. The lugs engaging the socket retain the bracket in engagement with the pump. The fastener, cooperating with an aligning post and channel, is used to keep the lugs engaged with the socket.
Accordingly, it is a principal object of the present invention to provide a versatile pump and mounting assembly. Other and further objects and advantages will appeal hereinafter.
Turning in detail to the drawings, a pump 20 is illustrated with a base 22 in a single preferred embodiment in all of
The base 22 is a functional plate having a central hole 34 therethrough. The base 22 further includes four mounting holes 36 for affixing the base to a structure. A retainer 38 located on the surface of the base 22 defines a hook with a fixed space between the surface of the base 22 and the hook of the retainer 38. The base 22 further includes a seat 40, which in the preferred embodiment is part of the surface of the base 22. The seat includes a socket defined by two holes 44, 46 to either side of a planar portion of the seat 40. Each of the two holes 44, 46 has an undercut section in the base covered by base portions 48, 50.
The pump 20 includes a plurality of mounts. There is a central mount 52 located adjacent the inlet manifold 24 and outlet manifold 26 and two side mounts 54, 56 placed on the pump 20 at 90° in each direction from the most adjacent central mount 52. Each mount 52, 54, 56 includes two engagements displaced from one another to either side of the pump 20. Each of these mutually displaced engagements includes two opposite facing, uniformly spaced surfaces on the pump 20. In the case of the central mount 52, each engagement 58 is a plate on the pump 20 with access to both sides of the plate. The engagements 60 of the side mounts 54, 56 are defined by holes 60 in the pump case and the outside periphery of the pump case where the pump is cradled by the base 22. The surface of each of the holes 60 of the side mounts 54, 56 most adjacent the outer periphery is spaced the same distance from the base 22 with the pump 20 positioned on the base 22.
In the preferred embodiment with three mounts 52, 54, 56, the pump 20 may be secured to the base 22 in two orientations, with the manifolds 24, 26 at the base 22 and with the manifolds 24, 26 extending laterally in either direction relative to the base 22.
When the central mount 52 is associated with the base 22, a planar portion 62 rests on the base 22. In this orientation, the retainer 38 and the seat 40 are to either end of the planar portion 62. With the manifolds 24, 26 extending laterally, one or the other of the holes associated with the side mounts 54, 56 are aligned with the retainer 38 and seat 40. Cradle elements 64, 66 on the surface of the base 22 receive the cylinder-like sidewall of the pump 20. To engage the pump 20 and the base 22 into position on either the planer portion 62 or the cradle elements 64, 66, the engagement 58, 60 on one side of the pump 20 can be first slidably engaged with the retainer 38 on the base 22. With the engagement 58, 60 in place with the retainer 38, the engagement 58, 60 on the other side of the pump can be passively received by the seat 40 or the cradle elements 64, 66.
A bracket 68 as shown in detail in
With the bracket 68 in place, the jaw 70 is located above the surface of the bracket 68 to receive the engagement 58, 60; and the surfaces of the lugs 76, 78 facing the jaw 70 are located below the surface of the base 22 to engage the undercut sections defined by the base portions 48, 50 through the holes 44, 46 of the socket 42. See the
The bracket 68 further includes a channel 80; and the base 22 includes a post 82 extending into the channel 80. Because of the channel 80 and because the two holes 44, 46 in the socket 42 also provide clearance, the bracket 68 can be in sliding engagement and disengagement of the lugs 76, 78 with the undercut sections of the two holes 44, 46 of the socket. Thus, the bracket 68 has a locked position with the engagement 58, 60 and an unlocked position displaced from the engagement 58, 60.
A fastener 84 is positioned in the bracket 68 through an access hole 86 into the channel 80. The fastener 84 is threaded into the post 82 where it is retained. With the fastener 84 not compressing against the bracket 68, the bracket 68 can be slid back and forth into and out of engagement with the engagement 58, 60. With the fastener 84 tightened to compress against the bracket 68 and with the bracket 68 advanced to engage the jaw 70 with the engagement 58, 60 and the lugs 76, 78 with the undercut portions of the socket, the bracket is locked in place and the engagement secured. The holding force of the bracket 68 on the engagement 58, 60 is provided by the lugs 76, 78 and not by the fastener 84. Rather, the fastener simply is used to resist sliding of the bracket 68 into and out of engagement with the engagement 58, 60.
The components of the pump assembly are such that there is flexibility available for assembly of the base 22 and pump 20.
Thus, a pump assembly with a versatile and secure mounting is disclosed. While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications are possible without departing from the inventive concepts herein. The invention, therefore is not to be restricted except in the spirit of the appended claims.