A variety of systems and methods are used for pumping fluids in many well related applications. In well treatment operations, for example, one or more surface pumps are used to pump the treatment fluids, such as fracturing fluids, cementing fluids, gravel packing slurries, and other fluids to a desired formation or other subterranean region. In many of these applications, substantial amounts of fluid are directed downhole under pressure to perform the desired well related treatment.
During the pumping operation, more than one pump may be employed to obtain the desired flow, pressure, and/or redundancy. In applications where more than one pump is utilized, more than one engine must be employed to drive the pumps or the output of a single-engine must be run through a splitter box which splits the engine output to a plurality of splitter box output shafts. In one prior arrangement, a single engine is coupled to a splitter box which, in turn, drives two transmissions. Each transmission is coupled to and drives a corresponding pump. In another prior arrangement, a single-engine is connected to a transmission which, in turn, is coupled to a splitter box. The separate output shafts of the splitter box are coupled to and drive corresponding pumps. However, such prior systems are costly because of the required number of expensive components, including a splitter box and/or multiple transmissions and multiple engines.
In general, the present invention provides a system and method for pumping fluids in a well related application while minimizing the number of system components. The system and methodology comprise a plurality of pumps for use at a well site to deliver a well treatment fluid to a desired location. A single driveline is coupled between a motive unit and the plurality of pumps without incorporating a splitter box. The driveline is driven by the motive unit to rotate the plurality of pumps.
A system for pumping comprises a mobile platform, a a motive unit mounted on the mobile platform, a plurality of pumps mounted on the mobile platform, and a drive shaft forming a driveline driven by the motive unit, the drive shaft being coupled with a solid, direct connection to the plurality of pumps without splitting the driveline. The motive unit may comprise one of an internal combustion engine, a gas turbine, an electric motor, and a hydraulic motor. Alternatively, the system further comprises a transmission coupled to the internal combustion engine and to the drive shaft. Alternatively, the plurality of pumps comprises two pumps.
Alternatively, the plurality of pumps comprises more than two pumps. Alternatively, each pump of the plurality of pumps comprises a positive displacement pump. Alternatively, the drive shaft extends through a first pump to a second pump. Alternatively, the drive shaft comprises an external drive shaft being directly coupled to each pump of the plurality of pumps by a gear. Alternatively, the system further comprises a pump release system to enable selective release of an individual pump from a pumping operation. Alternatively, the mobile platform is one of a truck trailer, a skid, and a self-propelled platform.
In an embodiment, a method of delivering a well treatment fluid comprises providing a plurality of pumps at a well site, coupling a single driveline directly to the plurality of pumps without a splitter box, engaging the driveline with the motive unit for rotating the driveline and powering the plurality of pumps, and delivering a well treatment fluid downhole to perform at least one well treatment operation. Alternatively, delivering comprises delivering one of a fracturing treatment fluid, a cementing treatment fluid, and a coiled tubing service fluid. Alternatively, providing comprises providing a plurality of positive displacement pumps. Alternatively, coupling comprises coupling a drive shaft with a solid, direct connection to the plurality of pumps so that the drive shaft extends through at least one pump. Alternatively, coupling comprises coupling a drive shaft with a solid, direct connection to the plurality of pumps so that the drive shaft is disposed externally of the plurality of pumps.
Alternatively, engaging comprises connecting the driveline to one of an internal combustion engine, a gas turbine, an electric motor, and a hydraulic motor. Alternatively, the method further comprises using a pump release system in cooperation with the plurality of pumps to enable selective release of an individual pump from a pumping operation via a mechanical disconnect of the individual pump. Alternatively, the method further comprises using a pump release system in cooperation with the plurality of pumps to enable selective release of an individual pump from a pumping operation via a hydraulic rerouting system. Alternatively, the method further comprising mounting the plurality of pumps and the motive unit on a mobile platform.
In an embodiment, a system comprises a plurality of pumps mounted at a surface location for use in delivering treatment fluid downhole in a well treatment operation, a motive unit, a single shaft coupling the motive unit to the plurality of pumps without splitting the single shaft, and a pump release system selectively operable to release individual pumps from delivering treatment fluid downhole. Alternatively, the pump release system comprises a mechanical release system. Alternatively, the pump release system comprises a hydraulic rerouting system. Alternatively, the system further comprises at least one mobile platform, wherein the plurality of pumps and the motive unit are mounted on the mobile platform.
Alternatively, the system further comprises at least two mobile platforms, wherein the plurality of pumps are mounted on a mobile platform and the motive unit is mounted on a separate mobile platform. Alternatively, the single shaft is coupled to the plurality of pumps via pinion gears. Alternatively, the single shaft is coupled to the plurality of pumps via a transfer case. Alternatively, the pump release system comprises a plurality of valves to selectively stop flow of the treatment fluid to or from the pumps. Alternatively, the pump release system is connectable such that an angle of rotation between the pumps is selectable.
Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
In the following description, numerous details are set forth to provide an understanding of embodiments of the present invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
Embodiments of the present invention generally relates to a system and method for pumping fluid in a variety of well related applications. The system and methodology may utilize pumps positioned at a surface location to pump selected treatment fluids downhole. For example, the pumping system can be used to pump fracturing fluids, cementing fluids, and other well treatment fluids downhole for performance of a given well related operation.
The design of the pumping system eliminates the need for expensive components, such as a splitter box, additional transmissions, and additional engines. Furthermore, the system and methodology provide for smoother torque variations on the transmission used in the pumping system. In some embodiments, the position of the cranks between pumps is movable during assembly and fixed once assembled for a pumping application. The pumping system also enables at least partial redundancy. In these applications, selected pumps can be released from the pumping operation by, for example, disconnection from the driveline or by separating the output flow from the discharge piping. The pumping system design enables the number of pumps to be increased without adding substantial complexity.
Referring generally to
As illustrated in
In the embodiment of
The motive unit 24, transmission 28 and pumps 22 may be directly connected in several configurations. As illustrated in
In other configurations, pumping system 20 comprises more than two pumps 22 with the drive shaft extending directly through two or more pumps to the final pump. By way of example, a single drive shaft passing through the pumps and/or one or more components of the pumps 22 may be used. In an alternate example, the input shaft of each pump is sequentially connected to the input shaft of the next pump, e.g. the crankshafts of the plurality of pumps are linked. Regardless, the drive shaft 38 forms a solid, direct connection with each pump 22 by mechanically engaging each pump. The direct, mechanical connection facilitates the transfer of power from the motive unit 24 even under high load pumping conditions. The drive shaft 38 preferably maintains a fixed relationship between the angle of rotation of the shafts of the pumps 22 such that the pumps 22 are rotated in a synchronous manner.
Pumps 22 may comprise a variety of pump types, however positive displacement pumps are useful in many pumping applications. Examples of such pumps include duplex pumps, triplex pumps, quintuplex pumps, sixtuplex pumps and septuplex pumps. The positive displacement pumps are useful in a variety of well treatment operations including, but not limited to, fracturing operations and cementing operations. When conducting a treatment operation, motive unit 24 rotates drive shaft 38 to drive pumps 22 which, in turn, draw treatment fluid into the pumps 22 through corresponding inlets 40. The treatment fluid is pumped and discharged through corresponding pump outlets 42. From outlets 42, the treatment fluid is directed along an appropriate flow path 44 including, but not limited to, a path via jointed tubing, coiled tubing or the like, to a well 46 to be treated. For example, the treatment fluid may be directed downhole into a wellbore 48 to a desired well treatment region that is to be fractured, cemented or otherwise treated, such as with gravel packing slurries, coiled tubing service fluids and/or other fluids, as will be appreciated by those skilled in the art.
Another embodiment of pumping system 20 is illustrated in
The pumping system 20 also may be designed with a pump release system 54, as illustrated in
In the embodiment illustrated in
An embodiment of pump release system 54 is illustrated in
In the embodiment illustrated, the hydraulic rerouting system 58 comprises a check valve 60 disposed in the outlet 42 of each pump 22. The check valves 60 allow one-way flow of fluid to flow path 44 which may be along a discharge line 62 that ultimately directs the discharged fluid downstream, such as to the wellbore 48 shown in
A valve 68 is disposed along each fluid rerouting line 64 and may be controlled by an appropriate actuator 70. For example, each valve 68 may be selectively moved between a flow position (see valve on right side of
Alternatively, one or the other of the pumps 22 may be unloaded and/or shut down by removing the suction supply, such as by shutting a suction valve 72 disposed in the inlet 40 of the pump 22. Alternatively, a pump 22 may be unloaded and/or shut down by closing a discharge valve 74 disposed in the outlet 42 of the pump 22. Alternatively, a pump 22 may be unloaded and/or shut down by opening the pump 22 to atmosphere closing the suction valve 72 and discharge valve 74 and opening a vent valve 76 disposed in the inlet 40 and/or a vent valve 78 disposed in the outlet 42 of the pump 22.
Another embodiment of pumping system 20 is illustrated in
As described above, pumping system 20 can be constructed in a variety of configurations for use in many environments and applications. The various configurations can be mounted for transport on a mobile platform such as a truck trailer 30 or on other mobile platforms, including on a skid, a self-propelled vehicle or the like. Additionally, the number of pumps powered by a directly connected drive shaft can vary according to the parameters of specific applications and environments in which pumping operations are performed. The type of pump and the type of motive unit also can be selected according to the needs of a given operation. Furthermore, various types of pump release systems can be incorporated into the system to enable selective release of one or more pumps from a given pumping operation. The pumping system 20 also can be used in many types of downhole well treatment applications and other well related operations to provide greater cost effectiveness, reliability, performance and/or other improvements to the operation.
Alternatively, the pumps 22 are mounted on a mobile platform p and the motive unit or units 24 are mounted on a separate mobile platform 30 and connected via a suitable releasable connection, as will be appreciated by those skilled in the art, which may facilitate the transportation of the pumping system 20. While, as noted above, the drive shaft 38 preferably maintains a fixed relationship between the angle of rotation of the shafts of the pumps 22 such that the pumps 22 are rotated in a synchronous manner, the gear system 50 and the pump release system 54 (the mechanical release 56, the hydraulic rerouting system 58 or similar connection between the drive shaft 38 and the pumps 22) may be connected such that the angle of rotation between the pumps 22 is selectable with respect to the other pump 22, such as from 0 to 180 degrees. The selection of the angle of rotation may be selected prior to starting the pump 22, such as by, for example, utilizing a sliding spline coupling or a jaw coupling with one or more possible engagement positions. The pump 22 is then engaged with the drive shaft 38 at the preselected rotational angle. Alternatively, the angle or rotation of the pump 22 may be varied before pumping or during pumping by inserting a suitable phase adjuster (such as, but not limited to, those commercially available from A. Fischer Phase Drives of McHenry, Ill., M.J. Vail and Company of Hillsborough, N.J., or Harmonic Drive, LLC of Peabody, Mass.), with respect to the other pump 22 and the driveshaft 38, as will be appreciated by those skilled in the art.
Accordingly, although only a few embodiments of the present invention have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this invention. Such modifications are intended to be included within the scope of this invention as defined in the claims.
The present document is based on and claims priority to U.S. Provisional Application Ser. No. 60/971,090, filed Sep. 10, 2007, the disclosure of which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60971090 | Sep 2007 | US |