The invention relates to a pump comprising a wall which forms a closed-off fluid volume and which can be moved by means of a first external force in the direction of a volume reduction and by means of a second force, after a preceding volume reduction, in the direction of a volume increase, and with an inlet valve which communicates with an inlet port and with an outlet valve in an outlet line in the fluid volume.
The invention relates, furthermore, to a use of a pump of this type.
Pumps of this type are known, for example, as hose pumps, in which the fluid is expressed from a fluid-filled hose by means of pressure rollers pressing the hose together and moved in a longitudinal direction of the hose. As a result of the movement of the roller, the upstream end of the hose is filled with fluid again when this end is connected to a fluid supply. The propulsive force for moving the rollers is generated by a motor which may be designed, for example, as an electric or hydraulic motor. Pumps of this type are used for conveying a volume in the pressure direction.
Another kind of pump of the type initially mentioned is diaphragm pumps, in which the fluid volume is reduced by the diaphragm and moved back and forth by means of a connecting rod and is subsequently increased again. The connecting rod thus transmits both the first force for the volume reduction and the second force for the volume increase.
In many instances, it is merely necessary to call up a pumping power only in specific operating states when movements, the force flux of which can be used for actuating a pump, take place in a device. Thus, it is known, for example, to evacuate the interspace between a patient's amputation stump and an airtight liner arranged above it, in order, by means of the vacuum formed, to ensure a firm fit of the liner connected to a prosthesis. For this purpose, a piston pump is used, which, when the patient treads on the ground by means of the prosthesis, exerts an evacuation stroke and is returned by means of a return spring. Pumps of this type are relatively bulky particularly because of the return mechanism required.
The object on which the invention is based is, therefore, to design a pump of the type initially mentioned such that it can be implemented in a small space.
To achieve this object, according to the invention, a pump of the type initially mentioned is characterized in that it is designed as a vacuum pump, the volume of which can be reduced by means of the external first force against an elastically deformable material, the return force of which forms, after the termination of the external force action, the second force acting counter to the generated vacuum.
In the pump according to the invention, the working stroke by which the fluid, in particular air, is sucked away from a closed-off volume, is brought about by the return force of the elastically deformable material. Previous deformation for reducing the volume of the fluid material takes place by means of a first force acting externally. The pump according to the invention thus makes it possible to have a very uncomplicated and small-volume design, by means of which a low to medium vacuum can be generated.
In a first preferred embodiment of the invention, the wall has two rigid walls lying opposite one another, the elastically deformable material being arranged in the interspace formed by the walls. In this case, the elastically deformable material may be formed by a sealing insert running around the edge and delimiting the fluid volume. This embodiment affords the advantage that the external force can act directly on one of the rigid walls.
In another embodiment likewise having advantages, the wall is designed flexibly, the elastically deformable material bearing, preferably over a large area, against the flexible wall, In this case, a high return force sufficient for many applications can be generated by means of a relatively thin material layer.
The elastic material may be an open-pored foam which is arranged within the fluid volume and which exerts the return force after a volume reduction has been carried out. The fluid, which is preferably air, accordingly flows through the foam. In this embodiment, the generation of the return force does not take up any additional space at all, since the fluid volume itself is utilized for this purpose. In this case, it is expedient if the foam completely fills the fluid volume, with the exception of residual volumes as a consequence of construction. An alternative elastic material which is capable of throughflow and which can be used for the invention is a wide-mesh knitted fabric.
The pump according to the invention is implemented in a simple way if the elastic material is surrounded on all sides by the flexible wall. It is also possible, however, for the wall to be partially of rigid design and for a part of the wall such as is required for the volume reduction to be made flexible.
The pump according to the invention can preferably be produced with a preferred large-area extent and with a thickness which is small, as compared with this, and can therefore in many instances be integrated into the structure of a device without difficulty.
To press together the fluid volume, at least one pressure element bearing against the flexible wall over a large area is provided. In particular, the fluid volume with a flexible wall may be arranged between two large-area pressure elements.
The valves may be arranged on the corresponding narrow sides of the flexible wall, but are preferably also arranged in recesses of one of the pressure elements or of both pressure elements, with the result that flexing actions of the flexible wall are reduced.
The pump according to the invention can advantageously be integrated in the force flux of a system in which forces arise which are utilized to exert one of the two forces. The pump according to the invention is suitable particularly as a vacuum pump.
In a special application, the pump constitutes part of a prosthesis for a lower extremity. Preferably, in this case, the force occurring due to body weight when a patient treads on the ground is utilized as the first force. The pump may be employed, in particular, for the vacuum assistance of a suction well of the prosthesis, in particular for evacuating the interspace between a liner and the prosthesis shank. A preferred place of use for the pump according to the invention is an artificial foot which makes it possible particularly effectively to have the large-area design of the pump perpendicularly to the force flux occurring during load caused by the body weight.
The invention will be explained in more detail below by means of exemplary embodiments illustrated in the drawing in which:
The pump illustrated in
The flexible wall 3 has on opposite narrow sides a tubular or hose-shaped feed 6 and a tubular or hose-shaped outlet 7. Both the feed 6 and the outlet 7 are provided in each case with a nonreturn valve 8, 9. The feed 6 is in fluid communication with a closed-off volume 6′.
For the pumping operation, the pressure elements 4, 5 are moved relatively toward one another, as illustrated in
In the modification of the pump, as illustrated in
The functioning of the pump inserted into the foot 11 corresponds fully to the functioning explained with reference to
It can be seen that an artificial foot 11 is suitable for integrating the pump according to
If, then, a pressure causing compression is exerted onto layers 21, 22, the tips 25 are compressed in the height direction and the material is deflected into width, so that the spaces between the tips 25 and the recesses 26 are filled, ideally completely, as illustrated in
The layers 21, 22 may be formed from a plastic having stability such that the layers 21, 22 at the same time form the wall 3. Alternatively, however, the layers 21, 22 may also cooperate with pressure plates 4, 5, such as are illustrated in the embodiments according to
In the exemplary embodiment illustrated in
By means of an external first force F, the rigid walls 31, 32 are pressed against one another, as indicated in
It can be seen that the exemplary embodiments illustrated in
The pumps according to the invention may be used, in particular, in prosthesis parts also for other purposes, for example as a hydraulic pump for the control of dynamic functions, for example for the control of hydraulic damping cylinders or for the movement of structural elements of the prosthesis, for example from an uncoupled to a coupled state, in order to carry out dynamic adaption to the situation of use.
Number | Date | Country | Kind |
---|---|---|---|
102004036669.1 | Jul 2004 | DE | national |
This application is a continuation of application Ser. No. 11/572,863, filed Jan. 29, 2007, pending, which is a 371 of PCT/DE2005/001124 filed on Jun. 24, 2005 and published on Feb. 9, 2006 as WO 2006/012820, which claims priority to German Patent Application No. 10 2004 036 669.1, filed 28 Jul. 2004, the disclosure of each of which is incorporated, in its entirety, by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11572863 | Jan 2007 | US |
Child | 13296816 | US |