Pump controller system and method

Information

  • Patent Grant
  • 9328727
  • Patent Number
    9,328,727
  • Date Filed
    Monday, December 20, 2010
    14 years ago
  • Date Issued
    Tuesday, May 3, 2016
    8 years ago
Abstract
A method and apparatus for a pump control system. One or more embodiments of the invention include a pump controller that can perform a self-calibrating procedure, can provide precise motor speed control, can provide a limp mode before shutting down the motor when system parameters are exceeded and/or fault conditions occur, can detect fault conditions, and can store fault conditions for later retrieval.
Description
FIELD OF THE INVENTION

This invention relates generally to pumps and pumping methods, and more particularly to pump motor controllers and control methods.


BACKGROUND OF THE INVENTION

Residential water systems typically include a line-operated motor for driving a pump-motor assembly to retrieve water from a well. The pump-motor assembly is generally submerged in the well at the end of a drop pipe. To maintain a constant supply pressure, the water systems also typically include a pressurized storage tank and a pressure switch that causes the motor to run when the pressure in the water system is low. The pressurized storage tanks are often relatively large, so that the motor does not need to be turned on and off frequently.


A need exists for a pump control system and method for performing a self-calibration procedure, for providing precise motor speed control, for providing a limp mode before shutting down the motor when system parameters are exceeded and/or fault conditions occur, for detecting fault conditions, and for storing fault conditions for later retrieval. Each embodiment of the present invention achieves one or more of these results.


SUMMARY OF THE INVENTION

Some embodiments of the present invention provide a method of calibrating a pump connected to a water distribution system and having a motor. The method can include operating the motor in a forward direction, sensing a pressure in the water distribution system, determining whether the sensed pressure has increased by a pressure increment, increasing an operating frequency of the motor by a frequency increment if the sensed pressure has not increased by the pressure increment, and storing a speed of the motor as a minimum calibrated speed value if the sensed pressure has increased by the pressure increment.


Other embodiments of the present invention can provide a method of regulating the speed of a motor in a pump. The method can include measuring an actual pressure in the water distribution system; determining whether the actual pressure is less than, greater than, or equal to a pre-set pressure value; subtracting the actual pressure from a desired pressure to determine a pressure error if the actual pressure is less than or greater than the pre-set pressure value; determining an integral of the pressure error; multiplying the integral by an integral gain to determine a first value; multiplying the pressure error by a proportional gain to determine a second value; summing the first value and the second value; and generating an updated speed control command based on the sum of the first value and the second value.


A limp mode can be provided according to some methods of the invention. The limp mode method can include measuring a parameter (e.g., a bus current, a bus voltage, a line current, and/or a temperature) and determining whether the parameter is greater or less than a threshold. The limp mode method can also include reducing an output voltage provided to the motor and/or an operating frequency of the motor if the parameter is greater or less than the threshold and shutting down the motor if the motor does not operate within operational limits while being driven in the limp mode.


Some embodiments of the invention can include various methods of detecting fault conditions in a motor of a pump or a water distribution system. These methods can include bus over-voltage detection, bus over-current detection, dry-running detection, over-temperature detection, high or low-speed foreign-object jamming detection, and pressure sensor failure detection. In some embodiments, the invention provides a method of creating a fault log and storing fault condition codes for later retrieval.


Further objects and advantages of the present invention, together with the organization and manner of operation thereof, will become apparent from the following detailed description of the invention when taken in conjunction with the accompanying drawings, wherein like elements have like numerals throughout the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Some embodiments of the present invention are further described with reference to the accompanying drawings. However, it should be noted that the embodiments of the invention as disclosed in the accompanying drawings are illustrated by way of example only. The various elements and combinations of elements described below and illustrated in the drawings can be arranged and organized differently to result in embodiments which are still within the spirit and scope of the present invention.


In the drawings, wherein like reference numerals indicate like parts:



FIG. 1 is a schematic illustration of a pump, a water tank, and a pump control system according to one embodiment of the invention;



FIG. 2 is a flowchart illustrating a pump calibration method of operation for use with the pump control system of FIG. 1;



FIG. 3 is a flowchart illustrating a speed regulation method of operation for use with the pump control system of FIG. 1;



FIG. 4 is a flowchart illustrating a limp mode method of operation for use with the pump control system of FIG. 1;



FIG. 5 is a flowchart illustrating a bus over-voltage or bus under-voltage fault method of operation for use with the pump control system of FIG. 1;



FIG. 6 is a flowchart illustrating a bus over-current fault method of operation for use with the pump control system of FIG. 1;



FIG. 7 is a flowchart illustrating a dry-running fault method of operation for use with the pump control system of FIG. 1;



FIG. 8 is a flowchart illustrating an over-temperature fault method of operation for use with the pump control system of FIG. 1;



FIG. 9 is a flowchart illustrating a high-speed jamming fault method of operation for use with the pump control system of FIG. 1;



FIG. 10 is a flowchart illustrating a low-speed jamming fault method of operation for use with the pump control system of FIG. 1;



FIG. 11 is a flowchart illustrating a pressure sensor failure method of operation for use with the pump control system of FIG. 1;



FIG. 12 is a flowchart illustrating a fault storage and fault retrieval method of operation for use with the pump control system of FIG. 1; and



FIG. 13 is an example of a Voltage/Hertz (V/Hz) curve for a motor for use with one embodiment of the invention.





DETAILED DESCRIPTION

Before one embodiment of the invention is explained in full detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The terms “mounted,” “connected” and “coupled” are used broadly and encompass both direct and indirect mounting, connecting and coupling. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings and can include electrical connections and couplings, whether direct or indirect.


In addition, it should be understood that embodiments of the invention include both hardware and electronic components or modules that, for purposes of discussion, may be illustrated and described as if the majority of the components were implemented solely in hardware. However, one of ordinary skill in the art, and based on a reading of this detailed description, would recognize that, in at least one embodiment, the electronic based aspects of the invention may be implemented in software. As such, it should be noted that a plurality of hardware and software based devices, as well as a plurality of different structural components may be utilized to implement the invention. Furthermore, and as described in subsequent paragraphs, the specific mechanical configurations illustrated in the drawings are intended to exemplify embodiments of the invention and that other alternative mechanical configurations are possible.



FIG. 1 illustrates a pump 10 connected to one or more water tanks 12. In some embodiments, the pump 10 is a submersible pump for use in residential or commercial well pump systems. In other embodiments, the pump 10 is a pump for use in pool or spa systems. In still other embodiments, the pump 10 is a pump for use in residential or commercial water distribution systems that are connected to a municipal water system. If the pump 10 is for use in a pool or spa system or a distribution system that is connected to a municipal water system, the pump 10 may not be connected to a water tank. The pump 10 can be used in residential or commercial turf or irrigation systems, agricultural systems, golf course irrigation systems, drip irrigation systems, each one of which may or may not include a water tank and may or may not be connected to a municipal water system. In some embodiments, the pump 10 can be used as an additional pump in a pressure-boosting system. For example, the water distribution system can include a well, a first pump positioned in the well, a water tank connected to the first pump, and a second, booster pump connected to the water tank. In other embodiments, the pump 10 can be used in liquid distribution systems other than water distribution systems, such as systems for distributing hydraulic fluid.


The pump 10 can be connected to a pump control system 14 according to one embodiment of the invention. The pump 10 can include or can be connected to a motor 16 in any conventional manner. The pump control system 14 can be used to control the operation of the motor 16. In some embodiments, the motor 16 is an AC induction motor, a brush-less DC motor, or a switch-reluctance motor. Various outputs and/or control parameters of the pump control system 14 can be modified for each particular type of motor.


The pump control system 14 can include one or more pressure sensors. In some embodiments, a pressure sensor 18 can be positioned between the pump 10 and the water tank 12. In one embodiment, the pressure sensor 18 can be positioned to sense the pressure in an output line 20 between the pump 10 and the water tank 12. In some embodiments, the pressure sensor 18 can generate a signal having a range of about 4 to 20 mA or about 0.5 to 4.5 or 5.0 V. The signal generated by the pressure sensor can represent an actual pressure of 0 to about 50 PSI, 0 to about 100 PSI, 0 to about 250 PSI, or any other suitable pressure range. In some embodiments, the pressure sensor 18 is a 4 to 20 mA, Model No. 86HP062Y00100GSOC pressure sensor manufactured by Texas Instruments, Inc.; a 0.5 to 4.5 V, Model No. 61CP0320100SENAO pressure sensor manufactured by Texas Instruments, Inc.; a 4 to 20 mA, Model No. MSP-601-100-P-5-N-4 pressure sensor manufactured by Measurement Specialties, Inc.; or any suitable equivalent. In one embodiment, the pump control system 14 includes a single pressure sensor. However, in some embodiments, additional pressure sensors can be placed in any suitable position in a residential or commercial water distribution system, for example, between the water tank 12 and any water outlets (i.e., faucets, shower heads, toilets, washing machines, dishwashers, boilers, etc.) in order to monitor the water pressure in a residential home or a commercial building. In pool or spa systems, additional pressure sensors can be placed between the pump 10 and any input ports or output ports connected to the pool or spa. For example, pressure sensors can be positioned to sense the pressure in output ports of the pool or spa in order to detect foreign object obstructions in the output ports. A multiplexer (not shown) or a digital signal processor (as discussed below) could be used in the pump control system 14 to manage input signals from multiple pressure sensors and/or multiple input channels. One or more flow sensors can be used in the pump control system 14, rather than or in addition to the one or more pressure sensors.


The pump control system 14 can be connected to an AC bus line 22 and/or one or more batteries (not shown). The pump control system 14 can be connected to one or more batteries if the pump control system 14 is used in a portable pool or spa system, a recreational vehicle water distribution system, or a marine craft water distribution system. The batteries can be standard 12-volt automotive batteries, 24-volt batteries, or 32-volt batteries. However, the batteries can include any suitable battery size, combination of battery sizes, or battery packs. If batteries are used, the pump control system 14 can include a DC to AC inverter. In other embodiments, the pump 10 can be connected to one or more generators.


The pump control system 14 can include a controller 24. The controller 24 can include one or more integrated circuits, which can be programmed to perform various functions, as will be described in detail below. As used herein and in the appended claims, the term “controller” is not limited to just those integrated circuits referred to in the art as microcontrollers, but broadly refers to one or more microcomputers, processors, application-specific integrated circuits, or any other suitable programmable circuit or combination of circuits. The controller 24 can act as a power conditioner, a variable-speed drive, a pressure regulator, and/or a motor protector in the pump control system 14. In some embodiments, the controller 24 can include a digital signal processor (DSP) 26 and a microcontroller 28 that cooperate to control the motor 16. For example, the DSP 26 can manage overall system operations, and the microcontroller 28 can act as one or more “smart” sensors having enhanced capabilities. The microcontroller 28 can also coordinate serial communications. In some embodiments, the DSP 26 can be from the Model No. TMS320C240XA family of DSPs manufactured by Texas Instruments, Inc., or any suitable equivalent DSP. In some embodiments, the microcontroller 28 can be an 8-bit microcontroller that is on an isolated ground plane and communicates with the DSP 26 via an optically-isolated asynchronous communication channel. The microcontroller 28 can be a Model No. PIC16LF870 integrated circuit manufactured by Microchip Technology, Inc. In some embodiments, the protocol for communication between the DSP 26 and the microcontroller 28 can include 4 bytes of control data passed at a 64 Hz interval, without error detection or correction mechanisms. In some embodiments, the DSP 26 can command the microcontroller 28 to enter a “normal” mode once per second, in order to prevent the microcontroller 28 from resetting without the DSP 26 being reset. In some embodiments, the DSP 26 and/or an EEPROM 54 can be reprogrammed in the field by having new parameters, settings, and/or code uploaded, programmed, or downloaded to the DSP 26 and/or the EEPROM 54 (e.g., through the microcontroller 28 and a serial communication link 56).


The pump control system 14 can also include one or more sensors 30 and/or an array of sensors (which can include the pressure sensor 18) connected to the controller 24. In some embodiments, the DSP 26 can read one or more of the sensors 30 directly, whether analog or digital. For processing the analog sensors 30, the DSP 26 can include an analog-to-digital converter (ADC) 32. The ADC 32 can read several channels of analog signals during a conversion period. The conversion period can be set to provide an appropriate sampling rate for each sensor (e.g., a pressure sensor may be sampled at a higher rate than a temperature sensor) and/or for each particular system (e.g., a pressure sensor in a residential building may be sampled at a higher rate than a pressure sensor on an output port of a pool or spa). The ADC 32 can be reset before the DSP 26 triggers a new start of conversion (SOC). Resetting the ADC 32 can allow the DSP 26 to maintain uniform channel sample rates.


In some embodiments, the microcontroller 28 can read one or more of the sensors 30 at fixed intervals. For example, the microcontroller 28 can read the pressure sensor 18. The microcontroller 28 can also read isolated power supplies (e.g., power supply module A and power supply module B, as shown in FIG. 1) for different types of pressure sensors that can be used as the pressure sensor 18. For example, the different types of pressure sensors can include a 4-20 mA pressure sensor and a 0-5 V DC pressure sensor. In some embodiments, the microcontroller 28 can automatically determine which type of pressure sensor is connected to the system. The signal from both types of pressure sensors can be at a maximum frequency of 8 Hz, and the minimum sample rate can be 64 Hz. The sensing range for both types of pressure sensors can be 0 to about 50 PSI, 0 to about 100 PSI, 0 to about 250 PSI, 0 to about 1000 PSI, 0 to about 2500 PSI, or any other suitable pressure range for low, medium, or high-pressure applications. The microcontroller 28 can perform a pressure sensor check (for either type of pressure sensor) in order to verify that there is not a fault condition occurring with respect to the pressure sensor 18. The pressure sensor check is described in more detail below with respect to FIG. 11. The input signal from the pressure sensor check can be at a maximum frequency of 8 Hz, and the minimum sample rate can be 64 Hz.


The microcontroller 28 can also read a temperature sensor 19 (e.g., located on a heat sink 21 of the controller 24 or located in any suitable position with respect to the pump 10 and/or the motor 16). Rather than or in addition to the temperature sensor 19, the pump control system 14 can include a temperature sensor located in any suitable position with respect to the pump 10 in order to measure, either directly or indirectly, a temperature associated with or in the general proximity of the pump 10 in any suitable manner. For example, the temperature sensor can include one or more (or any suitable combination) of the following components or devices: a resistive element, a strain gauge, a temperature probe, a thermistor, a resistance temperature detector (RTD), a thermocouple, a thermometer (liquid-in-glass, filled-system, bimetallic, infrared, spot radiation), a semiconductor, an optical pyrometer (radiation thermometer), a fiber optic device, a phase change device, a thermowell, a thermal imager, a humidity sensor, or any other suitable component or device capable of providing an indication of a temperature associated with the pump 10. The input signal from the temperature sensor 19 can be at a maximum frequency of 8 Hz, and the minimum sample rate can be 64 Hz. The operating range of the temperature sensor 19 can be −25 degrees Celsius to +140 degrees Celsius. The microcontroller 28 can use the input from the temperature sensor 19 to halt operation of the motor 16 during an over-temperature condition (e.g., an over-temperature condition of the controller 24), as will be described in more detail below with respect to FIG. 8. In one embodiment, if the temperature of the controller 24 becomes greater than about 70 degrees Celsius and/or the line voltage from the controller 24 to a two-horsepower motor 16 becomes less than about 207 V, the controller 24 can halt operation of the motor 16 or reduce the speed of the motor 16 in order to adjust for an over-temperature condition.


In addition, the microcontroller 28 can read one or more run/stop inputs 47. One or more run/stop inputs 47 can be placed in any suitable positions with respect to the water distribution system. For example, a run/stop input 47 can be a manual or automatic switch placed in close proximity to a pool or spa. If a user presses a manual switch, the controller 24 can immediately disable the motor drive. An automatic switch can be placed adjacent to a grate or a guard in a pool or spa, so that the run/stop input 47 is automatically activated (i.e., changes state) if the grate or guard is removed. Also, a run/stop input 47 can be a foreign object detection sensor placed in a pool or spa. In addition, a run/stop input 47 can be an over-pressure relief valve or a water detection sensor (e.g., placed in a basement of a residential building). The run/stop inputs 47 can be connected to the controller 24 (and in some embodiments, can be read by the microcontroller 28). The run/stop inputs 47 can be connected to one another in a daisy chain configuration, so that if any one of the run/stop inputs 47 is activated (e.g., any one of the run/stop inputs is opened in order to break the circuit), the controller 24 can immediately disable the motor drive. The run/stop inputs 47 can also be used to enable the motor drive. In some embodiments, the motor drive can be enabled when the run/stop input is active (i.e., the contacts are closed) and disabled when the run/stop input is inactive (i.e., the contacts are open).


The microcontroller 28 can send the raw data from the analog sensors to the DSP 26 at uniform time intervals via a serial port. The DSP 26 can include one or more filters (not shown) or can be programmed to filter the signals received from the sensors 30 and/or the microcontroller 28. In one embodiment, in order to facilitate filtering, the DSP 26 can read the sensors 30 or can receive signals from the microcontroller 28 at minimum sample rates of about eight times the sensed signal's maximum frequency.


As shown in FIG. 1, the pump control system 14 can include a power factor correction and converter/rectifier module 34 connected to a neutral line 36 of the AC bus line 22. The controller 24 can be connected to a ground line 42 of the AC bus line 22 in any suitable manner. The power factor correction can be greater than or equal to about 0.9, and in some embodiments greater than or equal to about 0.98, at the rated output power. The power factor correction and converter/rectifier module 34 can also be connected via a fuse 38 (e.g., an integral input fuse) to a power line 40 of the AC bus line 22. In some embodiments, the fuse 38 can be changed so that the motor 16 can be operated at two or more voltage input settings (e.g., single-phase, line-power voltage inputs of about 115 V RMS at about 30 A RMS or about 230 V RMS at about 15 A RMS). In other words, a user can switch between a line-power voltage input of 115 V RMS and a line-power voltage input of 230 V RMS by changing only the fuse 38. In some embodiments, the single-phase input power is at a line voltage ranging from about 103 to 127 V RMS, a line current of about 30 A RMS, and a frequency ranging from about 45 to 65 Hz. In other embodiments, the single-phase input power is at a line voltage ranging from about 207 to 253 V RMS, a line current of about 15 A RMS, and a frequency ranging from about 45 to 65 Hz. Although the controller 24/fuse 38 combinations can be designed for particular input voltages and currents, in some embodiments, the controller 24 can operate the drives 46 to maintain a constant or near constant pressure with a voltage of up to about 255 V RMS with a 30 A RMS fuse or with a voltage of as low as about 103 V RMS with a 15 A RMS fuse.


The power factor correction and converter/rectifier module 34 can be connected to a power supply 44 (which can include a single power supply, or can include a first power supply module A and a second power supply module B, as shown in FIG. 1). The power factor correction and converter/rectifier module 34 can be connected to one or more drives 46 for the motor 16 via a DC bus line 48. The drives 46 can be connected to the pump 10 and/or the motor 16 in order to selectively control the motor 16. In some embodiments, the drives 46 can provide three-phase outputs to the motor 16. In one embodiment, the controller 24 can turn the drives 46 on and off and each of the three drives 46 can operate 120 degrees out-of-phase in order to generate an AC sine wave from the input of the DC bus line 48. In one embodiment, the three-phase outputs can include one or more of the following: 0-230 V RMS (line to line) at 30-200 Hz; 0-230 V RMS (line to line) at 30-60 Hz; and 0-230 V RMS (line to line) at 30-80 Hz. However, the maximum voltage output from the drives 46 can be greater than or less than 230 V RMS. In addition, the maximum voltage output from the drives 46 can be programmed as any suitable voltage setting (e.g., for a custom motor in a voltage range of about 20 V RMS to about 250 V RMS and a frequency range of about 30 Hz to about 250 Hz). In one embodiment, the maximum output power to the motor 16 can be about 2116 W MAX (about 230 V RMS at 9.2 A RMS total); however, the maximum output power of the motor 16 can be greater or less than 2116 W MAX. The maximum output voltage to the motor 16 can be about 250 V RMS phase-to-phase, and the maximum output current to the motor 16 can be about 5.9 A RMS per phase. The power efficiency can be at least about 88% at the rated output power (e.g., when the controller 24 is connected to the motor 16 with three meters of 12-3 W. G. NM-B wire). In some embodiments, the controller 24 can detect a short circuit (either line-to-line, phase-to-phase, or line-to-ground) at the output to the motor 16. The controller 24 can stop the motor drive when a short circuit is detected.


As noted, the DSP 26 can read one or more of the sensors 30 directly. One of the sensors 30 can sense the voltage of the DC bus line 48. In some embodiments, the DSP 26 can sense the voltage of the DC bus line 48 and the same sensor or another one of the sensors 30 can sense the current of the DC bus line 48. In some embodiments, the DSP 26 can determine the voltage of the AC bus line 22 from the voltage on the DC bus line 48, and the DSP 26 can determine the current of the AC bus line 22 from the current on the DC bus line 48 (e.g., by applying one or more conversion factors to the voltage and current of the DC bus line 48). In some embodiments, one to four sensors can be included on the DC bus line 48 in order to measure AC line current, AC line voltage, DC bus current, and DC bus voltage. The one or more sensors 30 on the DC bus line 48 can be read by the DSP 26 and/or the microcontroller 28.


In general, the terms “bus line,” “bus voltage,” and “bus current” as used herein and in the appended claims refer to the DC bus line 48 itself or the voltage and current, respectively, of the DC bus line 48. The bus voltage of the DC bus line 48 can be monitored to determine the power being supplied to the drives 46. In some embodiments, the target voltage for the DC bus line 48 is about 380 V DC. The voltage of the DC bus line 48 can be used by the DSP 26 to halt operation of the motor 16 during an over-voltage or under-voltage condition, as will be described in detail below with respect to FIG. 5. Also, if the voltage of the DC bus line 48 is low, the DSP 26 can operate the motor 16 in a limp mode, as will also be described in detail below with respect to FIG. 4. The bus current can also be monitored to determine the power being supplied to the drives 46. In addition, the bus current can be monitored in order to operate the motor 16 in a limp mode (as described in more detail below with respect to FIG. 4) if the bus current exceeds a programmed threshold. In some embodiments, the maximum frequency of the sensor or sensors 30 for the DC bus line 48 is about 280 Hz, and the minimum sample rate is about 2,240 Hz.


The terms “line voltage” and “line current” as used herein and in the appended claims generally refer to the voltage and current, respectively, of the AC bus line 22 (although the voltage and current of the AC bus line 22 may be converted from a measurement taken from the DC bus line 48). However, it should be understood by one of ordinary skill in the art that a bus voltage can be a line voltage (both voltages are measured from an electrical “line”), and vice versa. It should also be understood by one of ordinary skill in the art that a bus current can be a line current (both currents are measured from an electrical “line”), and vice versa. Thus, the term “bus voltage” can include a “line voltage” and the term “bus current” can include a “line current.” In some embodiments, the single-phase input power of the AC line voltage is about 115 to 230 V RMS at a frequency of about 45 to 65 Hz. In some embodiments, the single-phase input power is at an AC line voltage of about 103 to 127 V RMS, an AC line current of about 30 A RMS, and a frequency of about 45 to 65 Hz. In other embodiments, the single-phase input power is at an AC line voltage of about 207 to 253 V RMS, an AC line current of about 15 A RMS, and a frequency of about 45 to 65 Hz. In one embodiment, the maximum frequency of the AC line voltage and current signals is about 65 Hz, and the minimum sample rate is about 520 Hz.


One of the sensors 30 (which can be read by the DSP 26, in some embodiments) can sense a reference voltage that can be used to calculate an offset value for the analog inputs managed by the DSP 26. The reference voltage is generally one-half of the DC rail voltage for the active filters that process the signal. However, due to tolerances, temperature, and age, the reference voltage can vary slightly over time. Accordingly, the reference voltage can be measured by one of the sensors 30 in order to account for any variances. In some embodiments, the maximum frequency of the reference voltage input can be about 8 Hz, and the minimum sample rate can be about 64 Hz. In some embodiments, the reference voltage can be measured from any suitable point inside of the controller 24.


As shown in FIG. 1, the DSP 26 can include an event manager peripheral module 50 and a pulse-width modulation (PWM) output module 52. In some embodiments, the PWM output module 52 can include six PWM output channels in order to control one or more inverter drives 53 that can supply three-phase power to the motor 16. The PWM output module 52 can use a switching frequency of about 7.2 kHz plus or minus 1%. The PWM output waveforms can be symmetric and can be operated in a manner consistent with space vector pulse-width modulation (SVPWM) firing sequences, as will be described in more detail below. The event manager peripheral module 50 in the DSP 26 can control the PWM output waveforms, as well as their dead band timers.


The controller 24 can include one or more types of memory, for example, program memory (FLASH), primary data memory, and secondary non-volatile data memory (e.g., a serial EEPROM 54). The EEPROM 54 can be connected to the DSP 26. The controller 24 can also include a serial communication link 56 (e.g., an optically-isolated RS-232 link using a standard DB-9 connector). In some embodiments, the serial communication link 56 can be permanently or removably connected to an external device 58, such as a personal computer, a laptop, or a personal digital assistant (PDA) running a terminal program 60 (e.g., Windows HyperTerminal). In one embodiment, the parameters for serial communication can include 9600 baud, 8 data bits, no parity, 1 stop bit, and XON/XOFF flow control. In some embodiments, the data from the terminal program 60 can be transferred to the DSP 26 from the microcontroller 28. The data from the terminal program 60 can be limited to ASCII printable standard characters and can be interleaved with control data packets. The most significant bit of the data byte being sent can be used by the DSP 26 to identify the control data packets.


In some embodiments, a user can access the controller 24 with the external device 58 in order to configure drive parameters, to manually run or stop the drives 46 to the motor 16, or to read one or more of the following parameters: run/stop input status, current actual pressure, motor speed, bus voltage, bus current, total operating hours, powered time, running time, controller parameters, fault condition codes, fault history, software version, various parameter lists (e.g., control or operational parameters), current drive frequency, input line voltage, input line current, input power, output power to motor, constant pressure setpoint, heat sink temperature, auxiliary output relay status, motor select switch setting, pressure level setpoint switch setting, low band pressure, high band pressure, dry running status, proportional gain, integral gain, calibrated minimum speed value, V/Hz curve settings, limp mode thresholds, or any other desired information. Each of these parameters can be stored in the EEPROM 54. Many of these parameters will be discussed in more detail below with respect to FIGS. 2-13. A user can also enter one or more of the following commands via the external device 58 and the serial communication link 56: run pressure calibration (in order to manually run a self-calibration procedure), software reset, and default EEPROM (in order to set the parameters stored in the EEPROM back to their default settings).


In some embodiments, the serial communication link 56 can be used to link any number of controllers 24 located throughout the world via a network (e.g., the Internet) to one another and/or to a monitoring system or station. For example, each controller 24 can be removable or permanently connected to a computer or any other suitable device configured to communicate over the network with the monitoring system or station. Each controller 24 can have an Internet-protocol address and/or can be equipped with additional peripheral equipment for network communications. The monitoring system or station can be used to monitor the operation of the controllers 24, pumps 10, and/or motors 16; to troubleshoot the controllers 24, pumps 10 and/or motors 16; and/or to change the operating parameters of the controllers 24.


As also shown in FIG. 1, the pump control system 14 can include a terminal 62. The terminal 62 can be connected to the controller 24. In some embodiments, the terminal 62 and the controller 24 can be included in a single housing and mounted in any suitable position in the water distribution system for access by a user. The housing can be a rain-proof/weather-resistant enclosure and can be constructed of NEMA-4 material. The terminal 62 can be directly or indirectly connected to the DSP 26.


The terminal 62 can include a pressure level setpoint switch 64, which can be used to set a constant pressure setpoint for the water distribution system. In one embodiment, a default constant pressure setpoint (e.g., about 60 PSI) can be stored in the EEPROM 54. In one embodiment, the pressure level setpoint switch 64 can have 16 positions and the pressure settings can range from about 25 PSI to about 95 PSI in 5-PSI increments. In some embodiments, if the pressure level setpoint switch 64 is in a certain position (such as the zero position), the constant pressure setpoint can be loaded from the external device 58 over the serial communication link 56 and can be stored in the EEPROM 54. The constant pressure setpoint can then be recovered from the EEPROM 54 when power is provided to the pump control system 14. In some embodiments, a user can set the constant pressure setpoint via the external device 58 and the serial communication link 56 according to any suitable increments (e.g., 1 PSI increments, 0.5 PSI increments, 0.01 PSI increments, etc.).


The controller 24 (e.g., using the PWM output module 52 of the DSP 26 and the drives 46) can drive a three-phase induction motor using a space vector pulse-width modulation (SVPWM) technique. Using the SVPWM technique, a commanded drive frequency can be converted to an angular value via numerical integration. The SVPWM output can provide precise control of the magnitude and angle for the stator electromagnetic field of the AC induction motor. The angular value can be determined by integrating the commanded drive frequency. The angular value can be combined with the desired output voltage level (which is a function of the speed of the motor 16) in order to provide the pulse timings for the three-phase power converter.


The desired output voltage level can be calculated using a Volts-Hertz (V/Hz) curve, which can provide the output voltage level based on the drive frequency. FIG. 13 illustrates an example of a V/Hz curve, including the following four parameters: offset voltage, rated voltage, maximum operating frequency, and rated frequency. The shape of the V/Hz curve depends on the type of motor and can generally be determined from the motor speed and the voltage ratings. The rated voltage and the rated frequency are often displayed on the motor itself. In one embodiment, default settings of about 250 V RMS for the rated voltage and about 65 Hz for the rated frequency can be stored in the EEPROM 54. Most motor manufacturers supply the offset voltage with the V/Hz curve. However, in one embodiment, default setting of about 10 V RMS for the offset voltage can be stored in the EEPROM 54. The offset voltage is necessary to produce the rated flux (and thus the rated torque) and is dependent on the stator winding resistance and the rated magnetized current of the motor 16. At motor speeds greater than the rated frequency, the output voltage will generally remain at the rated voltage and the torque will decrease (due to field weakening). In some embodiments, the maximum operating frequency is only set to a value higher than the rated frequency if the motor is not fully loaded at the rated frequency (i.e., the motor does not use the entire rated torque). In one embodiment, a default setting of about 80 Hz for the maximum operating frequency can be stored in the EEPROM 54.


In some embodiments, the V/Hz curves can be implemented via a first order curve with an upper limit and an offset term. In other embodiments, a second order curve can be implemented to further optimize system performance. For each V/Hz curve, several parameters can be stored in the EEPROM 54 of the pump control system 14. The stored parameters can include slope, rated (maximum) voltage, offset voltage, maximum operating frequency, and minimum operating frequency. The slope value can be calculated based on the offset voltage, the rated voltage, and the rated frequency.


As shown in FIG. 1, the terminal 62 can include a motor select switch 66, which can be used in some embodiments to configure the drives 46 for the particular motor 16, for example, by selecting an appropriate V/Hz curve. In one embodiment, the motor select switch 66 can be an 8-position rotary switch with three digital output lines. In some embodiments, the motor select switch 66 can be used to select three sets of factory defaults for three specific types of motors. A user can position the motor select switch 66 in order to select the V/Hz curve, a voltage limit, a current limit, and a power limit (i.e., motor protection limits) for a particular type of motor. In one embodiment, a user can select one of the following types of motors using the motor select switch 66: a 30 to 60 Hz motor; a 30 to 80 Hz motor; and a 30 to 200 Hz motor. For a 30 to 60 Hz motor, the maximum voltage, the rated frequency, and the maximum frequency can each occur at about 60 Hz. For a 30 to 80 Hz motor, the rated frequency can occur at about 65 Hz and the maximum frequency can occur at about 80 Hz. Between 65 Hz and 80 Hz, the output voltage can be held constant at the maximum value. For a 30 to 200 Hz motor, the maximum voltage, the rated frequency, and the maximum frequency can each occur at about 200 Hz.


The motor select switch 66 can also be used to select a custom motor, which can be manually configured by the user via the serial communication link 56. In some embodiments, a user can set a V/Hz curve, a voltage limit, a current limit, a power limit, a shutdown bus current, a limp mode bus current, and dry-running current setpoints for a custom motor. In one embodiment, for the V/Hz curve of a custom motor, a user can specify each of the parameters shown in FIG. 13 via the serial communication link 56 (i.e., offset voltage, rated frequency, rated voltage, and maximum operating frequency). In one embodiment, the motor select switch 66 must be in a zero position in order for the user to be allowed to change various settings via the serial communication link 56. In some embodiments, if a user makes changes to the V/Hz curves via the serial communication link 56, the changes will not take effect until the pump control system 14 is reset.


As shown in FIG. 1, the terminal 62 can also include a tank select switch 74 for providing a tank parameter input (such as tank size) to the controller 24 and/or the EEPROM 54. The controller 24 can use the tank parameter input from the tank select switch 74 to select different gains (e.g., a proportional gain, an integral gain, etc.) for use in controlling the pump 10 and/or the motor 16.


As shown in FIG. 1, the terminal 62 can include one or more status indicator light-emitting diodes (LEDs) (e.g., LED A and LED B). The status indicator LEDs can be lit continuously or can flash at various rates (e.g., slow, fast, or combination rates) to indicate the status of the drive 46 of the motor 16. In one embodiment, LED A (e.g., a green LED) can be lit continuously when power is being applied, but the controller 24 is not driving the motor 16. LED A can flash slowly when the controller 24 is driving the motor 16 and the controller 24 is not operating in a limp mode (as will be described in detail below with respect to FIG. 4). LED A can flash quickly if the controller 24 is driving the motor 16 in a limp mode. LED A can also flash at a 50% duty cycle during a 30-second power-up delay.


In one embodiment, LED B (e.g., a red LED) can be used to indicate various fault conditions to a user. Each of the various fault conditions will be described in detail below with respect to FIGS. 5-11. In one embodiment, when no fault conditions have occurred since the last reset (or since the fault conditions were last cleared), LED B is not lit. If a fault condition occurs, LED B can flash at a certain rate based on the type of fault condition. LED B can continue to flash at the particular rate until a different fault condition occurs or until a user presses a clear fault LED button 68 on the terminal 62. The clear fault LED button 68 can be a normally-open push-button contact that can halt the flashing of LED B when the push-button contact is closed. In one embodiment, the fault conditions and/or the fault log are not cleared when a user presses the clear fault LED button 68. LED B can be continuously lit if a certain number of fault conditions (such as 15 fault conditions) has occurred within a certain time period (such as 30 minutes). In some embodiments, the flash rate of LED B only indicates a general class of the fault conditions. However, in other embodiments, the flash rate of LED B can indicate specific individual fault conditions. In one embodiment, LED B is lit when a fault condition is occurring, but the controller 24 shuts off LED B if the fault condition is no longer occurring. In other words, LED B does not remain lit continuously once the fault condition is no longer occurring, even if the pump control system 14 does not include a clear fault LED button 68 or a user has not pushed the clear fault LED button 68.


The terminal 62 can include an auxiliary relay 70, as shown in FIG. 1, having a programmable output. The auxiliary relay 70 can be used to control any external devices and/or circuits. In some embodiments, if enabled, the auxiliary relay 70 can report the state of the motor 16 and can be closed whenever the controller 24 is driving the motor 16. If not enabled, the output of the auxiliary relay 70 can be off. A user can enable or disable the auxiliary relay 70 via the serial communication link 56 and the external device 58. A user can program a minimum time period (e.g., 500 ms) during which the auxiliary relay 70 is energized before being de-energized. A user can also program a minimum time period (e.g., 500 ms) that the auxiliary relay 70 must be de-energized before being re-energized. In addition, a user can program a minimum time period (e.g., 500 ms) that the motor 16 must be off before the auxiliary relay 70 is allowed to de-energize. In general, the auxiliary relay 70 can be programmed to provide any suitable output signal based on any condition or parameter (e.g., pressures, currents, voltages, limp mode status) that can be determined or monitored by the controller 24. For example, the auxiliary relay 70 can be connected to a second, booster pump or a pump that provides doses of chemicals to a pool or spa system. The auxiliary relay 70 can be programmed to provide any suitable output for controlling the second, booster pump (such as operating the booster pump when the actual pressure in the water distribution system falls below a certain threshold). The auxiliary relay 70 can be programmed to provide any suitable output for controlling the doses of chemicals to the pool or spa system (such as providing a chemical dose after a certain number of hours of operation).


The terminal 62 can include one or more power factor correction (PFC) controls (e.g., PFC A and PFC B, as shown in FIG. 1). PFC A can be used to select a target DC bus voltage (e.g., 350 V DC or 380 V DC). PFC B can be used to enable or disable the hardware-based PFC module 34 in the controller 24. The terminal 62 can also include a PTC relay 72 that can be used to enable or disable a PTC pre-charge circuit for the DC bus line. The PFC module 34 can be enabled when the PTC pre-charge circuit is switched out and the bus is considered started.


The controller 24 can be programmed to operate the pump control system 14 in order to perform several functions and/or methods according to several embodiments of the invention, as shown and described below with respect to FIGS. 2-12. In some embodiments, the DSP 26 of the controller 24 is programmed to perform each of the functions and/or methods shown and described with respect to FIGS. 2-12.


Referring first to FIG. 2, the controller 24 can perform a self-calibration procedure when the pump 10 is initially installed (e.g., when a submersible pump is lowered into the ground, when a pool or spa pump is installed, when a pump is connected to a water distribution system, etc.). A user can perform a number of tasks during the installation of the pump 10. For example, those tasks can include the following: configuring any rotary switch settings, connecting a pressure feedback, connecting run/stop input terminals to external switches and/or devices (e.g., a device can provide an output to energize a relay or a circuit can be electronically opened or closed), connecting the motor leads, connecting the motor chassis to earth ground, and connecting the line power (single-phase 115 V RMS or 230 V RMS). Once one or more of these tasks are completed and power is initially provided to the pump 10 and/or the motor 16, the controller 24 can begin (at 100) the self-calibration procedure. Power can be provided when a user connects the AC bus line 22 to the controller 24, which provides power to the power factor correction and converter/rectifier module 34, to the DC bus line 48, to the drives 46, and to the pump 10 and/or the motor 16.


In some embodiments, all user valves or outputs in the water distribution system are shut and the pressure in the water tank 12 is below the constant pressure setpoint before the controller 24 begins the self-calibration procedure. If the pressure in the water tank 12 is greater than the constant pressure setpoint, the controller 24 can delay the self-calibration procedure until the pressure in the water tank 12 falls below the constant pressure setpoint. In some embodiments, the controller 24 can wait for another time period (such as five seconds) after the pressure in the water tank 12 falls below the constant pressure setpoint, during which time period flow in the water distribution system can be shut off (in order to prevent inaccurate calibration results).


The self-calibration procedure, in some embodiments, can include a regulation mode during which the controller 24 operates the pump 10 to raise the pressure in the water tank 12 to a desired tank pressure setpoint. Once the pressure in the water tank 12 has been raised to the desired tank pressure setpoint or if the pressure in the water tank 12 was already at the desired tank pressure setpoint when the regulation mode began, the self-calibration procedure can continue to a search mode. In the search mode, the controller 24 can determine a search pressure by adding a pressure value (e.g., 1 PSI) to the current pressure in the water tank 12.


Referring to FIG. 2, in the search mode, the controller 24 can begin operating (at 102) the motor 16 in a forward direction (i.e., the direction that supplies water to the water tank 12 and/or to the water distribution system) at a relatively low speed (e.g., a minimum operating speed of 30 Hz). The controller 24 can sense (at 104) a pressure in the water distribution system. In one embodiment, the controller can read the pressure sensor 18 positioned in an outlet port 20 between the pump 10 and the water tank 12. The controller 24 can determine (at 106) whether the pressure has increased by a pressure increment, such as 1 PSI or any other suitable pressure increment. If the sensed pressure has not increased by the pressure increment, the controller 24 can increase (at 108) an operating frequency of the motor by a frequency increment, such as 1 Hz. In other words, the controller 24 can begin operating the motor 16 at the motor's minimum operating speed and slowly increase the motor speed until the pressure in the water tank 12 exceeds the search pressure. In some embodiments, the controller 24 can increase the motor speed, pause for a time period to allow the water distribution system to stabilize (e.g., for 10 seconds), and then resume increasing the motor speed. The controller 24 can pause the increasing of the motor speed to allow the water distribution system to stabilize any suitable number of times during the self-calibration procedure.


If the sensed pressure has increased by the pressure increment, the controller 24 can set (at 110) one or more gain values (e.g., a proportional gain, an integral gain, or any other system gain) based on the current speed of the motor 16. In some embodiments, the controller 24 can access a look-up table in order to find the appropriate gain values for the current speed of the motor 16. The controller 24 can then store (at 112) the speed of the motor 16 as the minimum calibrated speed value or the minimum non-zero flow speed. In some embodiments, the controller 24 can decrease or increase the current speed of the motor 16 by one or more frequency increments (or by any other suitable increment or value) and store the decreased or increased speed value as the minimum non-zero flow speed. For example, the controller 24 can access a look-up table to find an appropriate minimum non-zero flow speed for the current motor speed. The minimum non-zero flow speed can be stored in any suitable system memory, such as the EEPROM 54. The search mode can end when the motor 16 is spinning at or above the minimum non-zero flow speed, which causes flow into the water tank 12 and raises the pressure in the water tank 12. The minimum non-zero flow speed can be a function of the pump 10, the motor 16, a total head pressure at the pump 10 (which can be a function of a pressure setpoint for the water tank 12 and a depth of a well, if the pump 10 is being installed in a well), and any other sizes, features, or requirements of the water distribution system within which the pump 10 is installed. It should also be noted that even after the self-calibration procedure is used to set the minimum non-zero flow speed, a user can change the minimum non-zero flow speed via the external device 58 and the serial communication link 56.


In addition to the self-calibration procedure described above, in some embodiments, the controller 24 can compute an idle speed for the water distribution system. The controller 24 can also set gains for an actual pressure regulation proportional/integral control loop. The gains can be based on the minimum non-zero flow speed, and can be determined, for example, by accessing a look-up table of empirical values. In addition, the controller 24 can initialize various portions of the pump control system 14 by setting registers, inputs/outputs, and/or variables.


After the self-calibration procedure is complete, the controller 24 can use the minimum non-zero flow speed as the initial speed for the motor 16 whenever the motor 16 is initially turned on. In other words, when a pressure in the water distribution system drops below a certain level (as will be described in detail below with respect to FIG. 3), the controller 24 can use the minimum non-zero flow speed as the initial speed for the motor 16, rather than using an initial speed close to zero and ramping the speed up to a more effective speed for the particular water distribution system. Accordingly, the minimum non-zero flow speed can be generated by the controller 24 for each particular water distribution system.


In addition to performing a self-calibration procedure when the pump 10 is installed, the controller 24 can perform a self-calibration procedure whenever power and a new constant pressure setpoint are provided to the pump control system 14. When power is provided to the drive 46 for the motor 16, the pump control system 14 determines if the current constant pressure setpoint is the same as the previous constant pressure setpoint. The previous constant pressure setpoint can be stored in memory, such as the EEPROM 54. In some embodiments, a user can provide a new constant pressure setpoint for the water distribution system by using the external device 58 connected to the controller 24 via the serial communication link 56. In other embodiments, the controller 24 can automatically perform a self-calibration procedure whenever the drive 46 is provided with power and a new input from the pressure setpoint switch 64 and/or the motor select switch 66. For example, a 30 second delay period during the power-up process can be used by the controller 24 to check the switches 64 and/or the switch 66 to determine if the settings have been changed. If the settings have been changed, the controller 24 can automatically perform a self-calibration procedure. Also, if the motor select switch 66 is set for custom parameters (e.g., as input by the user via the serial communication link 56), the user can manually request the self-calibration procedure after updating the custom parameters. In some embodiments, a user can manually or automatically request an additional self-calibration procedure (e.g., via the serial communication link 56). If the user requests an additional self-calibration procedure, the controller 24 can stop operating, but it may not be necessary for the controller 24 to power-down before performing the self-calibration procedure.


In some embodiments, when the motor 16 is started from a stopped state, the controller 24 can use a “soft start” algorithm. In one embodiment, the soft start algorithm can be an acceleration of the motor 16 from 0 to about 30 Hz in about 1 second. The soft start algorithm can also be defined by a self-lubrication specification for the pump 10 and/or the motor 16.


In some embodiments, when the motor 16 is commanded to stop while in a running state, the controller 24 can use a “soft stop” algorithm. The controller 24 can use a soft stop algorithm when the commanded drive frequency is below about 30 Hz. The voltage provided to the motor 16 can be ramped down to zero volts as quickly as possible without causing motor regeneration. The controller 24 can also use a soft stop algorithm to prevent rapid cycling when the water demand is slightly less than the minimum flow rate of the pump 10 for a particular water tank 12 and well depth. In this case, a soft stop algorithm can allow the motor 16 to idle at a minimum operating speed for about 10 seconds after the target pressure is reached and the water demand has stopped. This type of soft stop algorithm can mitigate constant on/off cycling of the pump 10 during times of low water demand (e.g., when a leak has occurred).


Referring to FIG. 3, the controller 24 can regulate the speed of the motor 16 in order to maintain a constant or near constant water pressure in the water distribution system. The controller 24 can use a proportional/integral (PI) control loop to generate an updated speed control command (i.e., a PI control output). The controller 24 can measure (at 150) an actual pressure in the water distribution system. Generally, the pump control system 14 remains idle until the pressure in the water distribution system drops below a pre-set pressure value (which can also be referred to as the constant pressure setpoint). More specifically, the controller 24 can determine (at 152) whether the actual pressure is less than a pre-set pressure value. If the actual pressure is less than the pre-set pressure value, the controller 24 can subtract (at 154) the actual pressure from a desired pressure to determine a pressure error. The controller 24 can determine (at 156) an integral of the pressure error and can multiply (at 158) the integral by an integral gain (e.g., a gain of 18) to determine a first value (e.g., the integral component of the PI control output). The controller 24 can multiply (at 160) the pressure error by a proportional gain (e.g., a gain of 80) to determine a second value (e.g., the proportional component of the PI control output). The controller 24 can sum (at 162) the first value and the second value and can generate (at 164) an updated speed control command based on the sum of the first value and the second value (e.g., the sum of the proportional and integral components of the PI control output). In some embodiments, the speed control command can represent a motor drive frequency. Based on the updated speed control command, the controller 24 can increase or decrease (at 166) the speed of the motor 16 to maintain a constant or near constant pressure setpoint. In this manner, the controller 24 can regulate the speed of the motor 16 in real-time or near real-time.


In some embodiments, the pump control system 14 can provide integral control in order to provide a zero steady-state error. In other words, if the motor 16 is spinning and the pump 10 is providing flow, the actual pressure can be equal to the constant pressure setpoint and the motor 16 can continue to operate. However, if the pump control system 14 provides only proportional control, the actual pressure will be slightly lower than the constant pressure setpoint. This slightly low pressure occurs because proportional control is error driven (i.e., there must be some error to generate a non-zero proportional output). Thus, if the pump 10 and the motor 16 are spinning and supplying water flow as the actual pressure is equal to or approaching the constant pressure setpoint, the proportional output is zero and the controller 24 does not increase the speed of the motor to meet or exceed the constant pressure setpoint. As a result, the actual pressure is slightly lower than the constant pressure setpoint if the pump control system 14 provides only proportional control.


When the pressure in the water distribution system exceeds the constant pressure setpoint, the controller 24 can stop driving the motor 16 after a predetermined increase (e.g., 1 PSI) in pressure above the pre-set pressure value (which can also be referred to as the constant pressure setpoint). In some embodiments, there is a hysteresis band above and below the constant pressure setpoint. For example, a high band pressure value can be 4 PSI greater than the constant pressure setpoint and a low band pressure value can be 1 PSI less than the constant pressure setpoint. However, in some embodiments, a user can configure the high and low band pressure values, and the user can store the high and low band pressure values in memory (such as an EEPROM).


In some embodiments, the actual pressure in the water distribution system is monitored constantly or almost constantly, but no action is taken until the actual pressure falls below the low band pressure. Once the motor 16 starts spinning, normal operation with the PI control loop (as described above with respect to FIG. 3) can commence and can continue until the actual pressure exceeds the high band pressure or until the PI control output is zero. With the motor 16 spinning, the controller 24 can continuously or semi-continuously regulate (e.g., regulate at a suitable sample rate) the motor speed using the PI control loop, as long as the actual pressure remains below the high band pressure value. The drives 46 to the motor 16 can be set to zero when the actual pressure exceeds the high band pressure value. During normal operation, the actual pressure can remain constant or near constant at a value close to the constant pressure setpoint, as long as water usage does not exceed the capabilities of the pump 10 and/or the motor 16. However, large instantaneous changes in flow requirements may result in variations from the constant pressure setpoint and/or the high and low band pressure values.


The controller 24 can perform low-pressure undershoot and low-pressure recovery time procedures during instances of increased flow. For example, the controller 24 can set appropriate gains in order to recover from a large flow demand after which the motor 16 cannot instantaneously speed up enough. The controller 24 can also perform a high-pressure overshoot procedure during instances of decreased flow (including zero flow). For example, the controller 24 can set appropriate gains in order to recover when a valve is closed so quickly that flow cannot be stopped quickly enough.


As discussed above, in order to provide high performance control, the controller 24 can take into account the motor speed required for the pump 10 to open any check valves and produce a positive water flow in the water distribution system. This motor speed can be determined during the self-calibration procedure described above with respect to FIG. 2 (or during an automatic or manual calibration procedure conducted subsequent to the initial installation of the pump 10) and can be referred to as the minimum calibrated speed value or the minimum non-zero flow speed. In some embodiments and/or particular situations, the controller 24 can provide an actual motor command to the motor 16 equal to the sum of the speed control command (i.e., the PI control output as described above with respect to FIG. 3) and the minimum non-zero flow speed. As a result, small pressure errors are capable of turning the motor 16 on, which allows more accurate pressure regulation during low-flow states, as well as rapid responses for large transient increases in flow demand.


In some embodiments, the controller 24 can provide a pump motor frequency of zero in certain situations. For example, as described above, if the actual pressure exceeds the high band pressure value, the drive to the motor 16 can be ramped down to a zero frequency. As another example, when the actual pressure has reached the constant pressure setpoint and no flow is occurring, the PI control output may fall below a low threshold. When the PI control output falls below the low threshold, the controller 24 can set the motor output at an idle speed for an idle time period, such as ten seconds. The idle speed can be a speed below the minimum non-zero flow speed that can keep the motor spinning without opening any check valves or causing water to flow from the pump 10. During the idle time period, if a drop in pressure occurs (i.e., a demand for flow occurs), the controller 24 can automatically switch from the idle mode to the normal pressure regulation mode as described with respect to FIG. 3. During these transitions, the motor 16 is already running at a speed near the minimum non-zero flow speed, which allows a quicker flow response than starting the motor 16 from a zero speed. However, if the idle time period has elapsed without a drop in pressure (i.e., without a demand for flow), the drive to the motor 16 can be ramped down to a zero frequency.


Referring to FIG. 4, the controller 24 can operate the motor 16 in a limp mode in a number of different situations. The controller 24 can measure one or more of the following parameters: the bus current (at 200); the bus voltage (at 202); the line current (at 204); and the heat sink temperature from the temperature sensor 19 (at 206). The controller 24 can determine (at 208) whether the bus current is greater than a limp current limit setting (e.g., about 7 amps). If the bus current is greater than the limp current limit setting, the controller 24 can drive (at 210) the motor 16 in a limp mode. In the limp mode, the controller 24 can reduce (at 212) one or both of an output voltage provided to the motor 16 and an operating frequency of the motor 16 (e.g., reduce the output voltage and the operational frequency along the V/Hz curve of the motor 16).


The controller 24 can also determine (at 214) whether the bus voltage is less than a programmed threshold (e.g., about 275 volts). If the bus voltage is less than the programmed threshold, the controller 24 can drive (at 210) the motor 16 in the limp mode. The controller 24 can further determine (at 216) whether the line current is greater than a programmed threshold (e.g., about 26 amps). If the line current is greater than the programmed threshold, the controller 24 can drive (at 210) the motor 16 in the limp mode.


The controller 24 can still further determine (at 218) whether the heat sink temperature read from the temperature sensor 19 is greater than a limp temperature limit setting (e.g., about 60 degrees Celsius). If the temperature is greater than the limp temperature limit setting, the controller 24 can drive (at 210) the motor in the limp mode. In some embodiments, the controller 24 can set the limp temperature limit setting during a power-up procedure for the motor drive (e.g., a 30 second power-up procedure). For example, the controller 24 can determine whether the input voltage from the AC bus line 22 is 115 V or 230 V. In one embodiment, if the input voltage is 115 V, the controller 24 can set the limp temperature limit setting to 51 degrees Celsius, and if the input voltage is 230 V, the controller 24 can set the limp temperature limit setting to 60 degrees Celsius. However, in some embodiments, a user can change the limp temperature limit setting, for example, using the external device 58 and the serial communication link 56. If the user changes the limp temperature limit setting, the controller 24 can change a control bit in the EEPROM 54 to indicate that the user has changed the limp temperature limit setting. During subsequent power-up procedures or power cycles, the controller 24 can recognize that the control bit has been changed. The controller 24 can then use the limp temperature limit setting defined by the user, rather than using one of the default limp temperature limit settings that correspond to the input voltage.


Once the controller 24 is operating the motor 16 in the limp mode, the controller 24 can attempt to continue operating (at 220) the motor drive within specified operational limits. The controller 24 can determine (at 222) whether the bus current, the bus voltage, the line current, and/or the heat sink temperature have returned to within the specified operational limits. If the motor drive cannot operate within the specified operational limits or if the controller 24 has been operating in the limp mode for too long (i.e., excessive limp), the controller 24 can shut down (at 224) the motor drive. In some embodiments, when the controller 24 operates the motor 16 in the limp mode, the controller 24 does not generate or store a fault condition code in the fault log (as described below with respect to FIG. 15). When the motor 16 is operating in the limp mode, pressure regulation may not be maintained, but system failure or shutdown can often be prevented.


As shown and described with respect to FIGS. 5-11, the controller 24 can detect a number of fault conditions and can attempt to prevent damage to itself and/or the motor 16 and/or the pump 10. In general, the following several paragraphs describe each of the fault conditions, the conditions under which the fault condition occurs, and the action the controller 24 takes after sensing the fault condition. FIG. 12 illustrates a method of creating a fault log in order to store information regarding each of the fault conditions.


Referring to FIG. 5, the controller 24 can determine whether a bus over-voltage fault condition or a bus under-voltage fault condition has occurred by first measuring (at 250) the bus voltage of the DC bus line 48. The controller 24 can determine (at 252) whether the bus voltage is greater than an upper limit (e.g., about 450 volts) or less than a lower limit (e.g., about 250 volts). If the bus voltage is greater than the upper limit or less than the lower limit, the controller 24 can generate (at 254) a fault condition code. The controller 24 can shut down (at 256) the drive 46 to the motor 16 for a time period (e.g., about 30 seconds). The controller 24 can attempt to restart (at 258) the drive 46 after the time period has elapsed.


Referring to FIG. 6, the controller 24 can determine whether a bus over-current fault condition has occurred by first measuring (at 300) the bus current of the DC bus line 48. The controller 24 can determine (at 302) whether the bus current is greater than an upper limit (e.g., about 25 amps). If the bus current is greater than the upper limit, the controller 24 can generate (at 304) a fault condition code. The controller 24 can shut down (at 306) the drive 46 to the motor 16 for a time period (e.g., about 30 seconds). The controller 24 can attempt to restart (at 308) the drive 46 to the motor 16 after the time period has elapsed.


Referring to FIG. 7, the controller 24 can determine whether a dry-running fault condition has occurred by sensing (at 350) a first bus current value from the DC bus line 48. The controller 24 can determine (at 352) whether the first bus current value is less than a pre-set threshold (e.g., about 1.5 amps). If the first bus current value is less than the pre-set threshold, the controller 24 can start (at 354) a timer. After a pre-set time period (e.g., about 1 second) has elapsed, the controller 24 can sense (at 356) a second bus current value. The controller 24 can determine (at 358) whether the second bus current value is still less than the pre-set threshold. If the second bus current is still less than the pre-set threshold, the controller 24 can determine (at 360) whether the motor drive is operating at full speed. If the motor drive is operating at full speed, the controller 24 can generate (at 362) a fault condition code. The controller 24 can shut down (at 364) the motor drive for a time period (e.g., about 30 seconds). The controller 24 can attempt to restart (at 366) the motor drive after the time period has elapsed.


Referring to FIG. 8, the controller 24 can determine whether an over-temperature fault condition has occurred by sensing (at 400) a first temperature value of a heat sink (e.g., sensing a temperature of the heat sink 21 of the controller 24 with the temperature sensor 19). The controller 24 can determine (at 402) whether the first temperature value is greater than a temperature upper limit (e.g., about 70s degrees Celsius). If the first temperature value is greater than a temperature upper limit, the controller 24 can generate (at 404) a fault condition code. The controller 24 can also shut down (at 406) the motor drive. After the motor drive has been shut down, the controller 24 can sense (at 408) a second temperature value of the heat sink. The controller 24 can determine (at 410) whether the second temperature value is less than a limp mode temperature limit (e.g., about 60 degrees Celsius). If the second temperature value is less than the limp mode temperature limit, the controller 24 can attempt (at 412) to restart the motor drive. If the second temperature value is not less than the limp mode temperature limit, the controller 24 can continue to sense (at 408) the heat sink temperature until the heat sink temperature falls below the limp mode temperature limit.


Referring to FIG. 9, the controller 24 can determine whether a high-speed jamming fault condition has occurred by sensing a first bus current value of the DC bus line 48 and by sensing the motor speed. As used herein and in the appended claims, the term “motor speed” refers to one or more of an actual speed of the motor 16, a commanded motor speed, and/or a commanded motor frequency. The controller 24 can determine (at 450) whether the first bus current value is greater than a bus current upper limit (e.g., about 15 amps) and whether the motor speed is greater than or equal to a high-speed limit. If the first bus current value is less than the bus current upper limit and/or if the motor speed is less than the high-speed limit, a high-speed jamming fault condition has not occurred and the controller 24 can continue to operate (at 452) the motor 16 in the forward direction. If the first bus current value is greater than a bus current upper limit and if the speed of the motor is greater than or equal to a high-speed limit, the controller 24 can increment (at 454) a counter and set (at 454) a timer. The controller 24 can determine (at 456) whether the counter has been incremented above an increment limit (e.g., about five times) within a first time period (e.g., about five minutes). If the counter has not been incremented above the increment limit within the first time period, the controller 24 can return to sensing (at 450) the bus current value and the motor speed. If the counter has been incremented above the increment limit within the first time period, the controller 24 can attempt to operate (at 458) the motor 16 in a reverse direction. The controller 24 can sense a second bus current value while the motor is operating in the reverse direction. The controller 24 can determine (at 460) whether the second bus current value is also greater than the bus current upper limit. If the second bus current value is also greater than the bus current upper limit (i.e., there is also a bus over-current fault condition in the reverse direction), the controller 24 can generate (at 462) a fault condition code and shut down the motor drive. If the second bus current value is less than the bus current upper limit (i.e., there is not a bus over-current fault condition in the reverse direction), the controller 24 can operate (at 464) the motor 16 in the reverse direction for a second time period (e.g., about 30 seconds). Once the second time period has elapsed and presumably the foreign object is cleared, the controller 24 can attempt (at 452) to operate the motor in the forward direction. In some embodiments, the controller 24 can also monitor for a high-speed jamming fault condition by determining the change in bus current with respect to a change in time (e.g., in order to detect rapid changes in the bus current that may indicate a high-speed jamming fault condition).


Referring to FIG. 10, the controller 24 can determine whether a low-speed jamming fault condition has occurred by sensing a first bus current value of the DC bus line 48 and sensing the motor speed. The controller 24 can determine (at 500) whether the first bus current value is greater than a programmed threshold (e.g., about 7 amps) and whether the speed of the motor is less than a motor speed low threshold. If the first bus current value is greater than a programmed threshold and if the speed of the motor is less than a motor speed low threshold, the controller 24 can attempt to operate (at 502) the motor 16 in a reverse direction. The controller 24 can sense a second bus current value while the motor is operating in the reverse direction. The controller 24 can determine (at 504) whether the second bus current value is also greater than the programmed threshold. If the second bus current value is also greater than the programmed threshold (i.e., there is also a low-speed jamming fault condition in the reverse direction), the controller 24 can generate (at 506) a fault condition code and can shut down (at 506) the motor drive. If the second bus current value is less than the programmed threshold (i.e., there is not a low-speed jamming fault condition in the reverse direction), the controller 24 can operate (at 508) the motor 16 in the reverse direction for a time period (e.g., about 30 seconds). After the time period has elapsed and presumably the foreign object is cleared, the controller 24 can attempt to operate (at 510) the motor 16 in the forward direction.


Referring to FIG. 11, the controller 24 can monitor the pressure sensor 18 or any other pressure sensors in the water distribution system to detect pressure sensor failure. The controller 24 can detect a first pressure sensor signal by reading (at 550) the pressure sensor 18. The controller 24 can compare (at 552) the first pressure sensor signal to a sense range. The controller 24 can determine (at 554) whether the first pressure sensor signal is outside of the sense range (e.g., the pressure sensor itself may be shorted, not connected, or open, or a cable connected to the pressure sensor may be shorted, not connected, or open). If the pressure sensor signal is outside of the sense range, the controller 24 can shut down (at 556) the motor drive. The controller 24 can determine (at 558) whether the pressure sensor has been replaced or repaired by attempting to detect a second pressure sensor signal after power has be reapplied to the motor drive. If the controller 24 does not sense a second pressure sensor signal, the controller 24 can allow (at 560) the motor drive to remain shut down until a second pressure signal is detected.


Also referring to FIG. 11, the controller 24 can determine whether the pressure sensor 18 is failing due to a short condition with respect to the power supply for the pressure sensor 18. The controller 24 can detect a pressure sensor signal by reading (at 550) the pressure sensor 18. The controller 24 can determine (at 562) whether the pressure sensor signal indicates that the power supply is shorted. If the pressure sensor signal does indicate that the power supply is shorted, the controller 24 can disable (at 564) the power supply. The controller 24 can determine (at 566) whether the shorted power supply is the selected sensor input for the pressure sensor 18. If the shorted power supply is the selected sensor input for the pressure sensor 18, the controller 24 can generate (at 568) a fault condition code and can shut down (at 568) the motor drive. If the shorted power supply is not the selected sensor input for the pressure sensor 18, the controller 24 can disable (at 570) the shorted power supply and/or ignore (at 570) the fault condition.


The controller 24 can determine whether a power device/ground fault has occurred by determining whether a power-device protection interrupt (PDPINTA) input has been generated. The PDPINTA input can be generated by hardware (i.e., ground current, damaged IGBT, shorted output, etc.) and sent to an interrupt pin on the DSP 26. At the detection of this fault condition, the controller 24 can shut down the motor drive. The controller 24 can restart the motor drive after a time period (e.g., about 30 seconds). If three PDPINTA inputs occur since the last power-up, the controller 24 can turn the motor drive off. In one embodiment, the controller 24 does not turn the motor drive on again until a power cycle causes the fault condition to clear.


Referring to FIG. 12, the controller 24 can create a fault log that a user can access in order to monitor the operation of the controller 24, the pump 10, and/or the motor 16.


The controller 24 can sense (at 600) that a new fault condition has occurred (as described above with respect to any one of FIGS. 5-11). The controller 24 can determine (at 602) the fault condition code corresponding to the new fault condition and can increment a counter. The controller 24 can determine (at 604) whether the counter has been incremented above an increment limit (e.g., 15 fault condition codes). If the counter has been incremented above the increment limit, the controller 24 can store the new fault condition code by overwriting (at 606) one of the old fault condition codes. If the counter has not been incremented above the increment limit, the controller 24 can store (at 608) the new fault condition code in a new memory location. The controller 24 can also store (at 610) a time stamp of the current powered time when the new fault condition code is logged. Using the serial communication link 56 and the external device 58, a user can retrieve (at 612) the new fault condition code and the old fault condition codes (which, in some embodiments, is the 15 most-recent fault condition codes). In other embodiments, a user can retrieve the fault condition codes using other technologies, such as various forms of wireless communication (e.g., cellular or infrared wireless communication).


The controller 24 can operate one of the LEDs (e.g., LED B shown in FIG. 1, which can be a red LED) in order to indicate to a user that one or more fault conditions have occurred. If no faults have occurred since the last reset (either by a power cycle or by a user pressing the clear fault LED button 68 or by the system), the controller 24 can keep LED B in a de-energized state. The controller 24 can provide an indication of the most recent faults by flashing LED B at various rates. The flash rate can depend on the category or group of the most recent faults. For example, LED B can flash slowly for dry-running, bus over-voltage, and bus under-voltage fault conditions. Also, LED B can flash quickly for bus over-current, power device/ground fault, and jam detection fault conditions. In addition, LED B can flash at a combination rate for pressure sensor failure and over-temperature fault conditions. The controller 24 can keep LED B lit continuously if too many faults conditions occur within a set time period (e.g., 15 fault conditions within about 30 minutes). However, in one embodiment, LED B is lit when a fault condition is occurring, but the controller 24 shuts off LED B if the fault condition is no longer occurring. In other words, LED B does not remain lit continuously once the fault condition is no longer occurring, even if the pump control system 14 does not include a clear fault LED button 68 or a user has not pushed the clear fault LED button 68. If the power is cycled or a user presses the clear fault LED button 68, the controller 24 can reset the fault counter and the fault timer. In some embodiments, when any fault condition occurs, if the fault timer is greater than about 30 minutes, the controller 24 can reset the fault timer to zero. In some embodiments, after a fault condition stops the motor 16 (with the exception of over-temperature, power device/ground fault, and pressure sensor fault conditions), the controller 24 can wait about 30 seconds and then attempt to restart the motor 16.


It should be understood that although the above description refers to the steps shown in FIGS. 2-12 in a particular order, that the scope of the appended claims is not to be limited to any particular order. The steps described above can be performed in various different orders and still fall within the scope of the invention. In addition, the various pressure, voltage, and current thresholds, values, and time periods or durations discussed above are included by way of example only and are not intended to limit the scope of the claims.


In general, all the embodiments described above and illustrated in the figures are presented by way of example only and are not intended as a limitation upon the concepts and principles of the present invention. As such, it will be appreciated by one having ordinary skill in the art that various changes in the elements and their configuration and arrangement are possible without departing from the spirit and scope of the present invention as set forth in the appended claims.

Claims
  • 1. A method of detecting a foreign object obstruction to fluid circulation in a pool or spa having a pump control system including a pump driven by a motor, the method comprising: measuring a voltage and a current of the pump control system;determining a power factor of the pump control system including operating a power factor correction module to correct the power factor to a substantially constant corrected value;determining whether a fault condition has occurred due to the presence of a foreign object obstruction based on the voltage, the current, and the corrected power factor;shutting down the motor when the fault condition has occurred; andindicating to a user that the fault condition has occurred.
  • 2. The method of claim 1 wherein measuring the voltage includes sensing an AC line voltage.
  • 3. The method of claim 1 wherein measuring the current includes sensing an AC line current.
  • 4. The method of claim 1 and further comprising indicating to a user that the fault condition has occurred using at least one light-emitting diode.
  • 5. The method of claim 1 and further comprising sensing a pressure in order to determine whether the fault condition has occurred.
  • 6. The method of claim 1 and further comprising sensing a temperature in order to determine whether the fault condition has occurred.
  • 7. The method of claim 1, wherein operating the power factor correction module includes operating a power factor correction circuit to regulate the power factor.
  • 8. The method of claim 7, wherein the power factor correction circuit includes a converter and a rectifier module.
  • 9. The method of claim 1, wherein determining the power factor includes regulating the power factor to be 0.9 or greater.
  • 10. The method of claim 1, wherein determining the power factor includes regulating the power factor to be 0.98 or greater.
  • 11. The method of claim 1, wherein determining the power factor includes regulating a DC bus voltage associated with the motor to be a target DC bus voltage value over an operational range of the motor.
  • 12. The method of claim 11, wherein the target DC bus voltage value is about 350 V.
  • 13. The method of claim 11, wherein the target DC bus voltage value is about 380 V.
  • 14. The method of claim 1, wherein determining whether a fault condition has occurred due to the presence of a foreign object obstruction based on the voltage, the current, and the corrected power factor includes determining whether a high-speed fault condition has occurred by determining a change in bus current with respect to time.
  • 15. The method claim 1, further comprising sensing a pressure in an output line of the pump with a pressure sensor positioned between the pump and the pool or the spa, and wherein the pressure sensor is a 0-5V DC pressure sensor.
  • 16. The method of claim 1, further comprising sensing a flow in an output line of the pump with a flow sensor.
  • 17. The method of claim 1, further comprising determining a temperature of a heatsink of a controller of the pump control system and shutting down the motor when the temperature of the heatsink exceeds a predetermined temperature value.
  • 18. The method of claim 1, further comprising shutting down the motor when an input is received from an automatic run-stop input switch, the automatic run-stop input switch providing the input when the automatic run-stop input switch is actuated.
  • 19. The method of claim 1, further comprising sensing a voltage of a DC bus line of the pump control system with a voltage sensor, and sensing a current of the DC bus line with a current sensor.
  • 20. A method of detecting a foreign object obstruction to fluid circulation with a pump control system including a controller and a pump driven by a motor, the method comprising: the controller measuring a current being provided to the motor;the controller regulating a bus voltage associated with the motor to a target bus voltage value over an operational range of the motor;the controller regulating a power factor of the pump control system to a substantially constant corrected value;the controller determining whether a fault condition has occurred due to the presence of a foreign object obstruction based on the regulated bus voltage at the target bus voltage, the measured current deviating outside of an acceptable range, and the regulated power factor; andthe controller shutting down a motor drive of the motor when the fault condition has occurred.
  • 21. The method of claim 20, wherein the step of shutting down the motor drive of the motor includes shutting down a variable speed motor drive of the motor.
  • 22. The method of claim 20, wherein the power factor is regulated to be 0.9 or greater.
  • 23. The method of claim 20, wherein the power factor is regulated to be 0.98 or greater.
  • 24. The method of claim 20, wherein the target bus voltage value is about 350 V.
  • 25. The method of claim 15, wherein the target bus voltage value is about 380 V.
  • 26. The method of claim 20, further comprising sensing a pressure in an output line of the pump with a pressure sensor, and wherein the pressure sensor is at least one of a 4-20 mA pressure sensor and a 0-5V DC pressure sensor.
  • 27. The method of claim 20, further comprising the controller communicating with an external device using a serial communication link, the external device allowing a user to read a plurality of parameters stored in an EEPROM memory of the controller.
  • 28. The method of claim 20, further comprising determining a temperature of the controller and shutting down the motor when the temperature of the controller exceeds a predetermined temperature value and a voltage to the motor falls below a predetermined voltage level.
  • 29. The method of claim 20, further comprising the controller shutting down the motor drive when a foreign object detection sensor provides an input to the controller indicating a foreign object obstruction.
  • 30. The method of claim 20, wherein the controller includes a DSP, the DSP determining an AC bus current from a sensed DC bus line current using a plurality of conversion factors.
  • 31. A method of detecting a foreign object obstruction to fluid circulation with a pump control system including a pump driven by a motor, the method comprising: regulating a power factor of the pump control system to a constant value under varying pump loads;regulating a DC bus voltage associated with the motor to a target DC bus voltage value over an operational range of the motor;determining whether a fault condition has occurred due to the presence of a foreign object obstruction by determining a change in bus current with respect to time; andshutting down a variable speed motor drive of the motor when the fault condition has occurred.
  • 32. The method of claim 31, wherein the power factor is regulated to be 0.9 or greater.
  • 33. The method of claim 31, wherein the power factor is regulated to be 0.98 or greater.
  • 34. The method of claim 31, wherein the target DC bus voltage value is about 350 V.
  • 35. The method of claim 31, wherein the target DC bus voltage value is about 380 V.
  • 36. The method of claim 31, further comprising sensing a pressure in an output line of the pump with a pressure sensor, and sensing a flow in the output line with a flow sensor.
  • 37. The method of claim 31, further comprising determining a temperature correlated to a controller in the pump control system, and shutting down the variable speed motor drive of the motor when the temperature exceeds a predetermined temperature value, wherein the temperature is determined using a temperature sensor coupled to a heatsink of the controller, and further wherein the temperature sensor is at least one of a thermistor, a resistance temperature detector, and a thermocouple.
  • 38. The method of claim 31, further comprising detecting a short circuit at an output to the motor, and shutting down the variable speed motor drive of the motor when the short circuit is detected.
  • 39. The method of claim 31, further comprising driving the motor with the variable speed motor drive using a space vector pulse-width modulation technique.
  • 40. The method of claim 31, wherein an over-pressure relief valve provides an input to a controller, and wherein the controller shuts down the variable speed motor drive when the input from the over-pressure relief valve is received.
  • 41. A pump control system for detecting a foreign object obstruction in a pool or a spa fluid circulation system, the pump control system comprising: an electric motor;a pump driven by the electric motor;a controller in communication with the electric motor, the controller comprising: a current sensor operating to sense a current being provided to drive the electric motor; anda module operating to regulate a voltage of the pump control system to a substantially constant target voltage during operation and to regulate a power factor of the pump control system to a substantially constant corrected value during operation; andwherein the controller shuts down the electric motor when the sensed current is outside of a predetermined range of operational currents.
  • 42. The pump control system of claim 41, further comprising a pressure sensor positioned between the pump and the pool or the spa to sense a pressure in an output line of the pump, wherein the pressure sensor is a 4-20 mA pressure sensor.
  • 43. The pump control system of claim 41, further comprising a flow sensor positioned between the pump and the pool or the spa to sense a flow in an output line of the pump.
  • 44. The pump control system of claim 41, wherein the pump control system is electrically connected to an AC power source and further wherein the electric motor is an AC induction motor.
  • 45. The pump control system of claim 41, wherein the controller includes a digital signal processor and a microcontroller.
  • 46. The pump control system of claim 41, further comprising a temperature sensor coupled to a heatsink of the controller, the temperature sensor providing an output signal corresponding to a temperature of the controller to an input of the controller, wherein the controller shuts down the electric motor when the temperature exceeds a predetermined temperature value.
  • 47. The pump control system of claim 46, wherein the predetermined temperature value is 70 degrees Celsius.
  • 48. The pump control system of claim 41, further comprising a run-stop input switch, the run-stop input switch providing an input signal to the controller, wherein the controller shuts down the electric motor when the run-stop input switch is actuated.
  • 49. The pump control system of claim 48, wherein the run-stop input switch is a foreign object detection sensor.
  • 50. The pump control system of claim 41, wherein the module is connected to a neutral line of an AC bus line, the module able to be operated at at least one of 115V AC and 230V AC.
  • 51. The pump control system of claim 41, further comprising a plurality of drives electrically connected to the module via a DC bus line for driving the electric motor, the plurality of drives providing a three-phase output to the electric motor.
  • 52. The pump control system of claim 51, further comprising a plurality of sensors, the plurality of sensors sensing at least one of a voltage on the DC bus line and a current on the DC bus line.
  • 53. The pump control system of claim 51, wherein the controller can control the plurality of drives using a pulse width modulation output, wherein the pulse width modulation output has a switching frequency of 7.2 kHz.
  • 54. The pump control system of claim 41, further comprising an external control device, the external control device allowing a user to configure a plurality of parameters of the pump control system.
  • 55. The pump control system of claim 54, wherein the external control device further allowing the user to manually run the electric motor, manually stop the electric motor, and read a plurality of operating parameters associated with the pump control system.
  • 56. The pump control system of claim 41, further comprising a terminal having a motor select switch to select a motor type, wherein each selectable motor type is associated with a plurality of default settings.
  • 57. The pump control system of claim 56, wherein the plurality of default settings include at least one of a V/Hz curve, a voltage limit, a current limit, and a power limit.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/981,117 filed on Oct. 31, 2007 now U.S. Pat. No. 7,857,600, which is a continuation of U.S. application Ser. No. 10/730,747, filed Dec. 8, 2003, the entire contents of which are incorporated herein by reference.

US Referenced Citations (906)
Number Name Date Kind
981213 Mollitor Jan 1911 A
1061919 Miller May 1913 A
1993267 Ferguson Mar 1935 A
2238597 Page Apr 1941 A
2458006 Kilgore Jan 1949 A
2488365 Abbott et al. Nov 1949 A
2494200 Ramqvist Jan 1950 A
2615937 Ludwig et al. Oct 1952 A
2716195 Anderson Aug 1955 A
2767277 Wirth Oct 1956 A
2778958 Hamm et al. Jan 1957 A
2881337 Wall Apr 1959 A
3116445 Wright Dec 1963 A
3191935 Uecker Jun 1965 A
3204423 Resh, Jr. Sep 1965 A
3213304 Landerg et al. Oct 1965 A
3226620 Elliott et al. Dec 1965 A
3227808 Morris et al. Jan 1966 A
3291058 McFarlin Dec 1966 A
3316843 Vaughan May 1967 A
3481973 Arons et al. Dec 1969 A
3530348 Connor Sep 1970 A
3558910 Dale et al. Jan 1971 A
3559731 Stafford Feb 1971 A
3562614 Gramkow Feb 1971 A
3566225 Paulson Feb 1971 A
3573579 Lewus Apr 1971 A
3581895 Howard et al. Jun 1971 A
3593081 Forst Jul 1971 A
3594623 LaMaster Jul 1971 A
3596158 Watrous Jul 1971 A
3613805 Lindstad Oct 1971 A
3624470 Johnson Nov 1971 A
3634842 Niedermeyer Jan 1972 A
3652912 Bordonaro Mar 1972 A
3671830 Kruger Jun 1972 A
3726606 Peters Apr 1973 A
3735233 Ringle May 1973 A
3737749 Schmit Jun 1973 A
3753072 Jurgens Aug 1973 A
3761750 Green Sep 1973 A
3761792 Whitney Sep 1973 A
3777232 Woods et al. Dec 1973 A
3778804 Adair Dec 1973 A
3780759 Yahle et al. Dec 1973 A
3781925 Curtis Jan 1974 A
3787882 Fillmore Jan 1974 A
3792324 Suarez Feb 1974 A
3800205 Zalar Mar 1974 A
3814544 Roberts et al. Jun 1974 A
3838597 Montgomery et al. Oct 1974 A
3882364 Wright May 1975 A
3902369 Metz Sep 1975 A
3910725 Rule Oct 1975 A
3913342 Barry Oct 1975 A
3916274 Lewus Oct 1975 A
3941507 Niedermeyer Mar 1976 A
3949782 Athey Apr 1976 A
3953777 McKee Apr 1976 A
3956760 Edwards May 1976 A
3963375 Curtis Jun 1976 A
3972647 Niedermeyer Aug 1976 A
3976919 Vandevier Aug 1976 A
3987240 Schultz Oct 1976 A
4000446 Vandevier Dec 1976 A
4021700 Ellis-Anwyl May 1977 A
4041470 Slane et al. Aug 1977 A
4061442 Clark et al. Dec 1977 A
4087204 Niedermeyer May 1978 A
4108574 Bartley et al. Aug 1978 A
4123792 Gephart et al. Oct 1978 A
4133058 Baker Jan 1979 A
4142415 Jung et al. Mar 1979 A
4151080 Hamer Apr 1979 A
4168413 Halpine Sep 1979 A
4169377 Scheib Oct 1979 A
4182363 Fuller et al. Jan 1980 A
4185187 Rogers Jan 1980 A
4187503 Walton Feb 1980 A
4215975 Niedermeyer Aug 1980 A
4222711 Mayer Sep 1980 A
4225290 Allington Sep 1980 A
4228427 Niedermeyer Oct 1980 A
4233553 Prince Nov 1980 A
4241299 Bertone Dec 1980 A
4255747 Bunia Mar 1981 A
4263535 Jones Apr 1981 A
4276454 Zathan Jun 1981 A
4286303 Genheimer Aug 1981 A
4303203 Avery Dec 1981 A
4307327 Streater et al. Dec 1981 A
4309157 Niedermeyer Jan 1982 A
4314478 Beaman Feb 1982 A
4319712 Bar Mar 1982 A
4322297 Bajika Mar 1982 A
4330412 Frederick May 1982 A
4353220 Curwen Oct 1982 A
4366426 Turlej Dec 1982 A
4369438 Wilhelmi Jan 1983 A
4370098 McClain et al. Jan 1983 A
4370690 Baker Jan 1983 A
4371315 Shikasho Feb 1983 A
4375613 Fuller et al. Mar 1983 A
4384825 Thomas May 1983 A
4399394 Ballman Aug 1983 A
4402094 Sanders Sep 1983 A
4409532 Hollenbeck Oct 1983 A
4419625 Bejot et al. Dec 1983 A
4420787 Tibbits et al. Dec 1983 A
4421643 Frederick Dec 1983 A
4421653 LeDain Dec 1983 A
4425836 Pickrell Jan 1984 A
4427545 Arguilez Jan 1984 A
4428434 Gelaude Jan 1984 A
4429343 Freud Jan 1984 A
4437133 Rueckert Mar 1984 A
4448072 Tward May 1984 A
4449260 Whitaker May 1984 A
4453118 Phillips Jun 1984 A
4456432 Mannino Jun 1984 A
4462758 Speed Jul 1984 A
4463304 Miller Jul 1984 A
4468604 Zaderej Aug 1984 A
4470092 Lombardi Sep 1984 A
4473338 Garmong Sep 1984 A
4494180 Streater Jan 1985 A
4496895 Kawate et al. Jan 1985 A
4504773 Suzuki et al. Mar 1985 A
4505643 Millis et al. Mar 1985 A
D278529 Hoogner Apr 1985 S
4514989 Mount May 1985 A
4520303 Ward May 1985 A
4529359 Sloan Jul 1985 A
4541029 Ohyama Sep 1985 A
4545906 Frederick Oct 1985 A
4552512 Gallup et al. Nov 1985 A
4564041 Kramer Jan 1986 A
4564882 Baxter Jan 1986 A
4581900 Lowe Apr 1986 A
4604563 Min Aug 1986 A
4605888 Kim Aug 1986 A
4610605 Hartley Sep 1986 A
4620835 Bell Nov 1986 A
4622506 Shemanske Nov 1986 A
4635441 Ebbing et al. Jan 1987 A
4647825 Profio Mar 1987 A
4651077 Woyski Mar 1987 A
4652802 Johnston Mar 1987 A
4658195 Min Apr 1987 A
4658203 Freymuth Apr 1987 A
4668902 Zeller, Jr. May 1987 A
4670697 Wrege Jun 1987 A
4676914 Mills et al. Jun 1987 A
4678404 Lorett et al. Jul 1987 A
4678409 Kurokawa Jul 1987 A
4686439 Cunningham Aug 1987 A
4695779 Yates Sep 1987 A
4697464 Martin Oct 1987 A
4703387 Miller Oct 1987 A
4705629 Weir Nov 1987 A
4716605 Shepherd Jan 1988 A
4719399 Wrege Jan 1988 A
4728882 Stanbro Mar 1988 A
4751449 Chmiel Jun 1988 A
4751450 Lorenz Jun 1988 A
4758697 Jeuneu Jul 1988 A
4761601 Zaderej Aug 1988 A
4764417 Gulya Aug 1988 A
4764714 Alley Aug 1988 A
4766329 Santiago Aug 1988 A
4767280 Markuson et al. Aug 1988 A
4780050 Caine et al. Oct 1988 A
4781525 Hubbard Nov 1988 A
4782278 Bossi Nov 1988 A
4786850 Chmiel Nov 1988 A
4789307 Sloan Dec 1988 A
4795314 Prybella Jan 1989 A
4801858 Min Jan 1989 A
4804901 Pertessis Feb 1989 A
4806457 Yanagisawa Feb 1989 A
4820964 Kadah Apr 1989 A
4827197 Giebeler May 1989 A
4834624 Jensen May 1989 A
4837656 Barnes Jun 1989 A
4839571 Farnham Jun 1989 A
4841404 Marshall et al. Jun 1989 A
4843295 Thompson Jun 1989 A
4862053 Jordan Aug 1989 A
4864287 Kierstead Sep 1989 A
4885655 Springer et al. Dec 1989 A
4891569 Light Jan 1990 A
4896101 Cobb Jan 1990 A
4907610 Meincke Mar 1990 A
4912936 Denpou Apr 1990 A
4913625 Gerlowski Apr 1990 A
4949748 Chatrathi Aug 1990 A
4958118 Pottebaum Sep 1990 A
4963778 Jensen Oct 1990 A
4967131 Kim Oct 1990 A
4971522 Butlin Nov 1990 A
4975798 Edwards et al. Dec 1990 A
4977394 Manson et al. Dec 1990 A
4985181 Strada et al. Jan 1991 A
4986919 Allington Jan 1991 A
4996646 Farrington Feb 1991 A
D315315 Stairs, Jr. Mar 1991 S
4998097 Noth et al. Mar 1991 A
5015151 Snyder, Jr. et al. May 1991 A
5015152 Greene May 1991 A
5017853 Chmiel May 1991 A
5026256 Kuwabara Jun 1991 A
5041771 Min Aug 1991 A
5051068 Wong Sep 1991 A
5051681 Schwarz Sep 1991 A
5076761 Krohn Dec 1991 A
5076763 Anastos Dec 1991 A
5079784 Rist et al. Jan 1992 A
5091817 Alley Feb 1992 A
5098023 Burke Mar 1992 A
5099181 Canon Mar 1992 A
5100298 Shibata et al. Mar 1992 A
RE33874 Miller Apr 1992 E
5103154 Dropps Apr 1992 A
5117233 Hamos et al. May 1992 A
5123080 Gillett Jun 1992 A
5129264 Lorenc Jul 1992 A
5135359 Dufresne Aug 1992 A
5145323 Farr Sep 1992 A
5151017 Sears et al. Sep 1992 A
5154821 Reid Oct 1992 A
5156535 Budris Oct 1992 A
5158436 Jensen Oct 1992 A
5159713 Gaskill et al. Oct 1992 A
5164651 Hu Nov 1992 A
5166595 Leverich Nov 1992 A
5167041 Burkitt Dec 1992 A
5172089 Wright et al. Dec 1992 A
D334542 Lowe Apr 1993 S
5206573 McCleer et al. Apr 1993 A
5222867 Walker, Sr. et al. Jun 1993 A
5234286 Wagner Aug 1993 A
5234319 Wilder Aug 1993 A
5235235 Martin Aug 1993 A
5238369 Far Aug 1993 A
5240380 Mabe Aug 1993 A
5245272 Herbert Sep 1993 A
5247236 Schroeder Sep 1993 A
5255148 Yeh Oct 1993 A
5272933 Collier Dec 1993 A
5295790 Bossart Mar 1994 A
5295857 Toly Mar 1994 A
5296795 Dropps Mar 1994 A
5302885 Schwarz Apr 1994 A
5319298 Wanzong et al. Jun 1994 A
5324170 Anastos et al. Jun 1994 A
5327036 Carey Jul 1994 A
5342176 Redlich Aug 1994 A
5347664 Hamza Sep 1994 A
5349281 Bugaj Sep 1994 A
5351709 Vos Oct 1994 A
5351714 Barnowski Oct 1994 A
5352969 Gilmore et al. Oct 1994 A
5361215 Tompkins Nov 1994 A
5363912 Wolcott Nov 1994 A
5394748 McCarthy Mar 1995 A
5418984 Livingston et al. May 1995 A
D359458 Pierret Jun 1995 S
5422014 Allen et al. Jun 1995 A
5423214 Lee Jun 1995 A
5425624 Williams Jun 1995 A
5443368 Weeks et al. Aug 1995 A
5444354 Takahashi Aug 1995 A
5449274 Kochan, Jr. Sep 1995 A
5449997 Gilmore et al. Sep 1995 A
5450316 Gaudet et al. Sep 1995 A
D363060 Hunger Oct 1995 S
5457373 Heppe et al. Oct 1995 A
5471125 Wu Nov 1995 A
5473497 Beatty Dec 1995 A
5483229 Tamura et al. Jan 1996 A
5495161 Hunter Feb 1996 A
5499902 Rockwood Mar 1996 A
5511397 Makino et al. Apr 1996 A
5512809 Banks et al. Apr 1996 A
5512883 Lane Apr 1996 A
5518371 Wellstein May 1996 A
5519848 Wloka May 1996 A
5520517 Sipin May 1996 A
5522707 Potter Jun 1996 A
5528120 Brodetsky Jun 1996 A
5529462 Hawes Jun 1996 A
5532635 Watrous Jul 1996 A
5540555 Corso Jul 1996 A
D372719 Jensen Aug 1996 S
5545012 Anastos et al. Aug 1996 A
5548854 Bloemer et al. Aug 1996 A
5549456 Burrill Aug 1996 A
5550497 Carobolante Aug 1996 A
5550753 Tompkins et al. Aug 1996 A
5559418 Burkhart Sep 1996 A
5559720 Tompkins Sep 1996 A
5559762 Sakamoto Sep 1996 A
5561357 Schroeder Oct 1996 A
5562422 Ganzon et al. Oct 1996 A
5563759 Nadd Oct 1996 A
D375908 Schumaker Nov 1996 S
5570481 Mathis et al. Nov 1996 A
5571000 Zimmermann Nov 1996 A
5577890 Nielsen et al. Nov 1996 A
5580221 Triezenberg Dec 1996 A
5582017 Noji et al. Dec 1996 A
5589753 Kadah Dec 1996 A
5592062 Bach Jan 1997 A
5598080 Jensen Jan 1997 A
5601413 Langley Feb 1997 A
5604491 Coonley et al. Feb 1997 A
5614812 Wagoner Mar 1997 A
5616239 Wendell et al. Apr 1997 A
5618460 Fowler Apr 1997 A
5622223 Vasquez Apr 1997 A
5624237 Prescott et al. Apr 1997 A
5626464 Schoenmeyr May 1997 A
5628896 Klingenberger May 1997 A
5629601 Feldstein May 1997 A
5632468 Schoenmeyr May 1997 A
5633540 Moan May 1997 A
5640078 Kou et al. Jun 1997 A
5654504 Smith Aug 1997 A
5654620 Langhorst Aug 1997 A
5669323 Pritchard Sep 1997 A
5672050 Webber et al. Sep 1997 A
5682624 Ciochetti Nov 1997 A
5690476 Miller Nov 1997 A
5708348 Frey et al. Jan 1998 A
5711483 Hays Jan 1998 A
5712795 Layman et al. Jan 1998 A
5713320 Pfaff et al. Feb 1998 A
5727933 Laskaris Mar 1998 A
5730861 Sterghos et al. Mar 1998 A
5731673 Gilmore Mar 1998 A
5736884 Ettes et al. Apr 1998 A
5739648 Ellis Apr 1998 A
5744921 Makaran Apr 1998 A
5754036 Walker May 1998 A
5754421 Nystrom May 1998 A
5767606 Bresolin Jun 1998 A
5777833 Romillon Jul 1998 A
5780992 Beard Jul 1998 A
5791882 Stucker Aug 1998 A
5796234 Vrionis Aug 1998 A
5802910 Krahn et al. Sep 1998 A
5804080 Klingenberger Sep 1998 A
5808441 Nehring Sep 1998 A
5814966 Williamson Sep 1998 A
5818708 Wong Oct 1998 A
5818714 Zou Oct 1998 A
5819848 Rasmuson Oct 1998 A
5820350 Mantey et al. Oct 1998 A
5828200 Ligman Oct 1998 A
5833437 Kurth et al. Nov 1998 A
5836271 Sasaki Nov 1998 A
5845225 Mosher Dec 1998 A
5856783 Gibb Jan 1999 A
5863185 Cochimin et al. Jan 1999 A
5883489 Konrad Mar 1999 A
5892349 Bogwicz Apr 1999 A
5894609 Barnett Apr 1999 A
5898958 Hall May 1999 A
5906479 Hawes May 1999 A
5907281 Miller, Jr. et al. May 1999 A
5909352 Klabunde Jun 1999 A
5909372 Thybo Jun 1999 A
5914881 Trachier Jun 1999 A
5920264 Kim et al. Jul 1999 A
5930092 Nystrom Jul 1999 A
5941690 Lin Aug 1999 A
5944444 Motz et al. Aug 1999 A
5945802 Konrad Aug 1999 A
5946469 Chidester Aug 1999 A
5947689 Schick Sep 1999 A
5947700 McKain et al. Sep 1999 A
5959534 Campbell et al. Sep 1999 A
5961291 Sakagami Oct 1999 A
5969958 Nielsen Oct 1999 A
5973465 Rayner Oct 1999 A
5973473 Anderson Oct 1999 A
5977732 Matsumoto Nov 1999 A
5983146 Sarbach Nov 1999 A
5986433 Peele et al. Nov 1999 A
5987105 Jenkins et al. Nov 1999 A
5991939 Mulvey Nov 1999 A
6030180 Clarey et al. Feb 2000 A
6037742 Rasmussen Mar 2000 A
6043461 Holling et al. Mar 2000 A
6045331 Gehm et al. Apr 2000 A
6045333 Breit Apr 2000 A
6046492 Machida Apr 2000 A
6048183 Meza Apr 2000 A
6056008 Adams et al. May 2000 A
6059536 Stingl May 2000 A
6065946 Lathrop May 2000 A
6072291 Pedersen Jun 2000 A
6081751 Luo Jun 2000 A
6091604 Plougsgaard Jul 2000 A
6092992 Imblum Jul 2000 A
D429699 Davis Aug 2000 S
D429700 Liebig Aug 2000 S
6094764 Veloskey et al. Aug 2000 A
6098654 Cohen et al. Aug 2000 A
6102665 Centers Aug 2000 A
6110322 Teoh Aug 2000 A
6116040 Stark Sep 2000 A
6121746 Fisher Sep 2000 A
6121749 Wills et al. Sep 2000 A
6125481 Sicilano Oct 2000 A
6125883 Creps et al. Oct 2000 A
6142741 Nishihata Nov 2000 A
6146108 Mullendore Nov 2000 A
6150776 Potter et al. Nov 2000 A
6157304 Bennett et al. Dec 2000 A
6164132 Matulek Dec 2000 A
6171073 McKain et al. Jan 2001 B1
6178393 Irvin Jan 2001 B1
6184650 Gelbman Feb 2001 B1
6188200 Maiorano Feb 2001 B1
6198257 Belehradek et al. Mar 2001 B1
6199224 Versland Mar 2001 B1
6203282 Morin Mar 2001 B1
6208112 Jensen Mar 2001 B1
6212956 Donald Apr 2001 B1
6213724 Haugen Apr 2001 B1
6216814 Fujita et al. Apr 2001 B1
6222355 Ohshima Apr 2001 B1
6227808 McDonough May 2001 B1
6232742 Wacknov May 2001 B1
6236177 Zick May 2001 B1
6238188 Lifson May 2001 B1
6247429 Hara Jun 2001 B1
6249435 Vicente Jun 2001 B1
6251285 Ciochetti Jun 2001 B1
6253227 Tompkins Jun 2001 B1
D445405 Schneider Jul 2001 S
6254353 Polo Jul 2001 B1
6257304 Jacobs et al. Jul 2001 B1
6257833 Bates Jul 2001 B1
6259617 Wu Jul 2001 B1
6264431 Triezenberg Jul 2001 B1
6264432 Kilayko et al. Jul 2001 B1
6280611 Henkin et al. Aug 2001 B1
6298721 Schuppe et al. Oct 2001 B1
6299414 Schoenmeyr Oct 2001 B1
6299699 Porat et al. Oct 2001 B1
6318093 Gaudet et al. Nov 2001 B2
6320348 Kadah Nov 2001 B1
6326752 Jensen Dec 2001 B1
6329784 Puppin Dec 2001 B1
6330525 Hays Dec 2001 B1
6342841 Stingl Jan 2002 B1
6349268 Ketonen et al. Feb 2002 B1
6350105 Kobayashi et al. Feb 2002 B1
6351359 Jaeger Feb 2002 B1
6354805 Moller Mar 2002 B1
6356464 Balakrishnan Mar 2002 B1
6356853 Sullivan Mar 2002 B1
6362591 Moberg Mar 2002 B1
6364620 Fletcher et al. Apr 2002 B1
6364621 Yamauchi Apr 2002 B1
6366053 Belehradek Apr 2002 B1
6366481 Balakrishnan Apr 2002 B1
6369463 Maiorano Apr 2002 B1
6373204 Peterson Apr 2002 B1
6373728 Aarestrup Apr 2002 B1
6374854 Acosta Apr 2002 B1
6375430 Eckert et al. Apr 2002 B1
6380707 Rosholm Apr 2002 B1
6388642 Cotis May 2002 B1
6390781 McDonough May 2002 B1
6406265 Hahn Jun 2002 B1
6411481 Seubert Jun 2002 B1
6415808 Joshi Jul 2002 B2
6416295 Nagai Jul 2002 B1
6426633 Thybo Jul 2002 B1
6443715 Mayleben et al. Sep 2002 B1
6445565 Toyoda et al. Sep 2002 B1
6447446 Smith et al. Sep 2002 B1
6448713 Farkas et al. Sep 2002 B1
6450771 Centers Sep 2002 B1
6462971 Balakrishnan Oct 2002 B1
6464464 Sabini et al. Oct 2002 B2
6468042 Moller Oct 2002 B2
6468052 McKain et al. Oct 2002 B2
6474949 Arai Nov 2002 B1
6481973 Struthers Nov 2002 B1
6483278 Harvest Nov 2002 B2
6483378 Blodgett Nov 2002 B2
6490920 Netzer Dec 2002 B1
6493227 Nielsen et al. Dec 2002 B2
6496392 Odel Dec 2002 B2
6499961 Wyatt Dec 2002 B1
6501629 Marriott Dec 2002 B1
6503063 Brunsell Jan 2003 B1
6504338 Eichorn Jan 2003 B1
6520010 Bergveld Feb 2003 B1
6522034 Nakayama Feb 2003 B1
6523091 Tirumala Feb 2003 B2
6527518 Ostrowski Mar 2003 B2
6534940 Bell et al. Mar 2003 B2
6534947 Johnson et al. Mar 2003 B2
6537032 Horiuchi Mar 2003 B1
6538908 Balakrishnan et al. Mar 2003 B2
6539797 Livingston Apr 2003 B2
6543940 Chu Apr 2003 B2
6548976 Jensen Apr 2003 B2
6564627 Sabini May 2003 B1
6570778 Lipo et al. May 2003 B2
6571807 Jones Jun 2003 B2
6590188 Cline Jul 2003 B2
6591697 Henyan Jul 2003 B2
6591863 Ruschell Jul 2003 B2
6595051 Chandler, Jr. Jul 2003 B1
6595762 Khanwilkar et al. Jul 2003 B2
6604909 Schoenmeyr Aug 2003 B2
6607360 Fong Aug 2003 B2
6616413 Humpheries Sep 2003 B2
6623245 Meza Sep 2003 B2
6626840 Drzewiecki Sep 2003 B2
6628501 Toyoda Sep 2003 B2
6632072 Lipscomb et al. Oct 2003 B2
6636135 Vetter Oct 2003 B1
6638023 Scott Oct 2003 B2
D482664 Hunt Nov 2003 S
6643153 Balakrishnan Nov 2003 B2
6651900 Yoshida Nov 2003 B1
6663349 Discenzo et al. Dec 2003 B1
6665200 Goto Dec 2003 B2
6672147 Mazet Jan 2004 B1
6675912 Carrier Jan 2004 B2
6676382 Leighton et al. Jan 2004 B2
6676831 Wolfe Jan 2004 B2
6687141 Odell Feb 2004 B2
6687923 Dick Feb 2004 B2
6690250 Moller Feb 2004 B2
6696676 Graves et al. Feb 2004 B1
6700333 Hirshi et al. Mar 2004 B1
6709240 Schmalz et al. Mar 2004 B1
6709241 Sabini Mar 2004 B2
6709575 Verdegan Mar 2004 B1
6715996 Moeller Apr 2004 B2
6717318 Mathiassen Apr 2004 B1
6732387 Waldron May 2004 B1
6737905 Noda May 2004 B1
D490726 Eungprabhanth Jun 2004 S
6742387 Hamamoto Jun 2004 B2
6747367 Cline Jun 2004 B2
6761067 Capano Jul 2004 B1
6768279 Skinner et al. Jul 2004 B1
6770043 Kahn Aug 2004 B1
6774664 Godbersen Aug 2004 B2
6776038 Horton et al. Aug 2004 B1
6776584 Sabini Aug 2004 B2
6778868 Imamura et al. Aug 2004 B2
6779205 Mulvey Aug 2004 B2
6782309 Laflamme et al. Aug 2004 B2
6783328 Lucke Aug 2004 B2
6789024 Kochan, Jr. et al. Sep 2004 B1
6794921 Abe Sep 2004 B2
6797164 Leaveton Sep 2004 B2
6798271 Swize Sep 2004 B2
6799950 Meier et al. Oct 2004 B2
6806677 Kelly et al. Oct 2004 B2
6837688 Kimberlin et al. Jan 2005 B2
6842117 Keown Jan 2005 B2
6847130 Belehradek et al. Jan 2005 B1
6847854 Discenzo Jan 2005 B2
6854479 Harwood Feb 2005 B2
6863502 Bishop et al. Mar 2005 B2
6867383 Currier Mar 2005 B1
6875961 Collins Apr 2005 B1
6882165 Ogura Apr 2005 B2
6884022 Albright Apr 2005 B2
D504900 Wang May 2005 S
D505429 Wang May 2005 S
6888537 Benson et al. May 2005 B2
6895608 Goettl May 2005 B2
6900736 Crumb May 2005 B2
6906482 Shimizu Jun 2005 B2
D507243 Miller Jul 2005 S
6914793 Balakrishnan Jul 2005 B2
6922348 Nakajima Jul 2005 B2
6925823 Lifson Aug 2005 B2
6933693 Schuchmann Aug 2005 B2
6941785 Haynes et al. Sep 2005 B2
6943325 Pittman Sep 2005 B2
D511530 Wang Nov 2005 S
D512026 Nurmi Nov 2005 S
6965815 Tompkins et al. Nov 2005 B1
6966967 Curry Nov 2005 B2
D512440 Wang Dec 2005 S
6973794 Street et al. Dec 2005 B2
6973974 McLoughlin et al. Dec 2005 B2
6976052 Tompkins et al. Dec 2005 B2
D513737 Riley Jan 2006 S
6981399 Nybo Jan 2006 B1
6981402 Bristol Jan 2006 B2
6984158 Satoh Jan 2006 B2
6989649 Mehlhorn Jan 2006 B2
6993414 Shah Jan 2006 B2
6998807 Phillips Feb 2006 B2
6998977 Gregori et al. Feb 2006 B2
7005818 Jensen Feb 2006 B2
7012394 Moore et al. Mar 2006 B2
7015599 Gull et al. Mar 2006 B2
7040107 Lee et al. May 2006 B2
7042192 Mehlhorn May 2006 B2
7050278 Poulsen May 2006 B2
7055189 Goettl Jun 2006 B2
7070134 Hoyer Jul 2006 B1
7077781 Ishikawa Jul 2006 B2
7080508 Stavale Jul 2006 B2
7081728 Kemp Jul 2006 B2
7083392 Meza et al. Aug 2006 B2
7089607 Barnes et al. Aug 2006 B2
7100632 Harwood Sep 2006 B2
7102505 Kates Sep 2006 B2
7112037 Sabini Sep 2006 B2
7114926 Oshita Oct 2006 B2
7117120 Beck et al. Oct 2006 B2
7141210 Bell Nov 2006 B2
7142932 Spira et al. Nov 2006 B2
D533512 Nakashima Dec 2006 S
7163380 Jones Jan 2007 B2
7172366 Bishop, Jr. Feb 2007 B1
7178179 Barnes Feb 2007 B2
7183741 Mehlhorn Feb 2007 B2
7195462 Nybo Mar 2007 B2
7201563 Studebaker Apr 2007 B2
7221121 Skaug May 2007 B2
7244106 Kallman Jul 2007 B2
7245105 Joo Jul 2007 B2
7259533 Yang et al. Aug 2007 B2
7264449 Harned et al. Sep 2007 B1
7281958 Schuttler et al. Oct 2007 B2
7292898 Clark et al. Nov 2007 B2
7307538 Kochan, Jr. Dec 2007 B2
7309216 Spadola et al. Dec 2007 B1
7318344 Heger Jan 2008 B2
D562349 Bulter Feb 2008 S
7327275 Brochu Feb 2008 B2
7339126 Niedermeyer Mar 2008 B1
D567189 Stiles, Jr. Apr 2008 S
7352550 Mladenik Apr 2008 B2
7375940 Bertrand May 2008 B1
7388348 Mattichak Jun 2008 B2
7407371 Leone Aug 2008 B2
7427844 Mehlhorn Sep 2008 B2
7429842 Schulman et al. Sep 2008 B2
7437215 Anderson et al. Oct 2008 B2
D582797 Fraser Dec 2008 S
D583828 Li Dec 2008 S
7458782 Spadola et al. Dec 2008 B1
7459886 Potanin et al. Dec 2008 B1
7484939 Hansen Feb 2009 B2
7516106 Ehlers Apr 2009 B2
7525280 Fagan et al. Apr 2009 B2
7528579 Pacholok et al. May 2009 B2
7542251 Ivankovic Jun 2009 B2
7542252 Chan et al. Jun 2009 B2
7572108 Koehl Aug 2009 B2
7612510 Koehl Nov 2009 B2
7612529 Kochan, Jr. Nov 2009 B2
7623986 Miller Nov 2009 B2
7641449 Iimura et al. Jan 2010 B2
7652441 Ho Jan 2010 B2
7686587 Koehl Mar 2010 B2
7690897 Branecky Apr 2010 B2
7700887 Niedermeyer Apr 2010 B2
7704051 Koehl Apr 2010 B2
7727181 Rush Jun 2010 B2
7739733 Szydlo Jun 2010 B2
7746063 Sabini et al. Jun 2010 B2
7751159 Koehl Jul 2010 B2
7755318 Panosh Jul 2010 B1
7775327 Abraham Aug 2010 B2
7777435 Aguilar Aug 2010 B2
7788877 Andras Sep 2010 B2
7795824 Shen et al. Sep 2010 B2
7808211 Pacholok et al. Oct 2010 B2
7815420 Koehl Oct 2010 B2
7821215 Koehl Oct 2010 B2
7854597 Stiles et al. Dec 2010 B2
7857600 Koehl Dec 2010 B2
7874808 Stiles Jan 2011 B2
7878766 Meza Feb 2011 B2
7900308 Erlich Mar 2011 B2
7925385 Stavale Apr 2011 B2
7931447 Levin Apr 2011 B2
7945411 Kernan May 2011 B2
7976284 Koehl Jul 2011 B2
7983877 Koehl Jul 2011 B2
7990991 Yao et al. Aug 2011 B2
8011895 Ruffo Sep 2011 B2
8019479 Stiles Sep 2011 B2
8032256 Wolf et al. Oct 2011 B1
8043070 Stiles Oct 2011 B2
8049464 Muntermann Nov 2011 B2
8098048 Hoff Jan 2012 B2
8104110 Caudill et al. Jan 2012 B2
8126574 Discenzo et al. Feb 2012 B2
8133034 Mehlhorn et al. Mar 2012 B2
8134336 Michalske et al. Mar 2012 B2
8177520 Mehlhorn May 2012 B2
8281425 Cohen Oct 2012 B2
8303260 Stavale Nov 2012 B2
8313306 Stiles et al. Nov 2012 B2
8316152 Geltner et al. Nov 2012 B2
8317485 Meza et al. Nov 2012 B2
8337166 Meza et al. Dec 2012 B2
8380355 Mayleben et al. Feb 2013 B2
8405346 Trigiani Mar 2013 B2
8405361 Richards et al. Mar 2013 B2
8444394 Koehl May 2013 B2
8465262 Stiles et al. Jun 2013 B2
8469675 Stiles et al. Jun 2013 B2
8480373 Stiles et al. Jul 2013 B2
8500413 Stiles et al. Aug 2013 B2
8540493 Koehl Sep 2013 B2
8547065 Trigiani Oct 2013 B2
8573952 Stiles et al. Nov 2013 B2
8579600 Vijayakumar Nov 2013 B2
8602745 Stiles Dec 2013 B2
8641335 Takashima et al. Feb 2014 B2
8641383 Meza Feb 2014 B2
8669494 Tran Mar 2014 B2
8756991 Edwards Jun 2014 B2
8763315 Hartman Jul 2014 B2
8774972 Rusnak Jul 2014 B2
20010002238 McKain May 2001 A1
20010029407 Tompkins Oct 2001 A1
20010041139 Sabini Nov 2001 A1
20020000789 Haba Jan 2002 A1
20020002989 Jones Jan 2002 A1
20020010839 Tirumala et al. Jan 2002 A1
20020018721 Kobayashi Feb 2002 A1
20020032491 Imamura et al. Mar 2002 A1
20020035403 Clark et al. Mar 2002 A1
20020050490 Pittman May 2002 A1
20020070611 Cline et al. Jun 2002 A1
20020070875 Crumb Jun 2002 A1
20020082727 Laflamme et al. Jun 2002 A1
20020089236 Cline et al. Jul 2002 A1
20020093306 Johnson Jul 2002 A1
20020101193 Farkas Aug 2002 A1
20020111554 Drzewiecki Aug 2002 A1
20020131866 Phillips Sep 2002 A1
20020136642 Moller Sep 2002 A1
20020150476 Lucke et al. Oct 2002 A1
20020163821 Odell Nov 2002 A1
20020172055 Balakrishnan Nov 2002 A1
20020176783 Moeller Nov 2002 A1
20020190687 Bell et al. Dec 2002 A1
20030000303 Livingston Jan 2003 A1
20030017055 Fong Jan 2003 A1
20030030954 Bax et al. Feb 2003 A1
20030034284 Wolfe Feb 2003 A1
20030034761 Goto Feb 2003 A1
20030048646 Odell Mar 2003 A1
20030061004 Discenzo Mar 2003 A1
20030063900 Wang et al. Apr 2003 A1
20030099548 Meza May 2003 A1
20030106147 Cohen et al. Jun 2003 A1
20030174450 Nakajima et al. Sep 2003 A1
20030186453 Bell Oct 2003 A1
20030196942 Jones Oct 2003 A1
20040000525 Hornsby Jan 2004 A1
20040006486 Schmidt et al. Jan 2004 A1
20040009075 Meza Jan 2004 A1
20040013531 Curry et al. Jan 2004 A1
20040016241 Street Jan 2004 A1
20040025244 Loyd et al. Feb 2004 A1
20040055363 Bristol Mar 2004 A1
20040062658 Beck et al. Apr 2004 A1
20040064292 Beck Apr 2004 A1
20040071001 Balakrishnan Apr 2004 A1
20040080325 Ogura Apr 2004 A1
20040080352 Noda Apr 2004 A1
20040090197 Schuchmann May 2004 A1
20040095183 Swize May 2004 A1
20040116241 Ishikawa Jun 2004 A1
20040117330 Ehlers et al. Jun 2004 A1
20040118203 Heger Jun 2004 A1
20040149666 Leaverton Aug 2004 A1
20040205886 Goettel Oct 2004 A1
20040213676 Phillips Oct 2004 A1
20040265134 Iimura Dec 2004 A1
20050050908 Lee et al. Mar 2005 A1
20050086957 Lifson Apr 2005 A1
20050095150 Leone et al. May 2005 A1
20050097665 Goettel May 2005 A1
20050123408 Koehl Jun 2005 A1
20050133088 Bologeorges Jun 2005 A1
20050137720 Spira et al. Jun 2005 A1
20050156568 Yueh Jul 2005 A1
20050158177 Mehlhorn Jul 2005 A1
20050167345 De Wet et al. Aug 2005 A1
20050170936 Quinn Aug 2005 A1
20050180868 Miller Aug 2005 A1
20050190094 Andersen Sep 2005 A1
20050193485 Wolfe Sep 2005 A1
20050195545 Mladenik Sep 2005 A1
20050226731 Mehlhorn et al. Oct 2005 A1
20050235732 Rush Oct 2005 A1
20050248310 Fagan et al. Nov 2005 A1
20050260079 Allen Nov 2005 A1
20050281679 Niedermeyer Dec 2005 A1
20050281681 Anderson Dec 2005 A1
20060045750 Stiles Mar 2006 A1
20060045751 Beckman et al. Mar 2006 A1
20060078435 Burza Apr 2006 A1
20060078444 Sacher Apr 2006 A1
20060090255 Cohen May 2006 A1
20060093492 Janesky May 2006 A1
20060127227 Mehlhorn Jun 2006 A1
20060138033 Hoal Jun 2006 A1
20060146462 McMillian, IV Jul 2006 A1
20060169322 Torkelson Aug 2006 A1
20060204367 Meza Sep 2006 A1
20060226997 Kochan, Jr. Oct 2006 A1
20060235573 Guion Oct 2006 A1
20060269426 Llewellyn Nov 2006 A1
20070001635 Ho Jan 2007 A1
20070041845 Freudenberger Feb 2007 A1
20070061051 Maddox Mar 2007 A1
20070080660 Fagan et al. Apr 2007 A1
20070113647 Mehlhorn May 2007 A1
20070114162 Stiles et al. May 2007 A1
20070124321 Szydlo May 2007 A1
20070154319 Stiles Jul 2007 A1
20070154320 Stiles Jul 2007 A1
20070154321 Stiles, Jr. Jul 2007 A1
20070154322 Stiles Jul 2007 A1
20070154323 Stiles Jul 2007 A1
20070160480 Ruffo Jul 2007 A1
20070163929 Stiles Jul 2007 A1
20070183902 Stiles Aug 2007 A1
20070187185 Abraham et al. Aug 2007 A1
20070188129 Kochan, Jr. Aug 2007 A1
20070212210 Kernan et al. Sep 2007 A1
20070212229 Stavale et al. Sep 2007 A1
20070212230 Stavale et al. Sep 2007 A1
20070258827 Gierke Nov 2007 A1
20080003114 Levin et al. Jan 2008 A1
20080031751 Littwin et al. Feb 2008 A1
20080031752 Littwin et al. Feb 2008 A1
20080039977 Clark et al. Feb 2008 A1
20080041839 Tran Feb 2008 A1
20080063535 Koehl Mar 2008 A1
20080095638 Branecky Apr 2008 A1
20080095639 Bartos et al. Apr 2008 A1
20080131128 Ota Jun 2008 A1
20080131286 Koehl Jun 2008 A1
20080131291 Koehl Jun 2008 A1
20080131294 Koehl Jun 2008 A1
20080131295 Koehl Jun 2008 A1
20080131296 Koehl Jun 2008 A1
20080140353 Koehl Jun 2008 A1
20080152508 Meza Jun 2008 A1
20080168599 Caudill Jul 2008 A1
20080181785 Koehl Jul 2008 A1
20080181786 Meza Jul 2008 A1
20080181787 Koehl Jul 2008 A1
20080181788 Meza Jul 2008 A1
20080181789 Koehl Jul 2008 A1
20080181790 Meza Jul 2008 A1
20080189885 Erlich et al. Aug 2008 A1
20080229819 Mayleben et al. Sep 2008 A1
20080260540 Koehl Oct 2008 A1
20080288115 Rusnak et al. Nov 2008 A1
20080288155 Watanabe Nov 2008 A1
20080298978 Schulman et al. Dec 2008 A1
20090014044 Hartman Jan 2009 A1
20090038696 Levin Feb 2009 A1
20090052281 Nybo Feb 2009 A1
20090104044 Koehl Apr 2009 A1
20090143917 Uy Jun 2009 A1
20090204237 Sustaeta Aug 2009 A1
20090204267 Sustaeta Aug 2009 A1
20090208345 Moore et al. Aug 2009 A1
20090210081 Sustaeta Aug 2009 A1
20090269217 Vijayakumar Oct 2009 A1
20100154534 Hampton Jun 2010 A1
20100166570 Hampton Jul 2010 A1
20100197364 Lee Aug 2010 A1
20100303654 Petersen et al. Dec 2010 A1
20100306001 Discenzo Dec 2010 A1
20100312398 Kidd et al. Dec 2010 A1
20110036164 Burdi Feb 2011 A1
20110044823 Stiles Feb 2011 A1
20110052416 Stiles Mar 2011 A1
20110077875 Tran Mar 2011 A1
20110084650 Kaiser et al. Apr 2011 A1
20110110794 Mayleben et al. May 2011 A1
20110280744 Ortiz Nov 2011 A1
20110286859 Ortiz Nov 2011 A1
20110311370 Sloss et al. Dec 2011 A1
20120020810 Stiles, Jr. Jan 2012 A1
20120100010 Stiles, Jr. Apr 2012 A1
Foreign Referenced Citations (74)
Number Date Country
3940997 Feb 1998 AU
2005204246 Mar 2006 AU
2007332716 Jun 2008 AU
2007332769 Jun 2008 AU
2548437 Jun 2005 CA
2731482 Jun 2005 CA
2517040 Feb 2006 CA
2528580 May 2007 CA
2672410 Jun 2008 CA
2672459 Jun 2008 CA
101165352 Apr 2008 CN
3023463 Feb 1981 DE
2946049 May 1981 DE
19736079 Aug 1997 DE
19645129 May 1998 DE
29724347 Nov 2000 DE
10231773 Feb 2004 DE
19938490 Apr 2005 DE
0150068 Jul 1985 EP
246769 May 1986 EP
0226858 Jul 1987 EP
0306814 Mar 1989 EP
0314249 May 1989 EP
0709575 May 1996 EP
833436 Sep 1996 EP
0735273 Oct 1996 EP
0831188 Mar 1998 EP
0978657 Feb 2000 EP
1134421 Sep 2001 EP
0916026 May 2002 EP
1315929 Jun 2003 EP
1585205 Oct 2005 EP
1630422 Mar 2006 EP
1698815 Sep 2006 EP
1790858 May 2007 EP
1995462 Nov 2008 EP
2102503 Sep 2009 EP
2122171 Nov 2009 EP
2122172 Nov 2009 EP
2273125 Nov 2009 EP
2529965 Jun 1983 FR
2703409 Oct 1994 FR
2124304 Jun 1983 GB
5507268 May 1980 JP
5010270 Jan 1993 JP
2009006258 Dec 2009 MX
WO9804835 Feb 1998 WO
WO0042339 Jul 2000 WO
0127508 Apr 2001 WO
WO 0147099 Jun 2001 WO
02018826 Mar 2002 WO
03025442 Mar 2003 WO
WO03099705 Dec 2003 WO
WO 2004006416 Jan 2004 WO
WO2004073772 Sep 2004 WO
WO 2004088694 Oct 2004 WO
2005011473 Feb 2005 WO
2005111473 Feb 2005 WO
2005055694 Jun 2005 WO
2005011473 Jul 2005 WO
WO 2006069568 Jul 2006 WO
2008073329 Jun 2008 WO
2008073330 Jun 2008 WO
2008073386 Jun 2008 WO
2008073413 Jun 2008 WO
2008073418 Jun 2008 WO
2008073433 Jun 2008 WO
2008073436 Jun 2008 WO
2011100067 Aug 2011 WO
200506869 May 2006 ZA
200509691 Nov 2006 ZA
200904747 Jul 2010 ZA
200904849 Jul 2010 ZA
200904850 Jul 2010 ZA
Non-Patent Literature Citations (153)
Entry
Grundfos Pumps Corporation; “The New Standard in Submersible Pumps;” Brochure; pp. 1-8; Jun. 1999; Fresno, CA USA.
Grundfos Pumps Corporation; “Grundfos SQ/SQE Data Book;” pp. 1-39; Jun. 1999; Fresno, CA USA.
Goulds Pumps; “Balanced Flow System Brochure;” pp. 1-4; 2001.
Goulds Pumps; “Balanced Flow Submersible System Installation, Operation & Trouble-Shooting Manual;” pp. 1-9; 2000; USA.
Goulds Pumps; “Balanced Flow System Variable Speed Submersible Pump” Specification Sheet; pp. 1-2; Jan. 2000; USA.
Goulds Pumps; Advertisement from “Pumps & Systems Magazine;” Jan. 2002; Seneca Falls, NY.
Goulds Pumps; “Hydro-Pro Water System Tank Installation, Operation & Maintenance Instructions;” pp. 1-30; Mar. 31, 2001; Seneca Falls, NY USA.
Goulds Pumps; “Pumpsmart Control Solutions” Advertisement from Industrial Equipment News; Aug. 2002; New York, NY USA.
Goulds Pumps; “Model BFSS List Price Sheet;” Feb. 5, 2001.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump System” Brochure; pp. 1-4; Jan. 2001; USA.
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump” Brochure; pp. 1-3; Jan. 2000; USA.
Amtrol Inc.; “Amtrol Unearths the Facts About Variable Speed Pumps and Constant Pressure Valves;” pp. 1-5; Aug. 2002; West Warwick, RI USA.
Franklin Electric; “CP Water-Subdrive 75 Constant Pressure Controller” Product Data Sheet; May 2001; Bluffton, IN USA.
Franklin Electric; “Franklin Aid, Subdrive 75: You Made It Better;” vol. 20, No. 1; pp. 1-2; Jan./Feb. 2002; www.franklin-electric.com.
Email Regarding Grundfos' Price Increases/SQ/SQE Curves; pp. 1-7; Dec. 19, 2001.
F.E. Myers; “Featured Product: F.E. Myers Introducts Revolutionary Constant Pressure Water System;” pp. 1-8; Jun. 28, 2000; Ashland, OH USA.
“Water Pressure Problems” Published Article; The American Well Owner; No. 2, Jul. 2000.
“Understanding Constant Pressure Control,” pp. 1-3; Nov. 1, 1999.
“Constant Pressure is the Name of the Game;” Published Article from National Driller; Mar. 2001.
SJE-Rhombus; “Variable Frequency Drives for Constant Pressure Control;” Aug. 2008; pp. 1-4; Detroit Lakes, MN USA.
SJE-Rhombus; “Constant Pressure Controller for Submersible Well Pumps;” Jan. 2009; pp. 1-4; Detroit Lakes, MN USA.
SJE-Rhombus; “SubCon Variable Frequency Drive;” Dec. 2008; pp. 1-2; Detroit Lakes, MN USA.
Grundfos; “SmartFlo SQE Constant Pressure System;” Mar. 2002; pp. 1-4; Olathe, KS USA.
Grundfos; “Grundfos SmartFlo SQE Constant Pressure System;” Mar. 2003; pp. 1-2; USA.
Grundfos; “CU301 Installation & Operation Manual;” Apr. 2009; pp. 1-2; Undated; www.grundfos.com.
Grundfos; “CU301 Installation & Operating Instructions;” Sep. 2005; pp. 1-30; Olathe, KS USA.
ITT Corporation; “Goulds Pumps Balanced Flow Submersible Pump Controller;” Jul. 2007; pp. 1-12.
ITT Corporation; “Goulds Pumps Balanced Flow;” Jul. 2006; pp. 1-8.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 2 HP Submersible Pumps;” Jun. 2005; pp. 1-4 USA.
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 3 HP Submersible Pumps;” Jun. 2005; pp. 1-4; USA.
Franklin Electric; Constant Pressure in Just the Right Size; Aug. 2006; pp. 1-4; Bluffton, IN USA.
Franklin Electric; “Franklin Application Installation Data;” vol. 21, No. 5, Sep./Oct. 2003; pp. 1-2; www.franklin-electric.com.
Franklin Electric; “Monodrive MonodriveXT Single-Phase Constant Pressure;” Sep. 2008; pp. 1-2; Bluffton, IN USA.
Docket Report for Case No. 5:11-cv-00459-D; Nov. 2012.
1—Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459-D; Aug. 31, 2011.
7—Motion for Preliminary Injunction by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459-D; Sep. 30, 2011.
22—Memorandum in Support of Motion for Preliminary Injunction by Plaintiffs with respect to Civil Action 5:11-cv-00459-D; Sep. 2, 2011.
23—Declaration of E. Randolph Collins, Jr. in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011.
24—Declaration of Zack Picard in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011.
32—Answer to Complaint with Jury Demand & Counterclaim Against Plaintiffs by Hayward Pool Products & Hayward Industries for Civil Action 5:11-cv-00459D; Oct. 12, 2011.
45—Plaintiffs' Reply to Defendants' Answer to Complaint & Counterclaim for Civil Action 5:11-cv-00459D; Nov. 2, 2011.
50—Amended Answer to Complaint & Counterclaim by Defendants for Civil Action 5:11-cv-00459D; Nov. 23, 2011.
51—Response by Defendants in Opposition to Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011.
53—Declaration of Douglas C. Hopkins & Exhibits re Response Opposing Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011.
89—Reply to Response to Motion for Preliminary Injunction Filed by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-00459D; Jan. 3, 2012.
105—Declaration re Memorandum in Opposition, Declaration of Lars Hoffmann Berthelsen for Civil Action 5:11-cv-00459D; Jan. 11, 2012.
112—Amended Complaint Against All Defendants, with Exhibits for Civil Action 5:11-cv-00459D; Jan. 17, 2012.
119—Order Denying Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Jan. 23, 2012.
123—Answer to Amended Complaint, Counterclaim Against Danfoss Drives A/S, Pentair Water Pool & Spa, Inc. For Civil Action 5:11-cv-00459D; Jan. 27, 2012.
152—Order Denying Motion for Reconsideration for Civil Action 5:11-cv-00459D; Apr. 4, 2012.
168—Amended Motion to Stay Action Pending Reexamination of Asserted Patents by Defendants for Civil Action 5:11-cv-00459D; Jun. 13, 2012.
174—Notice and Attachments re Joint Claim Construction Statement for Civil Action 5:11-cv-00459D; Jun. 5, 2012.
186—Order Setting Hearings—Notice of Markman Hearing Set for Oct. 17, 2012 for Civil Action 5:11-cv-00459D; Jul. 12, 2012.
204—Response by Plaintiffs Opposing Amended Motion to Stay Action Pending Reexamination of Asserted Patents for Civil Action 5:11-cv-00459D; Jul. 2012.
210—Order Granting Joint Motion for Leave to Enlarge Page Limit for Civil Action 5:11-cv-00459D; Jul. 2012.
218—Notice re Plaintiffs re Order on Motion for Leave to File Excess Pages re Amended Joint Claim Construction Statement for Civil Action 5:11-cv-00459D; Aug. 2012.
54DX16—Hayward EcoStar Technical Guide (Version2); 2011; pp. 1-51; cited in Civil Action 5:11-cv-00459D.
54DX17—Hayward ProLogic Automation & Chlorination Operation Manual (Rev. F); pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Dec. 2, 2011.
54DX18—STMicroelectronics; “AN1946—Sensorless BLDC Motor Control & BEMF Sampling Methods with ST7MC;” 2007; pp. 1-35; Civil Action 5:11-cv-00459D.
54DX19—STMicroelectronics; “AN1276 BLDC Motor Start Routine for ST72141 Microcontroller;” 2000; pp. 1-18; cited in Civil Action 5:11-cv-00459D.
54DX21—Danfoss; “VLT 8000 Aqua Instruction Manual;” Apr. 2004; 1-210; Cited in Civil Action 5:11-cv-00459D.
54DX22—Danfoss; “VLT 8000 Aqua Instruction Manual;” pp. 1-35; cited in Civil Action 5:11-cv-00459D; Dec. 2, 2011.
54DX23—Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-190; cited in Civil Action 5:11-cv-00459D.
54DX30—Sabbagh et al.; “A Model for Optimal . . . Control of Pumping Stations in Irrigation Systems;” Jul. 1988; NL pp. 119-133; Civil Action 5:11-cv-00459D.
54DX31—Danfoss; “VLT 5000 Flux Aqua DeviceNet Instruction Manual;” Apr. 28, 2003; pp. 1-39; cited in Civil Action 5:11-cv-00459D.
54DX32—Dan Foss; “VLT 5000 Flux Aqua Profibus Operating Instructions;” May 22, 2003; 1-64; cited in Civil Action 5:11-cv-00459D.
54DX33—Pentair; “IntelliTouch Owner's Manual Set-Up & Programming;” May 22, 2003; Sanford, NC; pp. 1-61; cited in Civil Action 5:11-cv-00459D.
54DX34—Pentair; “Compool 3800 Pool-Spa Control System Installation & Operating Instructions;” Nov. 7, 1997; pp. 1-45; cited in Civil Action 5:11-cv-00459D.
54DX35—Pentair Advertisement in “Pool & Spa News;” Mar. 22, 2002; pp. 1-3; cited in Civil Action 5:11-cv-00459D.
54DX36—Hayward; “Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; Elizabeth, NJ; pp. 1-5; cited in Civil Action 5:11-cv-00459D.
54DX37—Danfoss; “VLT 8000 Aqua Fact Sheet;” Jan. 2002; pp. 1-3; cited in Civil Action 5:11-cv-00459D.
54DX38—Danfoss; “VLT 6000 Series Installation, Operation & Maintenance Manual;” Mar. 2000; pp. 1-118; cited in Civil Action 5:11-cv-00459D.
54DX45—Hopkins; “Synthesis of New Class of Converters that Utilize Energy Recirculation;” pp. 1-7; cited in Civil Action 5:11-cv-00459D; 1994.
54DX46—Hopkins; “High-Temperature, High-Density . . . Embedded Operation;” pp. 1-8; cited in Civil Action 5:11-cv-00459D; Mar. 2006.
54DX47—Hopkins; “Optimally Selecting Packaging Technologies . . . Cost & Performance;” pp. 1-9; cited in Civil Action 5:11-cv-00459D; Jun. 1999.
54DX48—Hopkins; “Partitioning Digitally . . . Applications to Ballasts;” pp. 1-6; cited in Civil Action 5:11-cv-00459D; Mar. 2002.
9PX5—Pentair; Selected Website Pages; pp. 1-29; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX6—Pentair; “IntelliFlo Variable Speed Pump” Brochure; 2011; pp. 1-9; cited in Civil Action 5:11-cv-00459D.
9PX7—Pentair; “IntelliFlo VF Intelligent Variable Flow Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-00459D.
9PX8—Pentair; “IntelliFlo VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-00459D.
9PX9—STA-Rite; “IntelliPro Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-00459D.
9PX14—Pentair; “IntelliFlo Installation and User's Guide;” pp. 1-53; Jul. 26, 2011; Sanford, NC; cited in Civil Action 5:11-cv-00459D.
9PX16—Hayward Pool Products; “EcoStar Owner's Manual (Rev. B);” pp. 1-32; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; 2010.
9PX17—Hayward Pool Products; “EcoStar & EcoStar SVRS Brochure;” pp. 1-7; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 30, 2011.
9PX19—Hayward Pool Products; “ Hayward Energy Solutions Brochure ;” pp. 1-3; www.haywardnet.com; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX20—Hayward Pool Products; “ProLogic Installation Manual (Rev. G);” pp. 1-25; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX21—Hayward Pool Products; “ProLogic Operation Manual (Rev. F);” pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX22—Hayward Pool Products; “Wireless & Wired Remote Controls Brochure;” pp. 1-5; 2010; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D.
9PX23—Hayward Pool Products; Selected pp. from Hayward's Website:/www.hayward-pool.com; pp. 1-27; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX28—Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar Pumps;” p. 1; cited in Civil Action 5:11-cv-00459D; Sep. 2011.
9PX29—Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar SVRS Pumps;” cited in Civil Action 5:11-cv-00459; Sep. 2011.
9PX30—Hayward Pool Systems; “Selected Pages from Hayward's Website Relating to ProLogic Controllers;” pp. 1-5; Civil Action 5:11-cv-00459D; Sep. 2011.
9PX-42—Hayward Pool Systems; “Hayward EcoStar & EcoStar SVRS Variable Speed Pumps Brochure;” Civil Action 5:11-cv-00459D; 2010.
205-24—Exh23-Plaintiffs Preliminary Disclosure of Asserted Claims and Preliminary Infringement Contentions; cited in Civil Action 5:11-cv-00459; Feb. 21, 2012.
PX-34—Pentair; “IntelliTouch Pool & Spa Control System User's Guide”; pp. 1-129; 2011; cited in Civil Action 5:11-cv-00459; 2011.
PX-138—Deposition of Dr. Douglas C. Hopkins; pp. 1-391; 2011; taken in Civil Action 10-cv-1662.
PX-141—Danfoss; “Whitepaper Automatic Energy Optimization;” pp. 1-4; 2011; cited in Civil Action 5:11-cv-00459.
9PX10—Pentair; “IntelliPro VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-6; cited in Civil Action 5:11-cv-00459D.
9PX11—Pentair; “IntelliTouch Pool & Spa Control Control Systems;” 2011; pp. 1-5; cited in Civil Action 5:11-cv-00459D.
Robert S. Carrow; “Electrician's Technical Reference-Variable Frequency Drives;” 2001; pp. 1-194.
Baldor; “Baldor Motors and Drives Series 14 Vector Drive Control Operating & Technical Manual;” Mar. 22, 1992; pp. 1-92.
Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-118.
Baldor; “Baldor Series 10 Inverter Control: Installation and Operating Manual”; Feb. 2000; pp. 1-74.
Dinverter; “Dinverter 2B User Guide;” Nov. 1998; pp. 1-94.
Danfoss; “VLT8000 Aqua Instruction Manual;” Apr. 16, 2004; pp. 1-71.
“Product Focus—New AC Drive Series Targets Water, Wastewater Applications;” WaterWorid Articles; Jul. 2002; pp. 1-2.
Pentair; “Pentair IntelliTouch Operating Manual;” May 22, 2003; pp. 1-60.
Pentair; “Pentair RS-485 Pool Controller Adapter” Published Advertisement; Mar. 22, 2002; pp. 1-2.
Compool; “Compool CP3800 Pool-Spa Control System Installation and Operating Instructions;” Nov. 7, 1997; pp. 1-45.
Hayward; “Hayward Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; pp. 1-4.
Danfoss; “Danfoss VLT 6000 Series Adjustable Frequency Drive Installation, Operation and Maintenance Manual;” Mar. 2000; pp. 1-118.
Shabnam Mogharabi; “Better, Stronger, Faster;” Pool and Spa News; pp. 1-5; Sep. 3, 2004; www/poolspanews.com.
Pentair Pool Products; “IntelliFlo 4X160 a Breathrough in Energy-Efficiency and Service Life;” pp. 1-4; Nov. 2005; www/pentairpool.com.
Pentair Water Pool and Spa, Inc.; “The Pool Pro's Guide to Breakthrough Efficiency, Convenience & Profitability;” pp. 1-8; Mar. 2006; wwwpentairpool.com.
USPTO Patent Trial and Appeal Board, Paper 43—Final Written Decision, U.S. Pat. No. 7,704,051 B2, Nov. 19, 2014, 28 pages.
Per Brath—Danfoss Drives A/S, Towards Autonomous Control of HVAC Systems, thesis with translation of Introduction, Sep. 1999, 216 pages.
Karl Johan Aström and Björn Wittenmark—Lund Institute of Technology, Adaptive Control—Second Edition, book, Copyright 1995, 589 pages, Addison-Wesley Publishing Company, United States and Canada.
Bimal K. Bose—The University of Tennessee, Knoxville, Modern Power Electronics and AC Drives, book, Copyright 2002, 728 pages, Prentice-Hall, Inc., Upper Saddle River, New Jersey.
Waterworld, New AC Drive Series Targets Water, Wastewater Applications, magazine, Jul. 2002, 5 pages, vol. 18, Issue 7.
Texas Instruments, TMS320F/C240 DSP Controllers Peripheral Library and Specific Devices, Reference Guide, Nov. 2002, 485 pages, printed in U.S.A.
Microchip Technology Inc., PICmicro® Advanced Analog Microcontrollers For 12-Bit ADC on 8-Bit MCUs, Convert to Microchip, brochure, Dec. 2000, 6 pages, Chandler, Arizona.
W.K. Ho, S.K. Panda, K.W. Lim, F.S. Huang—Department of Electrical Engineering, National University of Singapore, Gain-scheduling control of the Switched Reluctance Motor, Control Engineering Practice 6, copyright 1998, pp. 181-189, Elsevier Science Ltd.
Jan Eric Thorsen—Danfoss, Technical Paper—Dynamic simulation of DH House Stations, presented by 7. Dresdner Femwärme-Kolloquium Sep. 2002, 10 pages, published in Euro Heat & Power Jun. 2003.
Texas Instruments, Electronic TMS320F/C240 DSP Controllers Reference Guide, Peripheral Library and Specific Devices, Jun. 1999, 474 pages.
Rajwardhan Patil, et al., A Multi-Disciplinary Mechatronics Course with Assessment—Integrating Theory and Application through Laboratory Activities, International Journal of Engineering Education, copyright 2012, pp. 1141-1149, vol. 28, No. 5, TEMPUS Publications, Great Britain.
USPTO Patent Trial and Appeal Board, Paper 47—Final Written Decision, U.S. Pat. No. 8,019,479 B2, Nov. 19, 2014, 39 pages.
Pentair Pool Products, WhisperFlo Pump Owner's Manual, Jun. 5, 2001, 10 pages.
Brochure entitled “Constant Pressure Water for Private Well Systems,” for Myers Pentair Pump Group, Jun. 28, 2000.
Brochure for AMTROL, Inc. entitled “AMTROL unearths the facts about variable speed pumps and constant pressure valves,” Mar. 2002.
Texas Instruments, Digital Signal Processing Solution for AC Induction Motor, Application Note, BPRA043 (1996).
Texas Instruments, Zhenyu Yu and David Figoli, DSP Digital Control System Applications—AC Induction Motor Control Using Constant V/Hz Principle and Space Vector PWM Technique with TMS320C240, Application Report No. SPRA284A (Apr. 1998).
Texas Instruments, TMS320F/C240 DSP Controllers Reference Guide Peripheral Library and Specific Devices, Literature No. SPRU 161D (Nov. 2002).
Texas Instruments, MSP430x33x—Mixed Signal Microcontrollers, SLAS 163 (Feb. 1998).
Microchip Technology, Inc., PICMicro Mid-Range MCU Family Reference Manual (Dec. 1997).
Load Controls Incorporated, product web pages including Affidavit of Christopher Butler of Internet Archive attesting to the authenticity of the web pages, dated Apr. 17, 2013, 19 pages.
Cliff Wyatt, “Monitoring Pumps,” World Pumps, vol. 2004, Issue 459, Dec. 2004, pp. 17-21.
Wen Technology, Inc., Unipower® HPL110 Digital Power Monitor Installation and Operation, copyright 1999, pp. 1-20, Raleigh, North Carolina.
Wen Technology, Inc., Unipower® HPL110, HPL420 Programming Suggestions for Centrifugal Pumps, copyright 1999, 4 pages, Raleigh, North Carolina.
Danfoss, VLT® AQUA Drive, “The ultimate solution for Water, Wastewater, & Irrigation”, May 2007, pp. 1-16.
Danfoss, SALT Drive Systems, “Increase oil & gas production, Minimize energy consumption”, copyright 2011, pp. 1-16.
Schlumberger Limited, Oilfield Glossary, website Search Results for “pump-off”, copyright 2014, 1 page.
Allen-Bradley; “1336 Plus II Adjustable Frequency AC Drive with Sensorless Vector User Manual;” Sep. 2005; pp. 1-212.
Flotec Owner's Manual, dated 2004. 44 pages.
Glentronics Home Page, dated 2007. 2 pages.
Goulds Pumps SPBB Battery Back-Up Pump Brochure, dated 2008. 2 pages.
Goulds Pumps SPBB/SPBB2 Battery Backup Sump Pumps, dated 2007.
Itt Red Jacket Water Products Installation, Operation and Parts Manual, dated 2009. 8 pages.
Liberty Pumps PC-Series Brochure, dated 2010. 2 pages.
“Lift Station Level Control” by Joe Evans PhD, www.pumped101.com, dated Sep. 2007. 5 pages.
The Basement Watchdog A/C-D/C Battery Backup Sump Pump System Instruction Manual and Safety Warnings, dated 2010. 20 pages.
The Basement Watchdog Computer Controlled A/C-D/C Sump Pump System Instruction Manual, dated 2010. 17 pages.
Pentair Water Ace Pump Catalog, dated 2007, 44 pages.
ITT Red Jacket Water Products RJBB/RJBB2 Battery Backup Sump Pumps; May 2007, 2 pages.
Related Publications (1)
Number Date Country
20110181431 A1 Jul 2011 US
Continuations (2)
Number Date Country
Parent 11981117 Oct 2007 US
Child 12973778 US
Parent 10730747 Dec 2003 US
Child 11981117 US