Pump device having a detection device

Information

  • Patent Grant
  • 10561772
  • Patent Number
    10,561,772
  • Date Filed
    Monday, April 24, 2017
    7 years ago
  • Date Issued
    Tuesday, February 18, 2020
    4 years ago
Abstract
The invention relates to a pump device having a pump (8) and an energy supply device (5, 18), wherein the pump has a conveying element (9, 11) which conveys a fluid by means of supplied energy, wherein the pump has a transport state and an operating state, and wherein at least of first element (9, 9a, 10, 10′, 11) of the pump has a different shape and/or size in the transport state than in the operating state. The operating safety of such a pump device is increased by a detection device (12, 20, 21, 22, 23, 24, 25, 27, 28, 29) which detects whether at least the first element is in the operating state with respect to shape and/or size by means of a sensor.
Description

The invention is in the field of mechanical engineering and precision engineering and relates to a pump device.


Pumps are used for conveying fluids, in particular liquids, and are known in a variety of variants. Pumps are particularly interesting for many applications which either have a particularly small construction or whose design is changeable to be taken to a place of deployment with difficult access in a transport state, wherein an expanded state or an operating state can afterward be established in which individual elements of the pump have a different shape and/or size than in the transport state.


Examples for such pumps are expandable catheter pumps which are introduced into a patient's body through a blood vessel and can be inserted up to and into a ventricle and can be expanded there.


For this purpose, an expanding of a rotor of the pump and of a housing typically takes place. The rotor usually carries one or more impeller blades which can be radially compressed and expanded alone or together with a hub. For this purpose, conveyor blades can, for example, be fastened flexibly or pivotably to a hub or can be configured as compressible by the manufacture as a foam body. Such conveyor blades occasionally also have portions made from a memory alloy such as nitinol which has super-elastic properties and temperature-dependent shape properties. A corresponding rotor is then radially compressible with a small force and erects itself independently again to its original shape at a suitable temperature after the removal of the compression force.


Principles are also known in accordance with which a corresponding pump is actively erected/expanded by actuation from the outside after the transport to the place of deployment (WO 94/05347 A1). Such constructions, however, require corresponding actuation devices and elements for transferring such an actuation, which requires an increased electric, pneumatic or mechanical effort.


Pump principles are also known in which conveyor blades of a rotor are erected by the fluid counter-pressure on operation with growing speed of the rotor up to an operating state in which the rotor is extended to a maximum in the radial direction.


All the named principles share the feature that an expansion of the pump elements is initiated or made possible after the taking or the pump to the place of deployment, but that the reaching of the completely expanded state (this is advantageously the operating State) is not absolutely certain. There is thus the risk that the pump does not reach the operating state at all or only reaches it in part despite a corresponding actuation. This contains a great danger, in particular on the deployment of such pumps in the biological sector, since either body fluids such as blood are damaged on the putting into operation of the pump or pump elements can get into a body fluid such as blood on damage to the pump.


This can take place, for example, if a pump rotor is set into rotation without it having its operating shape or without the housing surrounding it already being expanded to the de Sired diameter. In this case, impeller blades may break or may be operated in an unwanted manner in the transport state so that the rotor develops too high a speed due to a fluid resistance which is too low and damages components of the blood or of another body fluid. If the speed is controlled or regulated, the pump would possibly work with insufficient output.


It is the underlying object of the present invention against the background of the prior art to configure a pump device such that disadvantages by an operation of the pump are avoided in the compressed state or in a not sufficiently expanded state.


The object is achieved in accordance with the invention by the features of claim 1. Provision is made in this respect that the pump device has a pump and an energy supply device, wherein the pump has a conveying element which conveys a fluid by means of a supplied energy, wherein the pump has a transport state which is for example a compressed or folded state and an expanded respectively unfolded state, and wherein at least one first element of the pump has a different shape and/or size in the transport state than in the operating state. In this respect, a detection device is moreover provided which detects whether at least the first element is located in the expanded state with respect to shape and/or size.


The first element has a different shape and/or size in the transport state than in the expanded state or in the operating state so that the pump has deformation possibilities and can be adapted to a transport path to be passed through to reach a place of deployment. The first element can, for example, be an impeller blade, a rotor or a pump housing.


Provision can, for example, be made that at least one first element at least partly comprises an elastically deformable, in particular compressible and expandable, material.


The at least one first element can thereby perform the change from the transport state into the expanded state by elastic deformation such as bending, compression, extraction or similar effects.


Such a pump can, for example, be pushable through a hose system, tubular system or channel system in that it is first reduced in size by radial compression and is later expanded again at the place of deployment.


Such principles are in particular realized in medically used micropumps in which the pump itself, and optionally the housing, are radially compressed for transport.


It is sensible to ensure that the first element has reached the expanded state before the pump is put into operation. The first element can, for example, be a rotor of the pump having at least one impeller blade, with the rotor only reaching the required pump performance when it has expanded correspondingly. If the rotor is surrounded by a housing, it must be ensured that the housing is expanded before the rotor is put into operation. The detection device can accordingly be equipped with a sensor and monitor the expanded state of the housing and/or of the rotor or of an impeller blade. This can be done, for example, in that the detection device contains a strain gage as the sensor which is fastened to an impeller blade or a position sensor which can, for example, monitor the relative position of the impeller blades toward a hub.


If such a pump is taken into operation too soon without the expanded state having been reached, there would be a risk that the impeller blades would catch at the pump housing or at other positions and might break; in every case, however, the pump is decelerated.


It can also take place that the rotor does not work correctly and that its conveying performance is not sufficient due to an insufficient expansion of the rotor.


The energy supply device can advantageously be configured as a mechanical drive and the conveying element can be configured movable and drivable by means of the drive. The typical case is thus given by a rotationally drivable pump rotor having impeller blades.


Other pump function principles are, however, also conceivable, for example having an alternatingly expanded and compressed balloon element which intermittently displaces fluid out of a chamber and thus conveys it. Pump principles are moreover conceivable without moving parts in which the conveying element, for example, generates an electric or magnetic field which acts on a fluid which has corresponding material parameters to be able to be conveyed by corresponding field effects.


It can also be sensible with such non-moved conveying elements to detect their expanded state.


A conveying element can advantageously be inflatable, bendable, pivotable or elastically compressible and expandable. This is, for example, possible in that the conveying element comprises wholly or, partly an elastic foam or in that an elastic wire frame is provided over which a membrane is spanned for forming an impeller blade, wherein the frame is elastically compressible in the radial direction and automatically adopts the original shape on the removal of a compression force. A corresponding impeller blade can also contact the hub as an expandable or bendable body and only be set up by the fluid counter-pressure being adopted at the start of operation.


A likewise compressible housing f the pump can also be provided in addition to a conveying element or to a rotor.


In this case, it is particularly important that both the conveying element, for example a rotor, and the pump housing are set into the expanded state accordingly before the putting into operation. This can be done either automatically by the above-named effects when the pump is kept radially together on transport and the holding together is cancelled after the transport. This can, for example, be realized in that the pump is conducted in a hollow catheter during transport and is pushed out of the hollow catheter after the transport or at the end of the transport so that the radial holding force is removed outside the hollow catheter and the pump automatically elastically expands.


An active expanding can, however, also be provided by a corresponding actuation device such as small levers or other apparatus which engage at the rotor and the housing.


Provision is advantageously made that the detection device changes a signal state when the first element reaches the expanded state. The state of the pump can thus be actively communicated to a person operating the pump. The state can, for example, be communicated by an optical signal or by an acoustic signal.


Provision can also be made that the detection device emits a signal as long as the expanded state is not reached. The corresponding signal can thus serve as a warning signal that the pump may not yet be taken into operation.


If a signal is only output when the expanded state is reached, it is thereby ensured that, on a defect of the detection device, the pump is not put into operation for reasons of safety as long as no signal is output, even if the pump should actually have reached the expanded state with a defective sensor.


Provision can also be made that the detection device blocks the energy supply device as long as the expanded state is not reached. It is thus ensured automatically and without the intervention of an operator that the pump is not taken into operation as long as the expanding of the expandable elements is not confirmed.


Provision can also advantageously be made that the detection device monitors the load of the energy supply device in operation and determines by comparison with a reference value or a reference pattern whether the operating state has been reached.


The sensor of the detection device can thus also be arranged remote from the pump, for example in the proximity of the energy supply device, in order to monitor from there whether a conclusion can be drawn on an increased or modified resistance in pump operation due to an irregular behavior of the energy supply device. In contrast to this, provision can also be made that the detection device has a sensor which is arranged directly at the pump.


The elements of the pump can be directly monitored considerably more easily there if corresponding sensors such as strain gages are provided. It is also possible to determine, independently of the operation of the pump, whether it has already reached the operating state, i.e. has been expanded accordingly. The shape of the individual impeller blades can, for example, be monitored by attached strain gages or the angle between the impeller blades and the hub can be monitored when the impeller blades are angled from the hub in the course of an expansion.


An electrical resistance can, for example, also be monitored which corresponds to a current path from the pump housing over the impeller blades and the hub when the impeller blades or other parts of the rotor should not contact the pump housing in the expanded state and the resistance is thus high, whereas a contact between the pump housing and other parts of the pump is present in the compressed state so that the electrical resistance is reduced in this state.


An electrical capacitance between the pump housing and parts of the rotor or the total rotor can also be monitored in a similar manner, with the capacitance being influenced by the spacing between these components.


An inductance of the housing or of the rotor can also be monitored, with the inductance being influenced by the shape of the housing or rotor. When the housing or the rotor, for example, includes a framework of metal, for example nitinol, which (hyper-)elastically deformes on the change from the transport state into the expanded state, the inductance of the housing or of the rotor is also changed in dependence on the extent of the electrically conductive framework components. The change in this inductance can be detected, for example, by monitoring the reactance of the housing or of the rotor. The housing could also, for example, have an elastically deformable electric conductor wound around it which changes its resistance on the change from the transport state into the expanded state and furthermore changes the inductance since it is arranged in the manner of a coil.


A further variant can provided that an additional conductive path, for example a wire or a plurality of mutually contacting wires made from electrically conductive material is introduced into the pump and is cut or torn, i.e. interrupted, by an expansion movement so that, on the monitoring of the passage resistance of the path, a change occurs when it is interrupted. Such a wire or conductive path can, for example, completely surround the pump in the compressed state of the pump and be arranged around it, in particular spanned around it.


Provision can also be made that the monitored path which surrounds the pump or elements of the pump and is not conductive in the compressed state only becomes conductive by the expansion due to the displacement of a conductor.


An electric conductor can, for example, be integrated into the catheter for transferring the signal from the pump head to the proximal catheter section.


In this sense, a pump device having the following features is also proposed as a separate invention:


a pump device having a pump head and a catheter, wherein the catheter has a proximal end positionable outside a human body or the body of an animal and a distal end which is located toward the pump head, wherein the pump head has a mechanically movable pump member and an energy supply device is provided in the form of a flexible shaft for driving the pump member, said energy supply device extending from the proximal end to the distal end of the catheter, wherein the catheter has an additional electric conductor and/or a light guide which extends from the proximal end of the catheter to the distal end of the catheter.


It is possible for the first time in this respect that, with a mechanically driven pump, additional electrical signals can be transferred from the pump head to the proximal end which is located outside the human body/body of an animal and at which a medical operator can stand. It hereby becomes possible, for example, to exercise control functions to ensure or observe an ensuring of the correct function.


Electric signals can be transferred from the pump head and/or an electric signal can be conducted via a light guide to the pump head, can be reflected there in dependence on the expanded state, for example by the first element, and can be conducted to the proximal end of the light guide at the outside of the body. For this purpose, for example, parts of the first element can be mirror-coated.


A further embodiment of the invention can provide that the sensor monitors a holding device which compresses the pump and which is expandable or removable from the pump.


The end of a hollow catheter in which the pump is accommodated during a transport procedure can, for example, be provided as the holding device, with the pump being compressed by the surrounding hollow catheter until it is pushed out of the hollow catheter after being taken to the place of deployment, for example with the aid of a drive shaft or a further pulling force or catheter hose as a pushing tool. After the pump has been pushed out of the hollow catheter, the compressive holding force of the hollow catheter is removed so that the pump elements can elastically expand. This procedure can additionally be assisted by further measures such as a slow rotation of the pump rotor or a manipulation by additional pulling or pushing elements.


A sensor can be provided at the end of the hollow catheter which signals that the pump has been completely pushed out of the hollow catheter. It is thus ensured with a certain security that the pump has automatically expanded.


Different ones of the named and above-described sensors can also be combined with one another and logically connected to acquire a higher security with respect to whether the pump has actually been expanded before it is put into operation.





The invention will be shown and subsequently described in the following with reference to an embodiment in a drawing. There are shown



FIG. 1 schematically, a heart catheter pump on being pushed through a blood vessel into a ventricle;



FIG. 2 the pump of FIG. 1 after the reaching the ventricle and after the expanding;



FIG. 3 a first signal processing of detector signals;



FIG. 4 a second processing of detector signals;



FIG. 5 a processing of detector signals with an additional control of the drive device;



FIG. 6 a signal processing in which the connection between the drive device and the pump is interrupted from case to case;



FIG. 7 a detection device which is arranged at the drive device;



FIG. 8 a pump in compressed form;



FIG. 9 the pump of FIG. 8 in expanded form;



FIG. 10 a pump which is positioned in compressed form in a ventricle;



FIG. 11 a detection device of a pump which measures an electric resistance;



FIG. 12 a detection device which measures the resistance of a wire spanning around a pump;



FIG. 13 a detection device similar to that of FIG. 12 with an interrupted conductor;



FIG. 14 a pump in the compressed state, surrounded by a non-conductive path;



FIG. 15 the pump of FIG. 14 in an at least partly expanded state with a closed conductor path;



FIG. 16 schematically, a pump in a longitudinal section whereas it is compressed in a hollow catheter at the end of said hollow catheter; and



FIG. 17 the pump of FIG. 16 outside the catheter in an expanded state.






FIG. 1 schematically shows a ventricle 1 into which a blood vessel 2 opens through which a hollow catheter 4 is introduced by means of a sluice 3. The hollow catheter has a rotating shaft 5 in its hollow space which is drivable at high revolutions, typically more than 10,000 revolutions per minute, by means of a motor 6.


The shaft 5 drives a pump 8 at the distal end 7 of the hollow catheter, said pump being compressed by the hollow catheter in the still compressed state at the end of the hollow catheter in the representation of FIG. 1.


The pump can, for example, be pushed out of the end of the hollow catheter 4 into the ventricle 1 by means of the shaft 5 or by means of further elements not shown. The state which thus arises is shown in FIG. 2 where the pump 8 is shown in the expanded form. A rotor 9 is thus shown in schematic form in the interior of a pump housing 10.


The rotor 9 has impeller blades 11 which project radially from a hub and which are rolled up, folded up or otherwise compressed in the compressed state of the pump.


In the design shown in FIG. 2, the pump 8 is ready for operation, i.e. it is in the expanded state and can convey blood by rotation of the rotor. In FIG. 1, in contrast, the pump 8 is shown in the transport state, i.e. it is compressed within the hollow catheter 4.


The transition from the compressed form of the pump to the expanded form can take place, for example, when the outer compressive forces are removed, by the inherent elasticity of the pump housing 10 and of the rotor 9.


Additional manipulation elements can, however, also additionally be provided such as pulls which extend along the hollow catheter 4 at its outer side or in the lumen and which can effect the folding open and expanding of the pump by the application of a pulling force or pressure onto the pump.


The pump can ultimately, for example, also be expanded in that the rotor is rotated slowly so that, for example, the impeller blades 11 are erected by the fluid counter-pressure of the blood which is trapped in said impeller blades.


The pump housing 10 can likewise be inflated by a slight overpressure which is generated by the rotor.


It is also conceivable to equip the pump with inflatable hollow spaces, in that, for example, the pump housing 10 is produced as a double-wall balloon and the rotor likewise has inflatable hollow spaces both in the impeller blades and, optionally in the hub, wherein the individual elements of the pump in this case have to be connected to a controllable pressure source via hydraulic or pneumatic lines. The named components can also comprise a foam which adopts its expanded form automatically after the removal of compressive forces.


It is decisive for an increased operating security in this respect that the expanded state of the pump is also checked and detected so that, for example, a treating physician can decide whether the pump can be put into operation.


For this purpose, different kinds of sensors can be provided which will be described in more detail further below.


It is shown with reference to FIG. 3 how a signal coming from such a sensor can be processed.


The sensor is marked by 12 in FIG. 3. It delivers a signal to a decision-making device 13 which decides on the basis of the sensor signals whether the pump is expanded or not or whether a specific element of the pump is expanded. If the expanded state has been reached (Yes), the signal path 14 is selected. If the expanded state has not been reached (No), the signal 15 is terminated. Depending on what the state of the pump is, a signal, in FIG. 3, for example, a light signal, is output when the expanded state has been reached or it is suppressed as long as the expanded state has not yet been reached.


The light signal arrangement can also be exactly the opposite so that a light signal is output as long as the expanded state has not been reached and it is extinguished as soon as the expanded state has been reached.


Instead of light signals, other types of signals can also be emitted such as acoustic signals.


It is shown in FIG. 4 that, in accordance with the same structure as in FIG. 3, a switch 16 to a signal element is interrupted on the reaching of the expanded state and a corresponding adoption of the signal state 14 (Yes), whereas the same switch element or also a different switch element is closed, when the signal state 15 (No) is adopted.


Different elements which achieve specific desired effects can also be connected to the corresponding switches 16 instead of a signal element.


A constellation is shown in FIG. 5 in which a further switch 17 is provided in series with a switch 16 which is actuated in dependencdt on the signal, and said further switch is actuable by hand and results in the actuation of the drive 18 of the pump This has the consequence that in the event that the expanded state is reached (Yes), the signal 14 is output and the switch 16 is closed. The drive can thus be switched on by actuating the switch 17.


As long as the signal for the reaching of the expanded state has not been given. (No), shown by the signal 15, the switch 16 remains open, as shown in the lower half of FIG. 6, so that the switch 17 can admittedly be actuated, but the drive 18 is thereby not set into motion. The drive 18 is thus blocked by means of the sensor 12 or by meals of its signal processing.


In FIG. 6, a variant of the circuit shown in FIG. 3 is described in which a switch 19 which permits or blocks the transfer of energy from the drive 18 to the pump 8 is actuated by the signal processing. If the expanded state of the pump has been reached, characterized by the signal 14, the switch 19 is closed and the energy can move from the drive 18 to the pump. As long as the expanded state has not been reached, characterized by the signal 15, the switch 19 remains open and the effect of the drive does not reach the pump.


The examples for a drive control of FIGS. 5 and 6 can also be combined with a signal processing in accordance with the examples of FIGS. 1 to 4 such that both a signal which can be perceived outside the body appears or is extinguished and the energy supply of the drive device is switched free or blocked.


The switch 19 can, for example, be configured as an electric switch, but also as a pneumatic or hydraulic valve which is arranged in the powertrain.


It can also be a coupling which blocks the transmission of the torque via the shaft in that the coupling changes into the disengaged state in which no torque is transmitted.



FIG. 7 schematically shows the arrangement of a sensor 20 directly at be drive 18, with the sensor 20, for example, measuring the current flowing through the drive or measuring the load of the drive in another manner.


If the pump is not yet in the expanded state, the load of the drive becomes higher than in the expanded state since the pump is either unable to be moved at all or can only be moved with large friction losses.


The load is detected by the sensor 20 and is compared by means of a processing device 21 as part of the detection device with reference values or reference patterns, with the device 21 being able to influence the drive 18, for example being able to switch it off when it is detected that the expanded state has not yet been reached.


The sensor 20 is in this case typically arranged remote from the pump and closer to the drive, i.e. in the example shown in FIGS. 1 and 2, in the proximity of the electric motor 6 or its current source. Provision can also be made in this respect that the corresponding motor, either an electric motor or, for example, also a microturbine, can be arranged at the distal end of the hollow catheter 4 so that in this case the sensor 20 is also arranged there.


In FIG. 8, a pump 8 is shown schematically in the compressed state with a folded-together housing 10 and a rotor 9 whose impeller blades 11 are likewise compressed, for example folded into the hub 9a.


Strain gages 22, 23, 24 are shown, with the strain gage 22 being arranged on an impeller blade, the strain gage 23 in the starting region of an impeller blade at the hub 9a and the strain gage 24 outside at the housing 10.


The strain gages are in each case stuck on and register changes in shape and size of the carrier material. They are each connected via lines to an evaluation device 25 which registers the extent of shape changes during the expansion process of the pump. The signals of the individual strain gages can be combined, with the logic of this combination being able to have a different design. The reaching of the operating state can, for example, only be signaled when all the strain gages report an expansion of the respective element monitored by them or when at least two of these elements or even already a single element reports the reaching of the expanded state. A signal to the drive 18 is accordingly output.


The pump of FIG. 8 is shown in an expanded state in FIG. 9.



FIG. 10 shows the end 7 of a hollow catheter 4 in which a pump 8 is compressed. The pump 8 is connected to the motor 6 by means of the shaft 5 through the hollow catheter 4. Both the housing 10 and the rotor 9 having the impeller blades are compressed.


The housing 10′ is shown by dashed lines in a state which is reached after the expansion of the pump. An introduction cone 26 is moreover shown via which the pump 10 is moved in and is radially compressed there on the pulling into the hollow catheter 4 before the removal from the patient body.


Two sensors 27, 28 are provided within the hollow catheter 4 which signal whether the pump is in the region of the hollow catheter represented and monitored by them or whether it has already been moved out of it. In the representation of FIG. 10, the region of the sensor 27 has already been passed by the pump, but the sensor 28 still signals that the pump is compressed in this region. After the moving out of the hollow catheter, the sensor 28 will report that it is free and that the pump has been moved out of the hollow catheter and has thus expanded. The corresponding signals are processed in a signal processing device 25 and are optionally forwarded to the drive 18.



FIG. 11 shows a sensor 29 which is designed as a resistance measuring sensor and which is connected in series with a current sourced 30 and is connected via two lines 31, 32, to the pump housing 10 and to an impeller blade 11. Both the housing 10 and the impeller blade can, for example, comprise an at least partly conductive material or can be coated with such a material so that the circuit is closed over the lines 31, 32, over the sensor 29 and between, the impeller blade 11 and the pump housing 10 as soon as the impeller blade 11 contacts the housing 10.


In this case it would be signaled that the pump is not in the operating state.


As soon as the contact between the impeller blade 11 and the housing 10 is cancelled, the detection device signals the reaching of the expanded state.



FIG. 12 represents a resistance monitoring of a closed wire ring 33 which is spanned around a compressed pump 10. If the wire tears on the expansion of the pump, the resistance in the ring is doubled since one of the current paths is interrupted. This is registered by the sensor 29 and the expanded state is signaled accordingly.



FIG. 13 shows a similar device to FIG. 12 with a ring conductor 34 which is interrupted between the feed lines 35, 36 and which is integrated, for example, into a closed insulation ring. If the insulation ring breaks at a point at which the ring conductor 34 extends, the current path is interrupted by the ring conductor, which is registered by the sensor 29.



FIG. 14 shows a similar apparatus to FIG. 13 with a compressed pump 10, with the current circuit of the ring conductor 33a, however, unlike in FIG. 13, first being open in the transport state and being closed in the expanded state of the pump, that is, in the operating state. The advantage of this variant lies in the fact that the expanded state is only indicated when the ring conductor itself has no defect. In the embodiment in accordance with FIG. 13, a defective ring conductor, interrupted unintentionally, would possibly also indicate the reaching of the expanded state when this has not (yet) been reached. In an embodiment in accordance with FIG. 14, this would not be necessary, which provides additional security against malfunction.



FIG. 15 shows the pump 10 with the apparatus from FIG. 14 in the expanded state with a closed ring conductor 33b.



FIG. 16 shows an apparatus similar to that in FIG. 10 in the transport state, but configured so that a switch 37 is arranged at the proximal end of the catheter 38. In this respect, the length of the catheter 38 in relation to the length of the hollow catheter 39 is dimensioned so that the pump head 40 has already fully adopted the expanded state (that is has left the hollow catheter 39) when the proximal end 41 of the hollow catheter 39 actuates the switch 37 (cf. FIG. 17) To avoid unwanted triggering of the switch 37, it is advantageously configured or arranged so that a triggering of the switch is not possible manually during the manipulation. The switch 37 can be arranged outside a patient's body with a sufficient length of the catheters 38, 39.



FIG. 17 shows the apparatus of FIG. 16 in the operating state.


In FIG. 17, an optical monitoring device is also shown by way of example for the expanded state supplemented with a proximal light source 100, a prism/beam splitter 102, a light guide 103 and an optical sensor 101. The light guide is conducted up to the pump head, conducts light of the light source 100 to there and conducts reflected light back to the optical sensor 101 depending on the compressed or expanded state.


The described invention serves to increase the operating security of compressible pumps and in particular to lower health risks in the medical sector.

Claims
  • 1. An intravascular pump device, comprising: a first catheter having a proximal end and a distal end;a pump head disposed at the distal end of the first catheter and configured to be positioned across a heart valve, the pump head structured to assume a compressed state wherein the pump head can be positioned within the first catheter, and structured to automatically elastically expand into an expanded state upon release from the first catheter;a second catheter configured to move through the first catheter; anda switch arranged at the proximal end of the second catheter;wherein a length of the second catheter is configured such that when the second catheter is extended within the first catheter such that the pump head is in the expanded state, the proximal end of the first catheter actuates the switch.
  • 2. The pump device of claim 1, further comprising a rotor disposed in the pump head, the rotor having impeller blades, the impeller blades being elastically compressible and configured to automatically elastically expand, wherein the impeller blades are configured to convey a fluid by a supplied energy.
  • 3. The pump device of claim 2, further comprising a flexible shaft coupled at a distal end to the rotor of the pump head.
  • 4. The pump device of claim 3, further comprising a drive comprising a motor configured to drive the flexible shaft, wherein upon being driven by the motor the flexible shaft delivers energy to the rotor.
  • 5. The pump device of claim 1, wherein the switch is configured to enable a current of the motor.
  • 6. The pump device of claim 5, wherein the switch is configured to enable transmission of torque via the flexible shaft when actuated.
  • 7. The pump device of claim 6, wherein the switch is configured to limit the current of the motor.
  • 8. The pump device of claim 7, wherein the switch is an electric switch.
  • 9. The pump device of claim 7, wherein the switch is a pneumatic switch.
  • 10. The pump device of claim 7, wherein the switch is a coupling.
  • 11. The pump device of claim 1, further comprising: a light source;a light guide positioned in the pump head, the light guide configured to direct a light from the proximal light source to the pump head and to direct a reflected light from the pump head to an optical sensor; andthe optical sensor configured to detect the reflected light and to determine based on the reflected light whether the pump head is in an expanded state.
  • 12. The pump device of claim 11, the light guide further comprising a beam splitter.
  • 13. The pump device of claim 1, further comprising a sensor configured to detect a load of an energy supply device by measuring a current flowing through the drive and produce an output signal indicative of the detected load.
  • 14. The pump device of claim 13, wherein the sensor is arranged at the pump head.
  • 15. The pump device of claim 13, wherein the sensor is arranged proximal of the pump head.
  • 16. The pump device of claim 13, wherein the sensor is arranged remote from the pump.
  • 17. The pump device of claim 13, wherein the sensor is arranged in the proximity of the flexible shaft.
  • 18. The pump device of claim 13, wherein the detected load is higher when the pump head is not in the expanded state than when the pump head is in the expanded state.
  • 19. The pump device of claim 1, wherein the element includes the impeller blades.
  • 20. The pump device of claim 19, wherein the impeller blades comprise an elastic material.
  • 21. The pump device of claim 20, wherein the element is a pump housing.
  • 22. The pump device of claim 1, further comprising: a detection device comprising: a sensor configured to detect a load of the energy supply device by measuring a current flowing through the drive and produce an output signal indicative of the detected load; anda processor configured to: receive the output signal;calculate the load from the output signal;compare the calculated load to a reference value; anddetermine a difference between the calculated load and the reference value based on the comparison.
  • 23. The pump device of claim 1, wherein the first catheter is configured to compress the pump head when the pump head is inserted into the first catheter.
Priority Claims (1)
Number Date Country Kind
09075570 Dec 2009 EP regional
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/172,400, filed Jun. 3, 2016 (now allowed), which is a continuation of U.S. patent application Ser. No. 13/261,328, filed Aug. 16, 2012 (now U.S. Pat. No. 9,358,330), which entered the national stage on Aug. 16, 2012 and which is a United States National Stage filing under 35 U.S.C. § 371 of international Application No. PCT/EP2010/007997, filed Dec. 23, 2010, which claims the benefit of U.S. Provisional Patent Application No. 61/289,656, filed Dec. 23, 2009, and European Patent Application No. 09075570.3, filed Dec. 23, 2009, the contents of all of which are incorporated by reference herein in their entirety. International Application No. PCT/EP2010/007997 was published under PCT Article 21(2) in English.

US Referenced Citations (141)
Number Name Date Kind
3510229 Smith et al. May 1970 A
3568659 Karnegis Mar 1971 A
3802551 Somers Apr 1974 A
3812812 Hurwitz May 1974 A
4014317 Bruno Mar 1977 A
4207028 Ridder Jun 1980 A
4559951 Dahl et al. Dec 1985 A
4563181 Wijayarathna et al. Jan 1986 A
4679558 Kensey et al. Jul 1987 A
4686982 Nash Aug 1987 A
4747821 Kensey et al. May 1988 A
4749376 Kensey et al. Jun 1988 A
4753221 Kensey Jun 1988 A
4801243 Norton Jan 1989 A
4817613 Jaraczewski et al. Apr 1989 A
4919647 Nash Apr 1990 A
4957504 Chardack Sep 1990 A
4969865 Hwang et al. Nov 1990 A
4995857 Arnold Feb 1991 A
5011469 Buckberg et al. Apr 1991 A
5040944 Cook Aug 1991 A
5042984 Kensey et al. Aug 1991 A
5052404 Hodgson Oct 1991 A
5061256 Wampler Oct 1991 A
5092844 Schwartz Mar 1992 A
5097849 Kensey et al. Mar 1992 A
5108411 McKenzie Apr 1992 A
5112292 Hwang et al. May 1992 A
5113872 Jahrmarkt et al. May 1992 A
5117838 Palmer et al. Jun 1992 A
5118264 Smith Jun 1992 A
5145333 Smith Sep 1992 A
5158529 Kanai Oct 1992 A
5163910 Schwartz et al. Nov 1992 A
5169378 Figuera Dec 1992 A
5183384 Trumbly Feb 1993 A
5191888 Palmer et al. Mar 1993 A
5201679 Velte, Jr. et al. Apr 1993 A
5275580 Yamazaki Jan 1994 A
5373619 Fleischhacker et al. Dec 1994 A
5376114 Jarvik Dec 1994 A
5501574 Raible Mar 1996 A
5531789 Yamazaki et al. Jul 1996 A
5701911 Sasamine et al. Dec 1997 A
5749855 Reitan May 1998 A
5755784 Jarvik May 1998 A
5776190 Jarvik Jul 1998 A
5813405 Montano, Jr. et al. Sep 1998 A
5820571 Erades et al. Oct 1998 A
5851174 Jarvik et al. Dec 1998 A
5882329 Patterson et al. Mar 1999 A
5888241 Jarvik Mar 1999 A
5911685 Siess et al. Jun 1999 A
5938672 Nash Aug 1999 A
5964694 Siess et al. Oct 1999 A
6030397 Monetti et al. Feb 2000 A
6058593 Siess May 2000 A
6129704 Forman et al. Oct 2000 A
6139487 Siess Oct 2000 A
6152693 Olsen et al. Nov 2000 A
6168624 Sudai Jan 2001 B1
6248091 Voelker Jun 2001 B1
6254359 Aber Jul 2001 B1
6302910 Yamazaki et al. Oct 2001 B1
6308632 Shaffer Oct 2001 B1
6336939 Yamazaki et al. Jan 2002 B1
6346120 Yamazaki et al. Feb 2002 B1
6387125 Yamazaki et al. May 2002 B1
6503224 Forman et al. Jan 2003 B1
6506025 Gharib Jan 2003 B1
6508787 Erbel et al. Jan 2003 B2
6517315 Belady Feb 2003 B2
6527521 Noda Mar 2003 B2
6533716 Schmitz-Rode Mar 2003 B1
6537030 Garrison Mar 2003 B1
6537315 Yamazaki et al. Mar 2003 B2
6592612 Samson et al. Jul 2003 B1
6652548 Evans et al. Nov 2003 B2
6719791 Nusser et al. Apr 2004 B1
6860713 Hoover Mar 2005 B2
6945977 Demarais et al. Sep 2005 B2
6981942 Khaw et al. Jan 2006 B2
7022100 Aboul-Hosn et al. Apr 2006 B1
7027875 Siess et al. Apr 2006 B2
7074018 Chang Jul 2006 B2
7179273 Palmer et al. Feb 2007 B1
7393181 McBride et al. Jul 2008 B2
7467929 Nusser et al. Dec 2008 B2
7731675 Aboul-Hosn et al. Jun 2010 B2
7927068 McBride et al. Apr 2011 B2
7934909 Nuesser et al. May 2011 B2
20020123661 Verkerke et al. Sep 2002 A1
20030135086 Khaw et al. Jul 2003 A1
20030231959 Snider Dec 2003 A1
20040044266 Siess et al. Mar 2004 A1
20040046466 Siess et al. Mar 2004 A1
20040093074 Hildebrand et al. May 2004 A1
20040152945 Kantrowitz et al. Aug 2004 A1
20040215222 krivoruchko Oct 2004 A1
20040215228 Simpson et al. Oct 2004 A1
20060008349 Khaw Jan 2006 A1
20060062672 McBride et al. Mar 2006 A1
20060149166 Zvuloni Jul 2006 A1
20060195004 Jarvik Aug 2006 A1
20080028114 Mun Jan 2008 A1
20080132747 Shifflette Jun 2008 A1
20080262584 Bottomley et al. Oct 2008 A1
20080306327 Shifflette Dec 2008 A1
20090060743 McBride et al. Mar 2009 A1
20090093764 Pfeffer et al. Apr 2009 A1
20090093796 Pfeffer et al. Apr 2009 A1
20100041939 Siess Feb 2010 A1
20100268017 Siess Oct 2010 A1
20110238172 Akdis Sep 2011 A1
20110275884 Scheckel Nov 2011 A1
20120039711 Roehn Feb 2012 A1
20120041254 Scheckel Feb 2012 A1
20120046648 Scheckel Feb 2012 A1
20120093628 Liebing Apr 2012 A1
20120101455 Liebing Apr 2012 A1
20120142994 Toellner Jun 2012 A1
20120184803 Simon et al. Jul 2012 A1
20120224970 Schumacher et al. Sep 2012 A1
20120234411 Scheckel Sep 2012 A1
20120237353 Schumacher et al. Sep 2012 A1
20120237357 Schumacher et al. Sep 2012 A1
20120264523 Liebing Oct 2012 A1
20120265002 Roehn et al. Oct 2012 A1
20120294727 Roehn Nov 2012 A1
20120301318 Er Nov 2012 A1
20120308406 Schumacher Dec 2012 A1
20130019968 Liebing Jan 2013 A1
20130041202 Toellner Feb 2013 A1
20130060077 Liebing Mar 2013 A1
20130066139 Wiessler et al. Mar 2013 A1
20130085318 Toellner Apr 2013 A1
20130177409 Schumacher et al. Jul 2013 A1
20130177432 Toellner et al. Jul 2013 A1
20130204362 Toellner et al. Aug 2013 A1
20130237744 Pfeffer et al. Sep 2013 A1
20140039465 Schulz et al. Feb 2014 A1
Foreign Referenced Citations (99)
Number Date Country
1008330 Apr 1977 CA
2311977 Dec 2000 CA
2701809 Apr 2009 CA
2701810 Apr 2009 CA
1268894 Oct 2000 CN
2207296 Aug 1972 DE
2113986 Sep 1972 DE
2233293 Jan 1973 DE
2613696 Oct 1977 DE
4124299 Jan 1992 DE
69103295 Dec 1994 DE
69017784 Nov 1995 DE
19535781 Mar 1997 DE
19711935 Apr 1998 DE
29804046 Apr 1998 DE
69407869 Apr 1998 DE
69427390 Sep 2001 DE
10059714 May 2002 DE
10108810 Aug 2002 DE
10155011 May 2003 DE
69431204 Aug 2003 DE
10336902 Aug 2004 DE
102010011998 Sep 2010 DE
480102 Apr 1992 EP
560000 Sep 1993 EP
629412 Dec 1994 EP
768091 Apr 1997 EP
884064 Dec 1998 EP
914171 May 1999 EP
0916359 May 1999 EP
951302 Oct 1999 EP
1019117 Jul 2000 EP
1066851 Jan 2001 EP
1114648 Jul 2001 EP
1337288 Aug 2003 EP
1651290 May 2006 EP
2218469 Aug 2010 EP
2229965 Sep 2010 EP
2301598 Mar 2011 EP
2308524 Apr 2011 EP
2343091 Jul 2011 EP
2345440 Jul 2011 EP
2366412 Sep 2011 EP
2497521 Sep 2012 EP
2606919 Jun 2013 EP
2606920 Jun 2013 EP
2607712 Jun 2013 EP
2239675 Jul 1991 GB
2229899 Jun 2004 RU
WO-9202263 Feb 1992 WO
WO-9302732 Feb 1993 WO
WO-9303786 Mar 1993 WO
WO-9314805 Aug 1993 WO
WO-94001148 Jan 1994 WO
WO-9405347 Mar 1994 WO
WO-9409835 May 1994 WO
WO-9420165 Sep 1994 WO
WO-9523000 Aug 1995 WO
WO-9618358 Jun 1996 WO
WO-9625969 Aug 1996 WO
WO-9744071 Nov 1997 WO
WO-9853864 Dec 1998 WO
WO-9919017 Apr 1999 WO
WO-0027446 May 2000 WO
WO-0043054 Jul 2000 WO
WO-0062842 Oct 2000 WO
WO-2001007760 Feb 2001 WO
WO-2001007787 Feb 2001 WO
WO-0117581 Mar 2001 WO
WO-2001083016 Nov 2001 WO
WO-2003057013 Jul 2003 WO
WO-2003103745 Dec 2003 WO
WO-2005002646 Jan 2005 WO
WO-2005016416 Feb 2005 WO
WO-2005021078 Mar 2005 WO
WO-2005030316 Apr 2005 WO
WO-2005032620 Apr 2005 WO
WO-2005081681 Sep 2005 WO
WO-2006020942 Feb 2006 WO
WO-2006034158 Mar 2006 WO
WO-2006133209 Dec 2006 WO
WO-2007003351 Jan 2007 WO
WO-2007103390 Sep 2007 WO
WO-2007103464 Sep 2007 WO
WO-2007112033 Oct 2007 WO
WO-2008017289 Feb 2008 WO
WO-2008034068 Mar 2008 WO
WO-2008054699 May 2008 WO
WO-2008106103 Sep 2008 WO
WO-2008116765 Oct 2008 WO
WO-2008124696 Oct 2008 WO
WO-2008137352 Nov 2008 WO
WO-2008137353 Nov 2008 WO
WO-2009015784 Feb 2009 WO
WO-2010133567 Nov 2010 WO
WO-2013034547 Mar 2013 WO
WO-2013092971 Jun 2013 WO
WO-2013093001 Jun 2013 WO
WO-2013093058 Jun 2013 WO
Related Publications (1)
Number Date Country
20170354773 A1 Dec 2017 US
Provisional Applications (1)
Number Date Country
61289656 Dec 2009 US
Continuations (2)
Number Date Country
Parent 15172400 Jun 2016 US
Child 15494630 US
Parent 13261328 US
Child 15172400 US