Embodiments of the subject matter disclosed herein generally relate to well operations that involve deploying/retrieving a tool in a well, and more specifically, to pumping down operations that take place in the well for either removing or deploying a well tool with a wireline.
Once a well is drilled to a desired depth relative to the surface, and a casing protecting the wellbore is installed, various operations are performed for connecting the wellbore to a subterranean formation, and/or for bringing the content of the subterranean formation to the surface. For example, sometimes a packer needs to be installed at the toe of the well, or a gun needs to be positioned to a certain depth for perforating the casing, or various valves needs to be installed in a production string. Any of these operations typically uses a pump down operation for achieving its goal.
A traditional pump down operation is illustrated in
The tool 120 advances to its desired location mainly due to its gravity. Once in position, the tool 120 may be deployed in a pocket of the casing (e.g., if the tool is a gas lift valve), or it may be deployed to seal the casing (e.g., if the tool is a packer). Other goals may be achieved with this or other tools. Once the tool has been deployed, a connection mechanism 111, which is provided between the wireline and the tool, may be activated to release the tool 120. Then, the wireline 110 is brought back to the surface, at the spooling unit 112.
For this type of vertical deployment, the gravity is mainly the deployment “engine” for the tool 120. However, modern wells are deviated from the vertical, with an example of a horizontal well shown in
This large cross-section area of the connection mechanism 111 helps to deliver the tool 120 at the desired position in the well, but becomes a burden when the wireline 110 is brought back to the surface because the connection mechanism 11l faces now all the fluid 210 that sits above it, and tends to bring that fluid back to the surface, which require a large amount of energy, and is a slow process.
It is also possible that the tool 120 has a small cross-section area, and then, the connecting device 111 has a similar small area. While this arrangement solves the problem of bypassing the fluid 210 when the wireline is pulled out of the well, it does not offer enough force when the wireline 110 is pumped down into the well to deliver the tool 120 at the desired location.
Thus, there is a need for a new well device that can assist the wireline to deliver the tool 120, irrespective of its cross-sectional area, to a desired location in a non-vertical well, but also to avoid the problem of pushing the fluid 210 to the surface when retrieved from the well.
According to an embodiment, there is an assist device for propelling a tool through a conduit. The assist device includes an upstream housing having a first port, a downstream housing movably attached to the upstream housing and the downstream housing having a second port, and a swab element attached to the downstream housing. The first port is closed when there is no gap between the upstream housing and the downstream housing, and the first port is open when there is a gap between the upstream housing and the downstream housing.
According to another embodiment, there is a well system for deploying a well tool at a desired position in a well. The well system includes a wireline, an assist device attached to the wireline, and a well tool attached to the assist device. The assist device has a swab element that seals a pipe in which the assist device is deployed, so that a fluid above the assist device pushes the swab element down the pipe.
According to still another embodiment, there is a method for deploying/retrieving a well tool in a well. The method includes lowering into a pipe located within the well, an assist device that has a swab element that contacts a bore of the pipe, pumping a fluid on top of the assist device, moving the assist device down the pipe without allowing the fluid to pass by the swab element, and pulling the assist device up the pipe while automatically opening a first port of the assist device to allow the fluid above the assist device to bypass the swab element through an internal conduit of the assist device.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate one or more embodiments and, together with the description, explain these embodiments. In the drawings:
The following description of the embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims. The following embodiments are discussed, for simplicity, with regard to a pump down assist wireline tool that delivers a valve into a corresponding mandrel in a non-vertical part of a well. However, the embodiments discussed herein are also applicable to a vertical well or a tool different than a valve.
Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
According to an embodiment, a novel pump down assist wireline device (called herein an assist device) provides a more positive interface device with the wireline for allowing the hydraulic pumping down movement to a desired depth regardless of the well's inclination, and also provides a consistent way for the wireline tools to easily move upward, without pushing upwards the column of fluid above the assist device. An internal by-pass port is actuated within the assist device by wireline pulling tension, making an easy upward pull due to the fact that the fluid above the assist device is allowed to move through the by-pass port to a region behind the assist device. The assist device is now discussed in more detail with regard to the figures.
The upstream housing is configured to move relative to the downstream housing. To achieve this result, a stem 320 is placed inside corresponding bores of the upstream and downstream housings, as illustrated in
A spring 330 is deployed inside the bore 310A of the upstream housing 310, around the stem 320. The upstream end 330A of the spring 330 is in contact with the head 320A of the stem 320. For example, the head 320A of the stem 320 has a larger diameter then the remaining part of the stem, as shown in
The stem 320 has a bore 321, see
Returning to
Because the head 320A of the stem 320 blocks the port 318, no pressured fluid 210 is allowed to enter through the port 318 into the bore 310A of the upstream housing. Thus, the pressurized fluid 210 has no other choice but to push the entire assist device 300 downstream.
However, when the assist device is pulled out from the well, the situation changes. The pump is not pumping the fluid 210. However, the well is now full with the fluid 210, which means that there is a column of fluid above the assist device, all the way to the head of the well, and this column of fluid exerts a large force on the swab cup 342. When the assist device 300 is pulled upwards, the upstream housing 310 starts to move away from the downstream housing 340 because the force exerted by the column of fluid is larger on the downstream housing 340, due to the swab cup 342, then on the upstream housing 310. This relative motion of the upstream housing 310 is limited by the shoulder 316 discussed above with regard to
Thus, as the assist device 300 is moving upwards in the well, the fluid 210 that is present above it, is now allowed to move along paths 700A to 700C and bypass the entire assist device 300, although the swab cup 342 is still pressing against the casing 102, and not allowing this fluid to pass the assist device through the annulus formed between the assist device and the casing. When the assist device is stopped and lowered again into the well, the upward force exerted on the upstream housing by the wireline is removed, which makes the spring 300 to bring the upstream housing back in contact with the downstream housing, and thus reduce the gap G to zero or almost zero.
A method for using such an assist device for well operations is now discussed with regard to
In step 802, if the well is deviated, a fluid 210 (for example water) is pumped from the surface. The fluid 210 is moving down the casing until is reaching the swab cup 342. As previously discussed, the swab cup 342 is pressing against the casing 102 so that almost no fluid is passing by. This means that the pressure exerted by a pump on the fluid is practically transformed into a force that acts downward on the assist tool and helps the wireline to move the tool 910 to the desired location in the well, even if the well is a horizontal well and there the gravity does not move the tool. Note that as discussed with regard to
In step 804, when the tool 910 has reached its destination, the tool is activated to either retrieve or to deploy an additional tool. For example, if the tool 910 is a kick-over device, then it usually has a running/pulling arm 912 that is configured to connect to a valve 930. The valve 930 is shown in
In step 806 the wireline 110 and the assist device 300 are pulled out of the casing 102. When this happens, the pump at the surface is stopped, so that no additional pressure is added to the fluid 210. The weight of the fluid 210 that is present above the swab cup 342 pushes downward on the downstream housing 340. The pulling force exerted by the wireline acts upwards on the upstream housing 310. The combination of the force exerted by the fluid and the pulling force exerted by the wireline makes the upstream housing to move relative to the downstream housing, as shown in
The assist device 300 discussed herein acts as a one-way valve that is closed when moving down the well and opens up when moving up the well. It prevents a fluid to move through its bore when is pumped down in the well, because of the swab cup, and opens up and allows the fluid to move only through its bore when moving upwards. Thus, the internal mechanism of the assist device (e.g., upstream and downstream housings, stem, string and various ports) controls the opening and closing of its internal bore in response to its movement direction, up or down the well. The closed and opened states are achieved automatically, without human intervention or an electronic controller, which makes the assist device reliable and effective. Also, the assist device does not require electrical power, which makes it less prone to failure.
The assist device 300 can be used with various other tools and in various other environments. For example, the assist device 300 can be used to deploy or retrieve a valve through an inner pipe of a joint pipe element. A joint pipe element 1000 is shown in
Two or more upstream lugs 1060 are attached (for example, welded) to the inner pipe 1030 as shown in
Lug 1060 is in contact with the outer pipe 1040 and may be attached to it also by welding. However, in another embodiment, the lugs 1060 are welded to the inner pipe 1030 and then this assembly is pressed inside the outer pipe 1040, with no welding. The lugs 1060 may engage with a corresponding groove 1050 formed in one of the pipes. A shoulder 1051 of the groove 1050 is configured to stop the lug 1060 from further advancing into the outer pipe. In one embodiment, the size of the lugs is selected to be a little larger than the size of the annulus B, and thus, by pressing the lugs between the two pipes makes the connection of the inner and outer pipes to be fixed, i.e., a torque applied to the outer pipes is transmitted to the inner pipe and thus, the inner pipe cannot rotate relative to the outer pipe or vice versa. In other words, the inner and outer pipes act as a single unit under rotation.
Still with regard to
In this embodiment, the inner pipe 1030 is made to have an upstream end 1030A and a downstream end 1030B that are both treaded. The upstream end 1030A is shaped as a tubular box 1032 that has internal (female) threads 1034. The tubular box 1032 may be made, in one application, by upset forging. Other methods may be used to form this part. The downstream end 10306 is shaped as a tubular pin 1036 having an external (male) thread 1038. The inner pipe 1030 has a bore 1039 (that forms the annulus A of the inner tubular string) through which a valve may be lowered into the well or oil may be brought to the surface. As previously discussed, the bore 1039 of the inner pipe 1030 is called annulus A, the annulus between the inner pipe 1030 and the outer pipe 1040 is called annulus B, and the annulus between the outer pipe 1040 and the casing (not shown) is called the annulus C.
For fixing the inner pipe 1030 relative to the outer pipe 1040, in addition to the upstream lugs 1060 discussed above, downstream lugs 1070 may be used at the downstream end of the outer and inner pipes. Two or more downstream lugs 1070 may be used. Although
The joint pipe mandrel 1110 has an upstream end 1110A that has threads 1112A formed on the inner part of the inner member 1112 and threads 1114A formed on the inner part of the outer member 1114. The joint pipe mandrel 1110 also has a downstream end 1110B that has threads 1112B formed on the outer part of the inner member 1112 and threads 1114B formed on the outer part of the outer member 1114. The threads on the upstream end of the inner and outer members have the same pitch so that they engage corresponding threads of a joint pipe element or connector simultaneously, with a single rotation motion. The same is true for the threads on the downstream end. In one embodiment, the threads of the upstream end have the same size and configuration as the threads of the downstream end. Those skilled in the art would understand that the threads on either end may be formed on either inner or outer part of the inner and outer members and it is a matter of convenience or choice which part of the inner and outer members holds the threads. In other words, consistent with the terminology of the joint pipe element 1000 discussed in the previous embodiments, the upstream ends of the inner and outer members may be shaped as a tubular box or a tubular pin.
A method for using the assist device 300 within a dual concentric tubing system is now discussed with regard to
In step 1204, a pump 114 pumps a fluid 210 into annulus A of the tubing system to force the assist device 300 to move toward the toe of the well. The swab cup 342 of the assist device 300 is sized to fit tightly inside the annulus A of the joint pipe elements 1000 so that the fluid 210 cannot pass by, as previously explained. When the well tool 910 arrives at the desired position in the well due to the forces exerted by the fluid on the swab cup, the pump stops pumping in step 1206 the fluid 210 so that the assist device 300 stops moving. As the assist device 300 is the “engine” for the well tool 910, especially when deployed in a horizontal well, the well tool also stops.
In step 1208, the well tool 910 is activated, for example, by engaging a key 914 formed into the mandrel 1100. Other means for activating the well tool 910 may be used, for example, sending an electrical or acoustic signal. After the valve 930 is deployed or retrieved by the well tool 910 in step 1210, the entire assembly is retrieved to the surface in step 1212. As the fluid force acting on the downstream housing 340 of the assist device 300 is large, and the force exerted by the wireline 110 on the upstream housing 310 of the assist device 300 points opposite to the fluid force, the assist device automatically opens up in step 1214 and allows the fluid 210 present above the assist device to enter inside the upstream housing and the downstream housing, and thus bypass the swab cup 342, which results in a reduction of the force exerted by the fluid 210 on the assist device. In this way, the entire assembly of the wireline, assist device, and well tool is able to move to the subsurface with less pulling exerted on the wireline.
Another method for deploying/retrieving a well tool in a well is now discussed with regard to
The method may further include a step of attaching an upstream end of the assist device to a wireline and a step of attaching a downstream end of the assist device to a well tool. The well tool may be a kick-over tool that is configured to retrieve or deploy a valve from a mandrel and the pipe may be an inner pipe of a joint pipe element, and the joint pipe element has an outer piper that is concentric to the inner pipe.
The disclosed embodiments describe an assist device that may be used inside a well, with an additional tool, for deploying the additional tool to a desired location in the well, and also may be used with minimum resistance when the tool needs to be taken out of the well. It should be understood that this description is not intended to limit the invention. On the contrary, the exemplary embodiments are intended to cover alternatives, modifications and equivalents, which are included in the spirit and scope of the invention as defined by the appended claims. Further, in the detailed description of the exemplary embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the claimed invention. However, one skilled in the art would understand that various embodiments may be practiced without such specific details.
Although the features and elements of the present exemplary embodiments are described in the embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the embodiments or in various combinations with or without other features and elements disclosed herein.
This written description uses examples of the subject matter disclosed to enable any person skilled in the art to practice the same, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3065807 | Wells | Nov 1962 | A |
3104714 | Terrel et al. | Sep 1963 | A |
3216512 | Grable | Nov 1965 | A |
3489438 | Mcclure | Jan 1970 | A |
4729429 | Wittrisch | Mar 1988 | A |
4997048 | Isom | Mar 1991 | A |
5180009 | Sneed | Jan 1993 | A |
5209304 | Nice | May 1993 | A |
5775736 | Svetlik | Jul 1998 | A |
5911278 | Reitz | Jun 1999 | A |
6138764 | Scarsdale | Oct 2000 | A |
6595282 | Smith, Jr. | Jul 2003 | B2 |
10301927 | Sallwasser | May 2019 | B2 |
10927650 | Schultz | Feb 2021 | B2 |
20070227739 | Becker | Oct 2007 | A1 |
20070235197 | Becker | Oct 2007 | A1 |
20140158350 | Castillo | Jun 2014 | A1 |
20150247375 | Stout | Sep 2015 | A1 |
Entry |
---|
International Search Report in related/corresponding PCT Application No. PCT/US2019/054387 dated Feb. 4, 2020. |
Number | Date | Country | |
---|---|---|---|
20200318449 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62829135 | Apr 2019 | US |