This application is related to a co-pending application entitled with “FAN FAILURE ALARM DEVICE”, filed on Sep. 20, 2007 with application Ser. No. 11/858,122, and assigned to the same assignee of the present invention.
1. Field of the Invention
The present invention relates to alarm devices, and particularly to an alarm device for indicating a failure of pumps in a computer system.
2. Description of Related Art
Developments in today's highly information-intensive society have led to remarkable improvements in performances of electronic devices. During operation of many contemporary electronic devices such as central processing units (CPUs), large amounts of heat are produced. Typically, two pumps are used to facilitate removal of heat. One pump is used to pump water, the other pump is used to drain water. The pumps must be running stably, so as to prevent the device from becoming unstable or being damaged. If either or both of the pumps run unstably or even cease running, heat generated from the CPU will not be dissipated on time and will ruin the CPU.
What is needed, therefore, is to provide an alarm device for when pump(s) stop running in a computer system.
An exemplary alarm device for pumps includes two digital-analog converting circuits, a voltage sampling circuit, a controlling circuit, an I/O controller, and an alarm circuit. The digital-analog converting circuits receive digital pulse signals from two pumps, and respectively output a DC voltage signal at an output terminal when the pumps run normally. The voltage sampling circuit with two input terminals respectively coupled to the output terminals of the two digital-analog converting circuits, outputs a first voltage signal when the two pumps run normally and outputs a second voltage signal when either or both of the pumps stop running. The controlling circuit receives the voltage signals from the voltage sampling circuit, and outputs a first control signal when it receives the first voltage signal and outputs a second control signal when it receives the second voltage signal. The I/O controller receives the control signals from the controlling circuit, and outputs an alarm signal when it receives the second control signal. The alarm circuit receives the alarm signal from the I/O controller, and activates an alarm.
Other objects, advantages and novel features of the present invention will become more apparent from the following detailed description of preferred embodiments when taken in conjunction with the accompanying drawings, in which:
The drawing is a circuit diagram of an embodiment of an alarm device for pumps in accordance with the present invention.
Referring to the drawing, an alarm device for pumps in accordance with an embodiment of the present invention includes two digital-analog converting circuits 100, 110, two diodes D11, D12, a voltage sampling circuit 120, a controlling circuit 130, an input-output (I/O) controller U11, and an alarm circuit 140.
In this embodiment, the digital-analog converting circuit 100 includes a resistor R11 and a capacitor C11. One terminal of the resistor R11 is coupled to a pump 200, the other terminal of the resistor R11 is coupled to one terminal of the capacitor C11, the other terminal of the capacitor C11 is coupled to ground. The digital-analog converting circuit 110 includes a resistor R12 and a capacitor C12. One terminal of the resistor R12 is coupled to a pump 210, the other terminal of the resistor R12 is coupled to one terminal of the capacitor C12, the other terminal of the capacitor C12 is coupled to ground. A node between the resistor R11 and the capacitor C11 is coupled to the anode of the diode D11. A node between the resistor R12 and the capacitor C12 is coupled to the anode of the diode D12.
The voltage sampling circuit 120 includes three resistors R13, R14, R15. One terminal of each of the resistors R13, R14 is respectively coupled to the cathodes of the diodes D11, D12, the other terminals of the resistors R13, R14 are coupled to one terminal of the resistor R15, the other terminal of the resistor R15 is coupled to ground.
The controlling circuit 130 includes two transistors Q11, Q12, and two resistors R16, R17. The base of the transistor Q11 is coupled to a node between the resistors R13 and R14. The collector of the transistor Q11 is coupled to the base of the transistor Q12, and coupled to a power supply Vcc1 via the resistor R16. The collector of the transistor Q12 is coupled to the power supply Vcc1 via the resistor R17, and coupled to an input terminal of the I/O controller U11. The emitters of the transistors Q11, Q12 are coupled to ground.
The alarm circuit 140 includes a transistor Q13, a buzzer LS1, and two resistors R18, R19. The base of the transistor Q13 is coupled to an output terminal of the I/O controller U11, and coupled to a power supply Vcc2 via the resistor R19. The collector of the transistor Q13 is coupled to one terminal of the buzzer LS1, the other terminal of the buzzer LS1 is coupled to the power supply Vcc2 via the resistor R18. The emitter of the transistor Q13 is coupled to ground.
The pumps 200, 210 respectively receive 12V direct current voltage from a power supply J1 and are driven by the power supply J1. When the pumps 200, 210 run normally, the pumps 200, 210 respectively output a digital pulse signal. The digital-analog converting circuits 100, 110 respectively receive the digital pulse signals from the pumps 200, 210, and output a first direct current (DC) voltage signal and a second DC voltage signal. The diodes D11, D12 are on, the first and second DC voltage signals are output to the voltage sampling circuit 120, and are superimposed at the output terminal of the voltage sampling circuit 120. Voltage at the base of the transistor Q11 is at a high level, the transistor Q11 turns on. Voltage at the collector of the transistor Q11 is at a low level, the transistor Q12 is off. The controlling circuit 130 outputs a high level voltage to the I/O controller U11, the I/O controller U11 receives the high level voltage, and outputs a low level voltage to the alarm circuit 140. The transistor Q13 is off, and the buzzer LS1 is not activated.
If either or both of the pumps 200, 210 stop running then the failed pump or pumps 200, 210 will not output a digital pulse signal. In that case, one or both of the diodes D11, D12 turn off, voltage at the base of the first transistor Q11 goes low, the first transistor Q11 turns off, the second transistor Q12 turns on, the controlling circuit 130 outputs a low level voltage to the I/O controller U11, the I/O controller U11 outputs a high level voltage to the alarm circuit 140, the transistor Q13 turns on, and the buzzer LS1 is activated to sound an alarm indicating that one or both of the pumps 200, 210 have failed.
In this embodiment, the diodes D11, D12 are respectively used to protect the pumps 200, 210. When the pump 200 stops running but the pump 210 runs normally, the second DC voltage signal output from the digital-analog converting circuit 110 will not go though the diode D11, and protects the pump 200 from being ruined. When the pump 210 stops running but the pump 200 runs normally, the first DC voltage signal output from the digital-analog converting circuit 100 will not go though the diode D12, and protects the pump 210 from being ruined.
The foregoing description of the exemplary embodiment of the invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching. The embodiment was chosen and described in order to explain the principles of the invention and its practical application so as to enable others skilled in the art to utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description and the exemplary embodiment described therein.
Number | Date | Country | Kind |
---|---|---|---|
2006 1 0201463 | Dec 2006 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4228427 | Niedermeyer | Oct 1980 | A |
5448175 | Nishibe et al. | Sep 1995 | A |
5534854 | Bradbury et al. | Jul 1996 | A |
5677672 | Vogt et al. | Oct 1997 | A |
5745041 | Moss | Apr 1998 | A |
6254767 | Shin et al. | Jul 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20080157989 A1 | Jul 2008 | US |