The present disclosure relates to a pump and a method of making the pump. More particularly, the present disclosure relates to modifying a conventional high pressure gasoline fuel pump (e.g., an original equipment high pressure fuel pump) to provide a high pressure fuel pump, which can be used in internal combustion engines for delivering fuel directly into combustion chambers of the engines.
The known methodologies for modifying original equipment fuel pumps present several problems. The excessive machining of the original equipment fuel pump body results in high contamination risk and high reject rates from machining errors as well as risk of failure due to the weakening of the core pump body of the original equipment high pressure fuel pump. The common computer numeric control (CNC) machined quadratic damper housings employed by alternate methodologies require a rubber sealing ring to contain fluid inside the damper housing, which ring seals have been prone to leaking and yield a high reject rate due to assembly errors. The prevalent method of assembly of the quadratic damper housing is by employing two or more fasteners, which fasteners require threaded holes in the original equipment high pressure fuel pump body. The fastening methodologies are subject to assembly quality errors and in-field risk of torque decay, resulting in potential leaks or damper housing failure, in addition to requiring high complexity in manufacturing. Additionally, conventional methods employ low pressure fuel fittings that are threaded to the damper housing, which fittings may utilize a thread seal or may employ a sealing ring. This method of low pressure fitting feature results in an excessive packaging dimension in addition to presenting alternate fluid leak paths and failure potential.
Therefore, there is a need for improved fuel pumps, which are retrofittable and can be used for different applications. The method and device of the present disclosure aim to eliminate the above-discussed drawbacks of the conventional methodology for modifying an original equipment high pressure fuel pump.
According to an exemplary aspect of the present disclosure, a fuel pump is provided. The fuel pump includes a body having a top surface and a side surface. The top surface and the side surface are angular with respect to each other. The fuel pump further includes a damper housing provided on the top surface. The damper housing includes a substantially cylindrical wall extending vertically from the top surface along a vertical axis of the substantially cylindrical wall. The fuel pump also includes a damper cover provided on the damper housing. The damper cover includes a substantially cylindrical wall extending co-axially along the vertical axis. The damper housing includes a top engaging structure and the damper cover includes a bottom engaging structure. The top engaging structure and the bottom engaging structure operatively engage each other to connect the damper cover to the damper housing in a sealed manner. The damper cover and the damper housing collectively define a space for accommodating at least one fluid pressure damper. The fuel pump additionally includes a fuel inlet fitting through which a predetermined fuel enters the fuel pump. The fuel inlet fitting is substantially cylindrical and insertable into an opening of the damper cover in a sealed manner. The fuel pump additionally includes a fuel outlet fitting. The fuel outlet fitting is substantially cylindrical and is insertable into an opening of the side surface of the body in a sealed manner. The predetermined fuel is processed by the at least one fluid pressure damper to increase the pressure of the predetermined fuel and wherein the predetermined fuel of the increased pressure is released through the fuel outlet fitting.
According to another exemplary aspect of the present disclosure, a method of forming a fuel pump is provided. According to the method, a body having a top surface and a side surface is provided, wherein the top surface and the side surface are angular with respect to each other. A damper housing is provided on the top surface, wherein the damper housing comprises a substantially cylindrical wall extending vertically from the top surface along a vertical axis of the substantially cylindrical wall. A damper cover is provided on the damper housing, wherein the damper cover comprises a substantially cylindrical wall extending co-axially along the vertical axis, wherein the damper housing comprises a top engaging structure and the damper cover comprises a bottom engaging structure, wherein the top engaging structure and the bottom engaging structure operatively engage each other to connect the damper cover to the damper housing in a sealed manner, wherein the damper cover and the damper housing collectively define a space for accommodating at least one fluid pressure damper. A fuel inlet fitting is inserted into an opening of the damper cover in a sealed manner, wherein a predetermined fuel enters the fuel pump through the fuel inlet fitting, wherein the fuel inlet fitting is substantially cylindrical. A fuel outlet fitting is inserted into an opening of the side surface of the body in a sealed manner, wherein the fuel outlet fitting is substantially cylindrical. The predetermined fuel is processed by the at least one fluid pressure damper to increase the pressure of the predetermined fuel and the predetermined fuel of the increased pressure is released through the fuel outlet fitting.
Detailed embodiments of the present disclosure are described herein; however, it is to be understood that the disclosed embodiments are merely illustrative of the compositions, structures and methods of the disclosure that may be embodied in various forms. In addition, each of the examples given in connection with the various embodiments is intended to be illustrative, and not restrictive. Further, the figures are not necessarily to scale, some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the compositions, structures and methods disclosed herein. References in the specification to “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment.
As shown in
The high pressure fuel pump 100 further includes a damper cover 130, which can be coupled or assembled to the damper housing 120. The damper cover 130 includes a substantially cylindrical wall 132 (which is shown in
Once the damper cover 130 is assembled or coupled to the damper housing 120, a receiving space S is formed by an inner surface of the damper cover 130, a lower inner surface of the damper housing 120, and an inner surface 116 at the top of the pump body 110. A fluid pressure damper 140 or multiple same or similar fluid pressure dampers can be retained or entrapped in the receiving space, which is best shown in
The high pressure fuel pump 100 includes a fuel inlet fitting 150, which can be substantially cylindrical. The fuel inlet fitting 150 is provided upstream of the fuel circuit and can be pressed and/or mechanically bonded to the damper cover 130. In the shown embodiment, the fuel inlet fitting 150 is a barb style fuel line fitting having a diameter of about 8 mm. The inlet fuel fitting 150 is at an angle with respect to the top surface 112 of the pump body 110. In the shown embodiment, the angle is about 45 degrees. The angle can be in a range of about 0 degrees to about 90 degrees with respect to surface 112. For example, the angle can be in a range of about 0 degrees to about 45 degrees. For example, the angle can be in a range of about 46 degrees to about 90 degrees.
The high pressure fuel pump 100 further includes a high pressure fuel outlet fitting 160, which can be substantially cylindrical and is provided on the slanted side surface 114 of the pump body 110. When viewed from a top of the high pressure fuel pump 100 in the direction of the axis XX′, the fuel inlet fitting 150 and the high pressure fuel outlet fitting 160 forms an angle of about 180 degrees circumferentially with respect to the axis XX′. The angle formed by the fuel inlet fitting 150 and the high pressure fuel outlet fitting 160 can be in a range of about 0 degrees to about 360 degrees circumferentially with respect to the axis XX′.
As shown in
As shown in
The cylindrical wall 132 has an outer surface 135 and a radially opposite inner surface 133. The damper cover 130 further includes an inner top surface 131, which is substantially parallel to the top surface 112 of the pump body 110. The inner top surface 131 and the inner surface 135 together define a cover cavity C, which is a part of the damper receiving space S.
The cylindrical wall 132 includes a mounting flange 134 at the lowest end of the wall. The mounting flange 134 has a bottom engaging surface 136 for mechanically engaging and bonding the top engaging surface 124 of the damper housing 120. For example, the bottom engaging surface 136 and the top engaging surface 124 can be further welded to each other. In addition, the mounting flange 134 further includes a shoulder 137 for properly orientating the damper cover 130 with respect to the damper housing 120. In operation, the shoulder 137 engages the inwardly tapered surface 125 of the damper housing 120 to allow the damper cover 130 to be properly centered with respect to the damper housing 120. The shoulder 137 also provide a press-fit feature, which permits pre-assembly of the damper cover 130 to the pump housing 120 prior to welding. The shoulder 137 can also be used as a welding shoulder for the purpose of mitigating thermal exposure to the inside surfaces of the damper receiving space S and for allowing a clean transition for the radial weld of the damper cover 130 to the damper housing 120. At the same time, smooth fluid flow through the damper housing 120 can be maintained. The damper cover 130 further includes a top surface 138 for pressing the damper cover 130 to the damper housing 120.
The damper cover 130 further includes a fuel inlet fitting end 139 for operatively engaging the fuel inlet fitting 150 (shown in
In the high pressure fuel pumps 200, 300 and 400, the pump body and the high pressure fuel outlet fitting can be the same as the pump body and the high pressure fuel outlet fitting of known pumps. The damper housings and damper covers can be the same as the damper housing 120 and the damper cover 130 of the pump 100, which are different from the known damper housing and damper cover. The fuel inlet fitting 250, 350 and 450 can be customized for different applications of the pumps. Thus, all these embodiments permit the repurposing of an original equipment fuel pump into under-hood engine environments that were not originally intended, by allowing for changes to the fuel inlet specification, orientation and angle as well as the spring rate of the plunger return spring.
The embodiments of the modified high-pressure fuel pump, as described above, are capable of adapting the original equipment high pressure fuel pump to an application and specification not originally intended for the original equipment high pressure fuel pump. The modification of the original equipment fuel pump is specific to the pressure pulsation damper assembly, the low-pressure fuel inlet, and the pump body mounting flange that permits installation and sealing to the new engine application not originally intended for the unmodified fuel pump.
Another aspect of the present disclosure relates to a method of modifying the damper assembly of an original equipment high pressure fuel pump, for allowing re-purposing of the high-pressure fuel pump from the original engine application to a new engine application not previously considered and for allowing modification of the pressure pulsation damper assembly of the original high-pressure fuel pump.
Still another aspect of the present disclosure relates to the methodology of modifying an original equipment high pressure fuel pump, which constitutes the removal of the original equipment damper assembly, the modification of the original equipment fuel pump damper case, the removal of original equipment pulsation damper diaphragm assembly, providing a newly designed damper housing and new low pressure fitting assemblies, assembling the modified original equipment fuel pump to new damper housing assembly, and providing a mounting flange to adapt the pump to the engine and the final modified fuel pump assembly.
The method and device of the present disclosure is specifically targeted for the non-original equipment market, or commonly called the aftermarket, and more specifically the high-performance aftermarket. The method and device of the present disclosure improve the quality, the manufacturing and minimize the packaging footprint of the damper modification by eliminating seals, threads, fasteners, and excessive manufacturing operations, by simplification as well as employing press and weld methodologies for assembly.
The modified pump presents a completely mechanically sealed system, with higher pressure capabilities and lower manufacturing cost than conventionally fastened and o-ring sealed methods. The modified pump allows for re-purposing of the original pump to applications of which it was not originally intended. The damper housings allow for modification of the original pulsation damping volume and pulsation damping diaphragms in the new modified pump.
According to an embodiment of the present disclosure, the original equipment high pressure fuel pump stainless steel damper housing is removed at a specified dimension from the main pump body and subsequently, the damper housing case is modified with specific edge treatment to provide a high quality internal diameter and edge perpendicular to the internal diameter for the attachment of a new damper housing cover. The original equipment pulsation damper assembly is retained. The new damper housing covers are designed with features developed using computational fluid dynamics to direct and optimize fuel flow through the original equipment damper. The new damper housing design features permit the housing to be pressed into the modified original equipment damper housing case and provides retaining feature to maintain its position and thereby entrap the original equipment pulsation damper. The new damper housing has been designed with features which permit radial welding of the new housing to the modified original equipment damper case. The additional design features of the new damper housing permit the press and weld of an assortment of lower pressure fittings.
While the fundamental novel features of the disclosure as applied to various specific embodiments thereof have been shown, described and pointed out, it will also be understood that various omissions, substitutions and changes in the form and details of the devices illustrated and in their operation, may be made by those skilled in the art without departing from the spirit of the disclosure. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the disclosure. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the disclosure may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
The present application is a continuation of U.S. application Ser. No. 16/353,480, filed Mar. 14, 2019, which claims priority to and the benefit of U.S. App. No. 62/642,949, filed Mar. 14, 2018, the entire contents of each of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62642949 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16353480 | Mar 2019 | US |
Child | 17324026 | US |