Pump impeller

Information

  • Patent Grant
  • 6443715
  • Patent Number
    6,443,715
  • Date Filed
    Monday, November 20, 2000
    24 years ago
  • Date Issued
    Tuesday, September 3, 2002
    22 years ago
Abstract
A pump impeller having a central hub and circumferentially-spaced bottom vanes extending in a direction outwardly of the hub. An annular shroud surrounds the hub in outwardly-spaced relationship thereto and provides an impeller liquid inlet passage around the hub leading to the vanes. A permanent magnet motor rotor is mounted on the annular shroud. The rotor is used in a sump pump having an upper cylindrical filter that encloses a float switch for operating the pump motor.
Description




BACKGROUND OF THE INVENTION




This application relates to the art of pumps and, more particularly, to pump impellers and inlet filter assemblies. The invention is particularly applicable for use with sump pumps and will be described with specific reference thereto. However, it will be appreciated that many features of the invention have broader aspects and can be used in other types of pumps.




Many sump pumps require seals for minimizing backflow of liquid from the discharge side of the pump back toward the inlet which reduces pump efficiency. It would be desirable to have an essentially sealless sump pump that nevertheless minimizes backflow of liquid from the impeller chamber toward the inlet.




Many sump pumps have filters located very low on the pump housing within the sump and are very difficult to clean without removing the entire pump from the sump. It would be desirable to provide a sump pump with a top mounted filter assembly that is easily accessible for cleaning.




Float operated switches on sump pumps commonly are exposed to damage or may malfunction due to debris. It would be desirable to position a float switch in a protected location where it is not subject to damage or to fouling by debris.




SUMMARY OF THE INVENTION




In accordance with the present application, a pump impeller has an annular liquid inlet surrounding the impeller rotational axis. Incoming liquid flows axially through the impeller in an annular stream to the impeller vanes for discharge from a pinched vaneless diffuser and a volute in which the impeller rotates.




In a preferred arrangement, a permanent magnet motor rotor ring is attached to the impeller in surrounding relationship to the annular liquid inlet so that incoming liquid flows through the center of the magnet ring.




The impeller includes a central hub on which the impeller is rotatably mounted. An annular shroud surrounds the hub in outwardly-spaced relationship thereto so that the annular liquid inlet passage is defined between the hub and the annular shroud.




A plurality of circumferentially-spaced vanes extend in a direction outwardly of the hub adjacent the bottom thereof. The hub includes a hub bottom shroud that extends outwardly from the hub beneath the vanes, and the annular shroud extends upwardly above the vanes. A steel ring is molded onto the exterior of the impeller annular shroud, and the annular permanent magnet motor rotor ring is attached to the steel ring.




In accordance with another aspect of the application, a cylindrical filter assembly is provided on the top portion of the pump. A float switch assembly for operating the pump motor is mounted inside of the filter assembly to protect same from damage and to prevent malfunctioning thereof by debris.




The filter assembly includes a perforate cylindrical sheet metal member surrounded by a pleated screen. Top and bottom rings receive top and bottom end portions of the sheet metal member and screen, and the assembly is attached to the pump base by elongated bolts.




It is a principal object of the invention to provide an improved pump impeller.




It is another object of the invention to provide a pump impeller having a permanent magnet motor rotor attached thereto.




It is also an object of the invention to provide an improved filter assembly for a sump pump.




It is an additional object of the invention to provide an improved arrangement for protecting a float switch assembly against damage or fouling by debris.











BRIEF DESCRIPTION OF THE DRAWING





FIG. 1

is a cross-sectional elevational view of a sump pump having the improved features of the present application incorporated therein;





FIG. 2

is an enlarged cross-sectional elevational view of the motor, impeller and base of the pump assembly of

FIG. 1

;





FIG. 3

is a perspective illustration of a pump impeller;





FIG. 4

is a cross-sectional elevational view of the pump impeller showing the impeller vanes;





FIG. 5

is a side elevational view of the pump impeller having a permanent magnet motor rotor attached thereto;





FIG. 6

is a top plan view thereof;





FIG. 7

is a cross-sectional elevational view taken generally on line


7





7


of

FIG. 5

;





FIG. 8

is a perspective illustration thereof;





FIG. 9

is a side elevational view of a thrust bearing;





FIG. 10

is a top plan view thereof;





FIG. 11

is a perspective illustration thereof;





FIG. 12

is a top plan view of a pump base having a volute herein;





FIG. 13

is a cross-sectional elevational view taken generally on line


13





13


of

FIG. 12

;





FIG. 14

is a side elevational view of a motor cover;





FIG. 15

is a top plan view thereof;





FIG. 16

is a cross-sectional elevational view taken generally on line


16





16


of

FIG. 14

;





FIG. 17

is a perspective illustration of a permanent magnet motor stator;





FIG. 18

is a side elevational view thereof;





FIG. 19

is a top plan view thereof;





FIG. 20

is a cross-sectional elevational view thereof;





FIG. 21

is an enlarged detail of the circled detail in

FIG. 20

;





FIG. 22

is an enlarged detail showing an attachment post on the stator assembly for a pc board;





FIG. 23

is a cross-sectional plan view taken generally on line


23





23


of

FIG. 18

;





FIG. 24

is an enlarged detail of the circled area in

FIG. 23

;





FIG. 25

is a perspective illustration of an annular printed circuit board motor controller that is attached to the stator assembly of

FIGS. 17-24

;





FIG. 26

is a perspective illustration of an inlet filter assembly;





FIG. 27

is a top plan view thereof with the upper assembly ring removed for clarity of illustration:





FIG. 28

is a cross-sectional elevational view thereof taken generally on line


28





28


of

FIG. 27

;





FIG. 29

is an enlarged cross-sectional detail taken on detail


29


of

FIG. 28

;





FIG. 30

is a diagrammatic showing of how a pair of float switches can be used to operate a pump motor; and





FIG. 31

is a cross-sectional elevational view of a reed float switch.











DESCRIPTION OF A PREFERRED EMBODIMENT




Referring now to the drawings, wherein the showings are for purposes of illustrating certain preferred embodiments of the invention only and not for purposes of limiting same,

FIG. 1

shows a pump base B having a pinched vaneless diffuser


10


and a volute


12


therein. A vertical shaft


14


attached to base B has an impeller C rotatably mounted thereon. Impeller C is secured on shaft


14


by a cone nut


15


threaded onto the upper end portion of shaft


14


, and a thrust bearing bushing


17


is interposed between the nut and the top end of the impeller hub. Impeller vanes located in diffuser


10


increase the static pressure and velocity of liquid entering the vanes by operation of centrifugal force as the impeller rotates. The liquid is discharged from diffuser


10


to volute


12


and then through base outlet


16


that is attached to an outlet pipe in a known manner.




A permanent magnet motor stator D is secured to base B in surrounding relationship to impeller C. A permanent magnet motor ring


20


is attached to a steel ring


22


on impeller C for cooperating with stator D to impart rotation to impeller C when the motor is energized.




An annular liquid inlet passage


24


surrounds impeller hub


26


, and is located between hub


26


and an annular shroud


28


that is located in outwardly-spaced relationship to hub


26


. Annular inlet passage


24


leads to the impeller vanes, only one of which is generally indicated at


30


in

FIGS. 1 and 2

.




Permanent magnet motor stator D is encapsulated in plastic material to define a stator housing having an integral cylindrical sleeve


32


extending upwardly therefrom through a suitable hole in a motor cover E which is attached to pump base B and also secures motor stator D thereto. Incoming water enters sleeve


32


and flows through annular impeller inlet passage


24


to impeller vanes


30


for discharge through outlet


16


.




A cylindrical filter assembly F is attached to motor cover E for filtering liquid that flows to sleeve


32


. A filter cover G having a handle


36


thereon overlies filter assembly F and is attached to motor cover E by a plurality of elongated bolts, only one of which is generally shown at


40


in

FIG. 1. A

plurality of the circumferentially-spaced bolts


40


extend through suitable holes in cover G along the outside of filter assembly F and thread into tapped holes in ears that extend outwardly from motor cover E. A downwardly opening circular channel


42


in the underside of filter cover G receives the top end portion of filter assembly F.




A float switch assembly H for operating the motor is attached to motor cover E within filter assembly F for protecting same against damage and against fouling by debris. Filter assembly H includes an elongated mast


50


having upper and lower floats


52


,


54


slidable thereon for operating upper and lower float switches. Bottom float


54


moves between stops


55


and


56


, while upper float


52


moves between upper and lower stops


57


and


58


. Stop


58


on the upper end of mast


50


extends outwardly beyond float


52


into engagement with the interior surface of filter assembly F to stabilize filter assembly H and ensure that floats


52


,


54


remain out of engagement with filter assembly F for reliable operation. The float switch assembly is illustrated in the sectional view of

FIG. 1

in a circumferentially displaced position from its actual position for clarity of illustration and explanation.




Referring now to

FIGS. 3-8

, impeller hub C has a central hole


60


therethrough for receiving shaft


14


of

FIGS. 1 and 2

to provide rotation of impeller C on shaft


14


. Impeller hole


60


has a plurality of circumferentially-spaced longitudinal grooves therein, only one of which is referenced by a numeral


62


in

FIGS. 4

,


6


,


7


and


8


, for lubrication flow and to allow flushing of debris. The top end of hub


26


has three circumferentially-spaced radially extending arcuate projections


64


thereon for reception in matching grooves in thrust bearing


17


.




The bottom end portion of impeller hub


26


extends outwardly beneath vanes


30


to provide a hub bottom shroud


66


. Impeller annular shroud


28


extends upwardly above impeller vanes


30


, and includes an outwardly curved bottom portion


68


above vanes


30


. Vanes


30


extend between hub bottom shroud


66


and bottom portion


68


of upper annular shroud


28


to provide a plurality of circumferentially-spaced impeller discharge outlets between the vanes, only one of such outlets being indicated by a numeral


70


.




Impeller C preferably is molded of synthetic plastic material, and ring


22


of magnetic steel preferably is insert molded therewith between outwardly extending flanges


72


,


74


that extend outwardly from impeller annular shroud


28


. Permanent magnet motor ring


20


may be bonded to steel ring


22


with a suitable adhesive, such as epoxy.




Magnet ring


20


is radially magnetized with alternating north and south poles on the inner and outer peripheries thereof. Obviously, the polarity of the poles on the inner and outer peripheries is such that the poles of one polarity on the outer surface are radially aligned with poles of opposite polarity on the inner surface. For a four pole rotor, the magnet ring is radially magnetized to have four poles, each extending over 90° and alternating in polarity around the ring circumference. For an eight pole rotor, each pole extends over 45°. Magnetic flux exits the north poles on the outer periphery, and extends outwardly therefrom and then back toward the adjacent two south poles. Steel ring


22


provides a more efficient flux return path on the inner surface of the magnet ring and increases the strength of the magnet.





FIGS. 9-11

show generally cylindrical flat thrust bearing bushing


70


having a central hole


82


for closely receiving shaft


14


. A plurality of longitudinal grooves


84


in the periphery of hole


82


allow flow of liquid therethrough for lubrication and flushing of debris. Three circumferentially-spaced radially extending arcuate grooves


86


are provided in one flat surface of bearing member


80


and corresponding grooves


88


are provided in the opposite flat surface rotatably displaced 60 degrees from grooves


86


. Either grooves


86


or


88


are dimensioned, shaped and positioned for receiving projections


64


on the top end of impeller hub


26


so that bearing member


86


rotates with impeller C. The radial grooves in both the top and bottom flat surfaces of bearing member


80


permit installation thereof in either of inverted positions. The radial grooves that do not receive projections


64


on hub


26


allow flow of liquid radially between the bottom of nut


15


and the top surface of bearing bushing


17


for entering the vertical grooves in the inner peripheral surfaces of the bushing and the impeller hub for lubrication and for allowing flushing of any small particles.





FIGS. 12 and 13

show base B as having a circular top opening


90


to diffuse


10


for receiving the lower end portion of impeller C. Shaft receiving hole


92


for receiving the bottom end portion of shaft


14


of

FIGS. 1 and 2

is concentric with circular impeller receiving hole


90


. A circular flange


94


extends upwardly from base B in outwardly-spaced relationship to circular hole


90


to provide an annular horizontal shoulder


96


around hole


90


. Three equidistantly spaced ears


98


extend outwardly from circular flange


94


and have tapped holes


102


therein for receiving bolts.





FIGS. 14-16

show motor cover E having a passage


104


for receiving a power cord that supplies power to motor stator D. Motor cover E has a circular opening


106


for receiving integral sleeve


32


on the stator housing as shown in

FIGS. 1 and 2

. The peripheral wall of opening


106


has a circumferential groove


108


therein for receiving a sealing ring


110


that engages the outer peripheral surface of sleeve


32


as shown in

FIGS. 1 and 2

.




The inner peripheral surface of stator housing sleeve


32


has a pair of opposite shallow vertical grooves


111


,


112


therein. The outer periphery of the magnet motor ring


20


is in very close proximity to the inner peripheral surface of sleeve


32


to provide a very small clearance space, such as 0.001 inch, and the grooves


111


,


112


allow flushing of any small particles that may enter the clearance space. As shown in

FIG. 24

, each groove


111


,


112


is located between a pair of adjacent stator poles


146


so that the thickness of the plastic material


132




a


overlying the pole faces is not reduced.




Motor cover E has three circumferentially-spaced ears


114


extending outwardly therefrom with bolt-receiving holes


116


therethrough. Motor cover E also has three circumferentially-spaced tapped holes


120


therein for receiving the lower threaded end portions of the elongated bolts


40


of

FIG. 1

that secure filter assembly F to motor cover E. Thus, the filter assembly rests against the upper surface


122


of motor cover E around opening


106


and inwardly of power cord opening


104


. The bottom circular end


124


of motor cover E is adapted to bear against an outwardly extending flange on the plastic material housing of stator assembly D in

FIGS. 1 and 2

.




A tapped hole


126


in upper surface


122


of motor cover E receives a threaded bottom end on float assembly H for attaching the float assembly to the motor cover within the filter assembly.





FIGS. 17-24

show stator D as having a plurality of circumferentially-spaced stator coils


130


encapsulated in plastic material


132


. An outwardly extending flange


134


is provided for clamping stator assembly D between base B and motor cover E as shown in

FIGS. 1 and 2

. Bolts


140


extend through the holes in ears


114


on motor cover E and thread into the tapped holes in ears


98


on base B to clamp stator flange


134


against base shoulder


96


with a suitable gasket


144


interposed between flange


134


and the bottom end


124


of motor cover E.





FIG. 23

shows motor stator laminations


145


having a plurality of circumferentially-spaced poles


146


with slots therebetween for receiving coils


130


in a known manner. The plastic material that overlies the inner peripheral surfaces of the poles is very thin as generally indicated at


132




a


in

FIGS. 20-23

. By way of example, plastic material


132




a


may have a minimum thickness of 0.018 inch. The plastic material


132




b


that overlies the coils


130


and extends outwardly from sleeve


32


likewise may be very thin,




As shown in

FIGS. 19 and 22

, three circumferentially-spaced posts


148


having screw receiving inserts


149


therein are molded integrally with the plastic material that forms the stator housing. The top ends of the posts extend above the stator coils as shown in

FIG. 22

for supporting an annular printed circuit motor control board spaced above the stator coils.





FIG. 25

shows a generally flat annular printed circuit board


131


having a plurality of circumferentially-spaced screw receiving slots


133


therein for receiving screws to secure board


131


to posts


148


on stator assembly D. Three spaced-apart Hall effect sensors


135


are attached to the inner periphery of board


131


so that they are located in very close proximity to and aligned with the upper end of permanent magnet motor ring


20


on impeller C for use in controlling current flow to the three-phase coil assembly on the stator for operating the motor. Three MOSFETS


137


extend from board


131


and are received in openings


139


of

FIGS. 17 and 19

in the plastic material housing for stator D for controlling current to the stator coils. Circuitry on the printed circuit board, along with a microprocessor, responds to input from the float switches, Hall effect sensor, MOSFETS and other input controls to control operation of the brushless permanent magnet motor. The float switches are connected with the circuit board in a known manner.




Three spaced slot openings


141


in plastic material


132




b


are provided to connect the three motor leads for the three phase stator coils with the circuitry on printed circuit board


131


. The printed circuit board


131


is secured to stator post


148


by screws


143


as best shown in FIG.


2


.





FIGS. 26-29

show filter assembly F having a cylindrical perforate stainless steel sheet metal member


150


and an outer cylindrical eight mesh stainless steel screen


152


that is pleated or corrugated. Upper and lower rings


154


,


156


have open channels


158


as indicated in

FIG. 29

for receiving the top and bottom ends of the pleated screen and the sheet metal member. Sheet metal member


150


and eight mesh screen


152


may be secured within the ring channels by epoxy, welding or in any other suitable manner.




Cylindrical filter member


150


of


22


gauge stainless steel has a metal thickness of approximately 0.03 inch. Staggered holes of 0.25 inch diameter are provided throughout filter member


150


on staggered 0.312 inch centers. The pleats in eight mesh stainless steel screen


152


have a radial dimension of approximately 0.169 inch. That is, the distance from the outer surface of filter member


150


to the outer diameter of the pleated screen is approximately 0.169 inch. Obviously, other perforation sizes, mesh sizes and pleat sizes may be used.





FIG. 30

is a very diagrammatic illustration that provides an example of how the float switches may operate the brushless DC permanent magnet pump motor. Normally open upper and lower float switches


160


,


162


are connected through a relay R with motor M. As water rises in the sump in which the pump is received, lower float switch


162


will close. As the water continues to rise, upper float switch


160


will close to energize motor M. Closing of upper float switch


160


also energizes relay R that closes normally open relay contact RC


1


. The motor then runs to discharge water from the sump. As the water falls below the upper float, upper float switch


160


will open but motor M will remain energized through relay contact RC


1


, lower float switch


162


and relay R. When the liquid level falls below the bottom float, lower float switch


162


will open to deenergize motor M. In a commercial embodiment, operation of the float switches is incorporated into the pump electronics and software to operate the pump motor.





FIG. 31

is a diagrammatic showing of a typical float operated reed switch wherein a reed switch


160


having a glass or other non-magnetic housing contains normally open reed contacts


162


,


164


. An annular permanent magnet


166


carried by float


54


closes reed contacts


162


,


164


when float


54


moves upwardly. Subsequent downward movement of the float opens the switch. The upper float switch may operate in a similar manner.




In the arrangement of the present application, placement of the permanent magnet motor rotor on the inlet side of the impeller allows the outer periphery of the magnet to serve as a leakage control device. Providing a very small radial clearance between the magnet rotor outer periphery and the inner surface of stator sleeve


32


significantly minimizes leakage of high pressure liquid back into the pump inlet and this enhances pump efficiency. Inlet liquid also flows axially through the center of the magnet rotor to the impeller vanes.




Although the invention has been shown and described with reference to a preferred embodiment, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification. The present invention includes all such equivalent alterations and modifications, and is limited only by the scope of the claims.



Claims
  • 1. A sump pump having a base containing a motor and impeller, a filter attached to said base and extending upwardly therefrom above said motor and impeller, and a float switch assembly extending upwardly from said base inside of said filter for operating said motor.
  • 2. The pump of claim 1 wherein said float switch assembly includes an elongated stalk attached to said base and extending upwardly therefrom, and at least one float switch supported on said stalk.
  • 3. The pump of claim 2 including a pair of upper and lower float switches supported on said stalk.
  • 4. The pump of claim 2 wherein said stalk includes a spacer extending outwardly therefrom in engagement with said filter.
  • 5. The pump of claim 4 wherein said stalk has a top end and said spacer extends outwardly from said top end.
  • 6. The pump of claim 2 wherein said filter comprises a cylindrical perforate filter.
  • 7. The pump of claim 6 wherein said cylindrical perforate filter includes a perforate cylindrical sheet metal member.
  • 8. The pump of claim 7 wherein said filter includes a pleated mesh screen surrounding said sheet metal member.
  • 9. The pump of claim 8 including upper and lower rings having ring channels receiving upper and lower cylindrical ends of said mesh screen and said sheet metal member.
  • 10. The pump of claim 2 wherein said filter includes a cylindrical screen having vertical pleats therein.
  • 11. A pump impeler having a hollow central hub for receiving a shaft, said hub having a hub bottom end portion, a plurality of circumferentially-spaced vanes extending in a direction outwardly of said hub bottom end portion, an annular shroud extending upwardly from said vanes in outwardly-spaced surrounding relationship to said hub to provide an annular liquid inlet passage between said hub and annular shroud leading to said vanes, and a permanent magnet motor rotor attached to said annular shroud on the opposite side thereof from said inlet passage above said vanes.
  • 12. The impeller of claim 11 including a steel ring attached to said annular shroud beneath said permanent magnet rotor.
  • 13. The impeller of claim 12 wherein said annular shroud has upper and lower annular flanges extending outwardly therefrom and defining an annular channel therebetween, said steel ring being received in said channel.
  • 14. A pump impeller having a hollow central hub for receiving a shaft, said hub having a hub bottom end portion, a plurality of circumferentially-spaced vanes extending in a direction outwardly of said hub bottom end portion, an annular shroud extending upwardly from said vanes in outwardly-spaced surrounding relationship to said hub to provide an annular liquid inlet passage between said hub and annular shroud leading to said vanes, a permanent magnet rotor carried by said shroud, a motor stator surrounding said rotor, said stator being encapsulated in plastic material that defines a stator housing, said stator housing including a cylindrical sleeve extending upwardly from said impeller, said sleeve having a sleeve inner surface and said rotor having a rotor outer surface closely adjacent said sleeve inner surface, and said sleeve providing a liquid flow passage through which liquid is guided to said impeller inlet passage.
  • 15. A sump pump including a volute having a volute outlet, an impeller rotatably mounted in said volute for discharging liquid through said volute outlet, said impeller including a central hub having a hub bottom shroud extending outwardly therefrom, a plurality of circumferentially-spaced vanes extending outwardly of said hub above said hub bottom shroud to provide a plurality of outwardly facing impeller outlets therebetween in said volute, said impeller having an integral annular shroud surrounding said hub in outwardly spaced relationship thereto above said vanes to provide an annular liquid inlet passage to said vanes between said hub and annular shroud, a permanent magnet rotor carried by said annular shroud, and a motor stator surrounding said magnet rotor.
  • 16. The pump of claim 5 wherein said motor stator is encapsulated in plastic material that defines a stator housing, said rotor having a rotor outer surface, said stator housing including a sleeve extending upwardly from said impeller annular shroud, said shroud having a shroud inner surface in close proximity to said rotor outer surface, and said sleeve providing a liquid flow passage for directing liquid toward said impeller inlet passage.
Parent Case Info

This application claims subject matter disclosed in U.S. Provisional Application Serial No. 60/166.567 filed Nov. 19, 1999, the benefit of the filing date of which is hereby claimed.

US Referenced Citations (6)
Number Name Date Kind
4050396 Ridgeway Sep 1977 A
4428717 Catterfeld Jan 1984 A
4981417 Arbeus Jan 1991 A
5573369 Du Nov 1996 A
5816784 Postuchow et al. Oct 1998 A
6210116 Kuczaj et al. Apr 2001 B1
Provisional Applications (1)
Number Date Country
60/166567 Nov 1999 US