This application claims the benefit of and priority to GB application 1416431.3, filed 17 Sep. 2014, the contents of all of which are incorporated herein by reference in its entirety.
The present disclosure relates to a system for monitoring surface pumps, to pumps incorporating such a system and to methods of monitoring such pumps.
Surface pumps are used in a variety of applications for raising liquid from a well or borehole to surface level. For example such pumps may be used to provide drinking water to communities, particularly in the developing world, with lever-action reciprocating handpumps such as the Afridev pump or India Mark II being the most common types. Onshore oil deposits where the deposit does not create sufficient pressure to drive oil to the surface may also use a piston pump (for example of the nodding donkey type) to raise oil to the surface.
The maintenance of such pumps in the field present challenges because the network of pumps in use is often distributed over large regions sometimes with insufficient local capacity for timely repairs. In the case of hand operated water pumps, although they offer significant benefits over open wells by providing a high discharge rate and avoiding the health problems associated with open wells, it can be difficult to arrange for local maintenance and repair and the health, economic and time consequences of a pump becoming inoperable are serious for the local community. Although the same social issues do not arise with surface pumps in oil fields, nevertheless providing for efficient maintenance and avoiding down time is still economically important.
In 2012 a “smart hand pump” was developed and tested in sub-Saharan Africa. This was based on the incorporation of a consumer-grade, low-cost IC-based accelerometer, such as those found commonly in mobile phone handsets and games controllers, enclosed in an inexpensive waterproof container and securely fitted into or onto the handle of a standard hand pump. The accelerometer was connected to a low power microprocessor programmed to estimate from the accelerometer output signal by measuring the number of pumping strokes and the range of pump movement. The data acquired was then automatically transmitted over the domestic mobile telecommunications network as an SMS text message to a control server which allowed identification of the location of the pumps and an indication of the usage patterns of any individual pump. While usage data was, in itself, of interest, the monitoring of usage also allowed the detection of inoperable pumps so that a maintenance team could be dispatched.
Although the smart hand pump was a useful step forward, it only provided crude usage data and could only alert to a faulty pump after it had become inoperable or unused, or a major fault had developed.
As surface pumps are used to access underground resources, it is always of interest to monitor the level of those resources. For example, in the case of water supply it is important to monitor the aquifer level in order that adequate supply for the community can be ensured in the long term, or because lowering aquifer levels are associated with increased salinity or higher concentrations of undesirable elements or compounds. In the case of an oil field, monitoring the level of oil allows the productivity and lifetime of the field to be monitored. Traditionally such monitoring is achieved by disposing a sensor down the well or borehole, for example an electrical conductivity sensor. This can be done on an occasional basis (as “dipping the well”), or in some cases level sensors can be permanently disposed in the well. It is expensive, however, to provide permanent level sensing in wells, and retrofitting level sensing, especially in the case of water wells, can risk damaging the integrity of the well and potentially contaminating it. Providing sensors capable of automated operation and which can be remotely monitored is also expensive.
The present disclosure provides a monitoring system for a surface pump which can be incorporated into the pump, either on manufacture or as a retrofit, and which can provide information on the condition of the pump and on the level of liquid in the well on a non-invasive basis, i.e. without needing any sensor disposed down the well or borehole. In one embodiment this is achieved by monitoring an operating parameter of the pump itself, such as the acceleration or vibration of a component of the pump or a liquid pressure in the pump, the inventors having found that these parameters vary with the level of liquid in the well. Similarly, monitoring these parameters can provide an estimate of the condition of the pump and in particular can detect when the condition of the pump changes significantly, for example departs from a predefined normal condition.
In the case of a water handpump the processor can also be adapted to output an indication relating to the user of the pump, for example whether the user is adult or child, male or female, it having been found that these different types of user tend to operate the pump in subtly different ways which are detectable in the measured pump operating parameters. Monitoring the user is of interest because, for example, school attendance for girls is a particular problem in remote areas of developing countries and water collection duties become more time-consuming when handpumps fail.
One aspect of the present disclosure therefore provides a monitoring system for a surface pump for raising liquid from a well, the monitoring system comprising: a sensor mountable on the surface pump for measuring an operating parameter of the pump and providing an output signal representative thereof; a signal processor for receiving the sensor output signal and processing it to derive therefrom an estimate of the level of liquid in the well.
The signal processor can utilise a trained model or inference engine such as a support vector machine, artificial neural network or kernel-based machine which takes the output of the sensor and provides an output indicative of the level of liquid in the well.
Another aspect of the present disclosure provides a monitoring system for a surface pump for raising liquid from a well, the monitoring system comprising: a sensor mountable on the surface pump for measuring an operating parameter of the pump and providing an output signal representative thereof; a signal processor for receiving the sensor output signal and processing it by means of a trained model, inference engine or the like, to derive therefrom an estimate of the condition of the pump. By training the model on normal pump operating data, departures from normality can be detected and these can give an early indication of the condition of the pump deteriorating. This can allow preventative maintenance to be carried out, reducing or eliminating breakdowns of the pump.
The trained model can be a classifier such as a support vector model, artificial neural network or kernel-based machine though other types of machine learning algorithm can be used. The term “trained model” will be used hereafter to encompass inference engines and other machine learning techniques.
The sensor output is typically a time series of measurements. Preferably to present the sensor output signal to the signal processor the time series is subjected to a feature extraction process. For example a sensor output recording can be divided into individual sections and for each section a feature vector which describes the shape of the waveform in that section can be created. The feature vector can also include an estimate of the amount of noise in the section. The sections may correspond to individual cycles of a periodic sensor output signal or to predetermined time periods. For example if the sensor is measuring the acceleration of the pump handle of a water pump, this being a roughly sinusoidal signal but with varying amplitude and period, each individual cycle can be divided into a predefined number of subsections and a feature vector created consisting of the value of the waveform at some point within each sub-section and the average noise within each sub-section. In this way the characteristics of each cycle are described in a consistent way (i.e. the feature vector has the same number of components) despite the variation in amplitude and period.
The trained model may be trained using a training set of data consisting of recordings of the sensor output for the pump with a variety of known liquid levels in the well and methods of training such models are well known in the machine learning art. For training a model to monitor the condition of the pump, a training set of data using sensor recordings for normal pumps and malfunctioning pumps can be used, or a training set which comprises only normal operation can be used, this defining a normal region of operation and departures from that region by more than a preset amount can be used to indicate malfunctioning or deterioration of the pump.
Rather than using feature extraction to describe the sensor output, it is alternatively possible to use approaches which describe and model the entire waveform, such a Gaussian process classifier which is, again, trained using a training set of data and, once trained, can analyse new sensor outputs to indicate the liquid level in the well or condition of the pump.
The surface pump can be a water pump, such as a hand pump, or an oil pump. The sensor can be an accelerometer, gyroscope or vibration transducer or a pressure sensor for sensing the liquid pressure in the pump. In the case of a hand pump the sensor can be an accelerometer (or gyroscope) sensing the movement of the handle such as found in the smart hand pump described above and the output signal can give the displacement and arc of the handle.
The data processing may be carried out at the pump, this having the advantage of requiring only the output summary data to be transmitted via a communications network (such as a text message on a cellular mobile telephone network or via a data connection) saving bandwidth and reducing cost. However it is feasible for the sensor output signals, compressed or otherwise lightly-processed if desired, to be transmitted for processing at a server remote from the pump. In either situation the server can receive either the sensor output or the processed signals and display them allowing management of plural pumps disposed across a geographical region. It is also possible for the data transmitted from the pump to the server to default to relatively low resolution but to be switchable to higher resolution for more detailed investigation. Thus the communication between pump and server is preferably two-way.
By monitoring the level of water in wells or boreholes across a geographical region it is possible to obtain in a cost-effective and efficient way an indication of the level of the liquid resource in that region, for example the condition of the aquifer or oil deposit such as the magnitude and direction of the resource. With the present disclosure this is achieved without the need for direct invasive sensing of liquid levels in the wells themselves. This information is particularly valuable in a complex resource deposit, especially with two-way communication between sensor and server.
The present disclosure will be further described by way of example with reference to the accompanying drawings in which:
The estimation of liquid level in the well and pump condition based on the sensor data can be carried out by the data processor 15 or at the server 21. Thus the data processor 15 can be adapted only to compress and package the sensor data to be sent via a data connection provided, for example, by mobile telephone or other communication network e.g. via an SMS text message on the GSM network, or can obtain the liquid level and pump condition data and compress and package that for transmission to the server 21 via the data connection. The explanation below applies to processing either at the server 21 or at the pump. The water point data transmitter 10 can be retrofitted to water pumps or can be fitted on manufacture.
In a first embodiment the sensor outputs shown in
The accelerometer 11 used in this embodiment has a sampling rate of 96 Hz, meaning that it provides 96 acceleration measurements per second (per axis).
x=ƒ(t)+ε
where ƒ(t) is the function describing the underlying waveform and ε is the noise. For the function ƒ(t) a smoothing spline can be selected which minimises the weighted sum of the function fluctuation and the corresponding mean square error as shown in the equation below:
Σi=1n(xi−s(ti))2+(λ−1)∫t[s″(ti)]2dt
where s is the point on the smoothing spline that minimises the function.
The smoothing parameter λ controls the complexity of the spline that is fitted to the data. For this embodiment a value of λ=0.002 was selected, though the results are relatively insensitive to changes in λ.
Having fitted the spline to the data, the noise can be taken as the distance between each original data point and the spline.
A feature vector for this cycle (cycles can easily be recognised by detecting the maxima or minima) can then be formed by dividing the cycle into, for example, p=16 intervals as shown by the short vertical lines, taking the value of the spline at each of the interval boundaries and taking an estimate of the noise in each interval as the sum of the distances between the original data points and the spline in that interval. Thus in this example each feature vector consists of 16 spline values and 16 noise values. Each of the feature vectors for a complete recording thus represents a point in a 32 dimensional “feature vector space”. It should be appreciated that by dividing the sensor output into cycles and dividing each cycle into an equal number of intervals, the method is effectively distorting the time base to allow for different timing of pump operation by different users or in different circumstances.
Typically water pump handles are operated at about 1 Hz, thus each axis of the sensor output provides typically one feature vector per second, each feature vector having 32 components, though the method works for any cycle length. It should also be noted that other aspects of the signal can be added to the feature vector. For example the cycle length can be informative, it goes up if the aquifer is low because of the extra effort required, and can go down if the pump is leaky, and so period length can be added as a component of the feature vector.
The feature vectors thus provide a representation of the sensor output recording which can be analysed by a machine learning algorithm.
With this embodiment the estimates of liquid level in the well and condition of the pump are obtained from the feature vectors by use of a trained model, in this case a support vector machine. A support vector machine is one type of machine learning algorithm, but other types can be used. The model must first be trained on a training set of data for which the desired output (i.e. the liquid level or pump condition) is known. Once the support vector machine has been trained on a training data set, it can be presented with new feature vectors and it will output an estimate of the liquid level or pump condition.
Rather than a support vector machine, other machine learning algorithms can be used such as neural networks or kernel-based machines. Techniques for training these on a training data set, validating them and using them to classify further data are well known.
For monitoring performance, as shown in
The embodiment above uses feature extraction to reduce the dimensionality of the input data and a machine learning algorithm such as a support vector machine. However, alternative approaches are possible, for example the entire waveform can be described using a Gaussian process model thus obviating the need for feature extraction. Gaussian process models are trained using a training data set and thus can classify input data to output estimations of liquid level, pump condition, user as before.
Number | Name | Date | Kind |
---|---|---|---|
5996691 | Norris | Dec 1999 | A |
6041856 | Thrasher | Mar 2000 | A |
20020123856 | Eryurek | Sep 2002 | A1 |
20080010020 | Ellender et al. | Jan 2008 | A1 |
20080067116 | Anderson et al. | Mar 2008 | A1 |
20100101774 | Ocondi et al. | Apr 2010 | A1 |
20150110645 | Wu | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
103061749 | Apr 2013 | CN |
WO 9738207 | Oct 1997 | WO |
Entry |
---|
Great Britain Search Report Application No. GB1416431.3 dated Feb. 23, 2015, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20160076535 A1 | Mar 2016 | US |