The invention relates to a hydraulic device for converting mechanical energy into hydraulic energy or hydraulic energy into mechanical energy. A device of this type is known, inter alia, as a hydraulic pump or motor, and may be designed with axial plungers which can move inside chambers which are formed in the rotor. The switching means are formed by rotor ports which are connected to the chambers and move along a face plate with two face-plate ports. Between the face-plate ports there are ribs which, during rotation of the rotor, close off the rotor ports. These ribs are arranged slightly before or after the top or bottom dead center, so that the volume of the chamber changes during the time in which the chamber is closed off, and the pressure in the chamber changes, the position and size of the ribs being selected in such a manner that the change in the pressure corresponds to the difference between the pressures in the rotor ports.
The drawback of this arrangement is that the position at which the ribs should be fitted is dependent on the pressure differences between the two face-plate ports, and since these pressure differences are not fixed, measures have to be taken to ensure correct operation in the event of differing pressure differences. These measures generally comprise the fitting of leakage grooves or a brief short circuit between the rotor ports by narrowing the rib, so that a chamber is simultaneously in communication with both rotor ports. This reduces the delivery while still not offering a good solution for all situations.
To avoid these drawbacks, the device of the invention is designed such that between chambers there are connecting lines which are provided with closure means for closing the connection line after a limited volume of fluid has flowed through the connection line in one direction. This makes the pressure change in the chamber more gradual and avoids pressure impulses and/or cavitation.
According to a refinement, the device is designed in a way that when the volume of the chamber is at its minimum, the line connection with the highest pressure is in communication with the chamber. This allows the closure means to function on the basis of the pressures in the chambers, resulting in a simple design.
According to one embodiment, the device is designed with switching means such that the rotational position of the rotor whereby a chamber is closed to both line connections, lies an adjustment angle (δ) after the rotational position as seen in the direction of rotation in which the volume in a chamber is at its minimum or maximum value. This results, in a simple manner, in a pump with closure means.
According to a simplified embodiment, the device is designed in that the switching means are adjusted by the rotation of the rotatable shaft. This makes the pump suitable, in a simple manner, for both directions of rotation.
According to one embodiment, the device is designed with switching means designed such that the rotational position of the rotor whereby a chamber is closed to both line connections, lies an adjustment angle (δ) before the rotational position as seen in the direction of rotation in which the volume in a chamber is at its minimum or maximum value. This results, in a simple manner, in a motor with closure means.
According to a simplified embodiment, the device is designed with switching means that are adjusted by the pressure line connections. This makes the motor suitable, in a simple manner, for use in both directions of load.
According to one emodiment; the device is designed such that over one complete revolution of the rotor, the volume of a chamber changes once from its minimum to its maximum, characterized in that the adjustment angle (δ) is approximately 10 degrees. This results in a design which is suitable for most conditions.
The invention is explained below with reference to an exemplary embodiment in conjunction with a drawing, in which:
a shows a diagrammatic cross section through a hydraulic device according to the invention
b shows a diagrammatic cross section through a hydraulic device according to the invention
In known rotors 2 oil is only supplied or removed via the rotor port 6. When this rotor port 6, during movement of the rotor 2, is completely or partially closed off by the rib 14 and the volume of the rotor chamber decreases under the influence of the guide 12 and the rod 11, the oil in the rotor chamber 4 will be elastically compressed, with the result that a rotor-chamber pressure Px rises. The rotor-chamber pressure Px is indicated in
In order to prevent the pressure peaks in the rotor chamber 4 referred to above, according to the invention a valve chamber 7 in which there is a valve piston 8 is arranged between the rotor chambers. The space above the valve piston 8 is in communication, via a passage 9, with the first rotor chamber, in this case, for example, 4B, and the space below the valve piston 8 is in communication with the second rotor chamber, in this case, for example, 4C.
In the situation in which the first pressure P1 is higher than the second pressure P2, the pressure in the rotor chamber 4C is higher than in the rotor chamber 4B. As a result of this pressure difference, the valve piston 8 between rotor chamber 4B and 4C will be positioned at the top of the valve chamber 7, as shown in
When the rotor 2 moves in the direction x, the rib 14 will close off the opening 6B. On account of the downwardly directed movement of the piston 5, there is a flow of oil through the rotor port 6B, which is impeded and in many cases ultimately stopped. As a result, the pressure PX rises, and the oil will first of all flow out through passage 10. The valve piston 8 between the rotor chamber 4A and 4B is subject to no resistance or only a limited resistance from the pressure in the rotor chamber 4A and will move into its uppermost position. After this valve piston 8 has reached its limit position, the flow of oil through passage 10 stops and the pressure in the rotor chamber 4B rises until it is equal to the first pressure P1. Then, the flow of oil through passage 9 commences, and the valve piston 8 between the rotor chambers 4B and 4C will effect a flow of oil to the rotor chamber 4C. The rotor-chamber pressure Px in the embodiment according to the invention is shown by a line n in
The volume which has to be able to flow through the passages 9 and 10 during the closing and opening of the rotor port 6 is dependent on the displacement of the piston 5 during the time when the rotor port 6 is closed by the rib 14. The above-described principle using valve chambers 7 and valve pistons 8 enables the pressure in the rotor chamber 4 to change from the low pressure in a first face-plate port 15 to the high pressure in a second face-plate port 13 without pressure peaks or leaks if, during the closing of the rotor port 6 by the rib 14, between the two face-plate ports, the volume of the rotor chamber 4 decreases. Conversely, it is possible to allow the pressure in the rotor chamber 4 to drop from high pressure to low pressure without pressure peaks if, during the closing of the rotor port 14, the volume of the rotor chamber 4 increases. The application of this principle to hydraulic motors and pumps is explained below.
The explanation given above has demonstrated that the valve chambers 7 are always arranged between two successive rotor chambers 4. Naturally, operation is similar if one or two rotor chambers 4 in each case lie between the rotor chambers 4 which are connected to a valve chamber 7.
The rotor ports 27 move along a circular path past a face plate 32 and, by means of two face-plate ports 33, are alternately connected to one of the two line connections 31. Ribs 28 are arranged between two face-plate ports 33 and, when the rotor 25 is rotating, briefly close off the rotor ports 27. The line connections 31 are arranged in a connection cover 30 which is provided with passages which are in communication with the corresponding face-plate port 33. An internal space 21 of the housing 18 is closed off by the cover 16, and the housing 18 is provided with a leakage connection 22. The face plate 32 is provided with a face-plate shaft 29 for rotatably positioning the face plate 32. The top half of
b shows a second embodiment. In this case, the face-plate shaft 29 is of short design and the connection cover 30 is provided with a cover 42. The function of the face-plate shaft 29 is limited to that of guiding the face plate 32. Between the face plate 32 and the connection cover 30 there are chambers which are connected to the connection ports 31 and in which oil is under pressure. These chambers are dimensioned in such a manner that the friction caused by the oil pressure in the pump chambers 23 between face plate 32 and connection cover 30 is lower than the friction between the rotor 25 and the face plate 32. As a result, the face plate 32 will rotate in the same direction as the rotor 25. To limit the rotation of the face plate 32, the latter is provided with a pin 43 which can move in a slot 44 in the connection cover 30.
As an alternative to the embodiment illustrated with a ball 36 which comes to rest on a conical valve seat, other embodiments are also possible, for example a piston which can move in a sealed manner in the valve chamber 35, with the passages being connected to the side of the valve chamber 35. In the limit position, this piston comes to a stop against a closed volume of oil, so that an impact between the piston and the rotor is avoided, thus reducing wear.
If the difference in the pressure between P and T is less than the maximum difference, the pressure in the rotor chamber 23 cannot become greater than the pressure P, since the ball 36 then moves in the valve chamber 35 and oil in the rotor chamber 23 is not compressed further, but rather is displaced to the rotor chamber 23, which is already in open communication with the high-pressure connection P. The situation in which, during passage over the rib 28, the volume in the rotor chamber 23 becomes greater is similar. In this case, a partial vacuum is avoided and there will be no cavitation. If appropriate, the rib 28 has a different length, since for the same increase in pressure in the chamber 23, given a large or small volume of the chamber 23, more or less compression has to take place.
To allow this to take place, the rotary position of the face plate is adjusted by the cylinder 40 and the toothing 41, the cylinder being controlled by the pressures PA and PB. The rotary position of the face plate 32 is in each case adjusted in such a way that the face-plate port 33 which is at the highest pressure is always in communication with a rotor chamber 23 when the volume of the latter is at its minimum. The adjustment angle δ is determined by the maximum of the pressure difference between PA and PB and is preferably approximately 10°–15°.
In the exemplary embodiment of the rotor 25 which is illustrated, the successive rotor chambers 23 are in each case connected to one another. Naturally, it is also possible for the rotor chambers 23 which lie one or two rotor chambers 23 apart, as seen in the direction of rotation, to be connected to one another. The exemplary embodiment shows a rotor 25 with axial plungers 20. The person skilled in the art is familiar with numerous other designs, such as wing pumps, radial plunger pumps, rotor pumps and roller pumps and corresponding motors; the volume of the chambers changing as a result of rotation. Numerous arrangements for alternately connecting chambers which change in volume as a result of rotation of a rotor to different line connections are also known. The invention can be applied equally well to these various applications for the purpose of avoiding pressure peaks and cavitation.
Number | Name | Date | Kind |
---|---|---|---|
3156192 | Austin et al. | Nov 1964 | A |
3202105 | Badenoch et al. | Aug 1965 | A |
4096786 | Schauer | Jun 1978 | A |
5878649 | Raab | Mar 1999 | A |
5918529 | Forster | Jul 1999 | A |
6024541 | Perstnev et al. | Feb 2000 | A |
Number | Date | Country |
---|---|---|
1260078 | Aug 1961 | FR |
2082604 | Dec 1971 | FR |
1009607 | Jan 2000 | NL |
Number | Date | Country | |
---|---|---|---|
20030221551 A1 | Dec 2003 | US |