The invention relates to a pump having a cutting wheel and a pre-cutter driven by a shaft portion that projects axially from the cutting wheel and has a plurality of wings that extend radially from the shaft portion.
A pump of this type is known from DE 10 2008 031 842 B3 and is used for example in machine tools for circulating lubricating coolant emulsions that are contaminated with metal chippings. This pump is a centrifugal pump that has, in addition to a radial impeller, an axial impeller disposed upstream of the radial impeller, said axial impeller being configured as a cutting impeller and having, at its upstream end, cutting edges that cooperate with stationary counter blades arranged radially in a suction passage, so that chippings and other contaminants that have been sucked in are cut-off and chopped. The pre-cutter serves for chopping coarse contaminants before they are sucked-in by the axial impeller and are then chopped further.
U.S. Pat. No. 6,224,331 B1 and U.S. Pat. No. 5,460,483 show pumps with similar pre-cutters.
In a typical installation scenario, the pump is disposed vertically in a collecting vessel for the liquid coolant, so that the pre-cutter is disposed at a certain vertical distance from the bottom of the vessel. The wings of the pre-cutter are inclined relative to the plane of rotation of the wings, similarly as in a propeller, so that the chippings can be sucked-in and conveyed better.
It is an object of the invention to provide a pump of the type indicated above, wherein the suction and conveying properties for the chippings are improved.
According to the invention, this object is achieved by the feature that the wings differ in their axial arrangement on the shaft portion.
The different axial arrangement of the wings on the shaft portion has the effect, that, when the pump is installed vertically, one of the wings has a portion or an end that is closer to the bottom of the vessel than any part of each of the other wings. Consequently, since this wing comes very close to the bottom of the vessel, it is capable of producing a suction that is capable of lifting and sucking-in also more heavier chippings that rest on the bottom of the vessel. The other wing or wings that are disposed with an axial offset further upwards on the shaft portion will then assure that the chipping that has been lifted in this way is conveyed further to the suction opening of the pump. Thus, the invention makes it possible to suck-in more heavier chippings from the bottom of the vessel or to convey them to the cutting wheel more efficiently.
The axial arrangements of the wings on the shaft portion may differ from one another for example in that the base portions with which the wings adjoin the periphery of the shaft portion are offset relative to one another in axial direction. Further, the axial arrangements may be different in that the wings form different angles with the axis of the shaft portion.
In a particularly preferred embodiment, one wing, the base portion of which is disposed in the lowest position, i.e. closest to the distal end of the shaft portion, forms an obtuse angle with the axis of the shaft portion, so that its free end points downwardly towards the bottom of the vessel when the pump is installed vertically, whereas another wing, the base portion of which is disposed in a higher position, forms an acute angle with the axis, so that its free end points upwardly towards the suction opening. Then, the chippings can be lifted efficiently from the bottom of the vessel by means of the downwardly slanting wing, whereas the upper wing that slants in the opposite direction directs the flow of liquid medium and consequently also the movement of the lifted chippings into a direction having a component directed inwardly towards the axis of the shaft portion. Consequently, this wing assures that the chippings will not be flung away in radial direction but will enter into the suction opening of the pump.
An embodiment example will now be described in conjunction with the drawings, wherein:
The pump, a part of which has been shown in an axial section in
It shall be assumed in the following that the pump has been installed in a vertical orientation in a collecting vessel (not shown) for a lubricating coolant, so that its suction opening 14 faces the bottom of the vessel and is immersed into the liquid contained in this vessel. Thus, the liquid will be sucked-in by the pump upwardly through the suction opening 14.
Inserted in the suction opening 14, there is cutting plate 16 which blocks a larger part of the suction opening and leaves only four smaller passages 18. In the sectional view in
A cutting wheel 20 is mounted on the shaft 12 above the cutting plate 16, and blades of this cutting wheel are formed at their lower end with cutting edges 22 which, when the cutting wheel 20 rotates, move closely above and across the top ends of the passages 18. In
When, as is frequently the case for machine tools, the lubricating coolant that is pumped back from the tool of the machine contains chippings of the work piece that has been processed, e.g. steel chippings, these will be sucked-in through the suction opening 14 together with the liquid, and when they pass through the passages 18 they will be caught by the cutting edges 22 of the cutting wheel and will be cut at the edge of the passages 18. In this way, the chippings can be prevented from becoming entangled and clogging or blocking the pump. In addition, the chippings will be cut to a size in which they can more easily be entrained in the flow of the coolant. This reduces the risk of clogging downstream pipings.
The shaft 12 of the pump passes through a central bore of the cutting plate 16 and forms, below this cutting plate, a shaft portion 24 that carries a pre-cutter 26 for precutting the chippings. As shown in
While the wings 28 are symmetric in the projection shown in
Moreover, the left wing 28 in
Furthermore, the wings 28, in particular their intermediate portions extending between the base portion 30 and the free end, are angled like propeller wings, so that the wings, together, create an upwardly directed suction that will cause the liquid medium to be displaced towards the suction opening 14.
As the left wing 28 in
However, thanks to the curved shape of the wings 28 and thanks to the slanting postures of these wings, the chippings are not moved directly from the bottom of the vessel to the passages 18, but instead that are at first driven radially outwardly at the curved leading edges of the wings 28, so that they enter into the range of action of stationary counter blades 32 that are held in a blade carrier 34 and extend in parallel with the axis of the shaft 12 and the shaft portion 24.
In the example shown, the counter-blades 32 are formed by rectangular plates made of a hard material (e.g. duplex cast steel, hard metal, hardened tool steel) each of which forms a rupture edge directed towards the pre-cutter 26. As the outer peripheral portions of the wings 28 move past the counter blades 32 in only a little distance, the chippings entrained therewith, especially long chippings that tend to become entangled, are fragmented at the counter blades 32 so that they may smoothly be moved on towards the passages 18.
In the example shown, the blade carrier 34 is shaped as a vertical wall with a U-shaped cross-section which flares outwardly in funnel-shape at the open side of the U (upwards in
The pre-cutter 26 has been shown separately in
Further, it can be seen especially in
Number | Date | Country | Kind |
---|---|---|---|
20 2013 103 972 U | Sep 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/067551 | 8/18/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/032608 | 3/12/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4454993 | Shibata | Jun 1984 | A |
4842479 | Dorsch | Jun 1989 | A |
5460483 | Dorsch | Oct 1995 | A |
6224331 | Hayward et al. | May 2001 | B1 |
20090067992 | Keener | Mar 2009 | A1 |
20100003124 | Wagner et al. | Jan 2010 | A1 |
20160208812 | Sowa | Jul 2016 | A1 |
20160215794 | Sowa | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
3034378 | Apr 1982 | DE |
102008031842 | Mar 2010 | DE |
102009021659 | Jan 2011 | DE |
2003083275 | Mar 2003 | JP |
200792741 | Apr 2007 | JP |
2012233457 | Nov 2012 | JP |
79858 | Jul 2007 | UA |
WO 2007143853 | Dec 2007 | WO |
Entry |
---|
English abstract of UA 79858 C2 (Jul. 25, 2007) from Espacenet. |
Number | Date | Country | |
---|---|---|---|
20160208812 A1 | Jul 2016 | US |