A preferred embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
The schematic illustration of
A switch 17 for turning the cleaner on or off may be provided with several positions to select a desired heating or operational mode, such as OFF, LOW, MEDIUM, HIGH. Alternatively, not shown, separate switches could be employed for power and heater settings.
The tank 13 is shown as being fully enclosed within the housing 11 but could be partially enclosed or even mounted externally of the housing. Water is transferred to the boiler 12 through passageways or tubes 18. Optionally, a filter 19 to remove debris or particulate matter in the water may be fitted to the water delivery lines or passageways 18.
The pump 14 is a motor driven pump, which draws water from the tank 13 through the filter 19, if fitted, to supply the boiler 12. The motor of the pump is, preferably, a permanent magnet direct current (PMDC) motor, optionally a high voltage direct current motor running on rectified mains supply. Alternatively, the motor may be connected in series with a heating element to lower the motor operating voltage.
Optionally, the motor speed is variable, to vary the flow rate of water to the boiler. This speed variation is relatively simple for a PMDC motor, as the speed is dependent on supply voltage. Thus a rudimentary control system may be to add additional resistance to the motor circuitry, such as by adding extra heating elements in series with the motor to further reduce the supply voltage, and thus to the motor speed.
Alternately, the motor may be supplied with its own supply voltage through a separate controller. Thumb wheel switch 20 shown mounted along a handle portion 21 of the housing 11 for easy access by user, may control the output of the controller to the motor to vary the motor speed. This arrangement can be used for other types of motors, including a universal type motor or a brushless DC motor. Optionally and preferred, the motor may be supplied with a low voltage DC power derived from the main supply and supplied to the motor via a variable resistor operated by rotation of the thumb wheel switch 20 to vary the resistance of the motor circuit, thus varying the speed of the motor. Alternatively, a standard simple motor speed controller may be used.
Mains power is applied to the cleaner via a power cord, here symbolically referred to by reference numeral 22.
The preferred pump is shown in
A pump housing 32 is fixed to the upper closed end 28 of the motor housing 27. A lower cap 33 of the pump housing 32 is held by two screws 34 which are screwed into threaded holes 35 in the upper end 28 of the motor housing 27. The shaft 26 extends through a hole 36 in the lower cap 33.
A first gear carrier 37 is fitted to the shaft 26, by way of a first gear bearing 38. First gear carrier 37 is shown enlarged and from a lower angle in
A second gear carrier 46 is fitted to the upper end of the axles 41 above the rollers 43 to support keep the upper ends of the axles 41 in fixed spaced relationship. The second gear carrier 46 also has a second gear bearing 47 for rotatably supporting the second gear carrier 46 on the shaft 26.
A further bearing 48 supports the distal end of the shaft 26 in a cavity 49 of an upper cap 50 of the pump housing 32. Between the upper cap 50 and the lower cap 33 is a pump body 51. The pump body 51 has an inner cavity 52, which accommodates the rollers 43 and a tube 53 of resilient flexible material is located extending circumferentially along a significant portion of the inner surface of the cavity 52, in this example, approximately 270°. The pump body 51 and the rollers 43 are arranged such that the tube 53 is compressed at points between the rollers 43 and the wall 54 of the cavity 52.
The tube 53 is formed with or is connected to connectors 55 forming the inlet and outlet. Which connector is the inlet depends on the direction of rotation of the rollers 43.
The pump body 51 is connected to the upper and lower caps 50, 33, by snap lock connections indicated generally by reference numeral 56 for easy assembly and disassembly. Disassembly allows a tube to be replaced easily. The snap lock connections 56 preferably, as shown in this example, comprised flexible fingers 57 formed on the caps 33, 50 which extend over and lock onto stops 58 formed on the pump body 51. The tube 53 extends along a generally curved or arcuate portion of the inner surface of the wall 54 of the pump body 51. The tube 53 is held in place by passing through slots 59 in the wall 54, allowing the tube 53 or preferably the connectors 55 at the ends of the tube 53 to extend out of the pump body 51 to connect with other tubes or hoses.
Preferably, the connectors 55 have a flange 60 which locates in a groove 61 extending transversely of the slot 59 for capturing the connector 55 within the slot 59. The open top of each slot 59 is closed by a slot projection 62 on the upper cap 50 which also has a corresponding recess 63 for receiving a part of the flange 61 of the connector 55, as shown in
Preferably, the connectors 55 are separate items which are pressed into the ends of the tube 53 and the ends of the tube are clamped to the connectors 55 via the slots 59 and the slot projections 62 on the upper cap 50.
As shown more clearly in
Lips 67 on the upper and lower caps align the caps 33, 50 with the pump body 51, and thus the pump housing 32 with the motor 25. As may be appreciated, the pump housing comprises the pump body and the upper and lower caps. Optionally, shaft 26 may have one or more steps to ease assembly, especially the fitting of the pinion 42.
In use, as the rollers are driven by the motor the rollers roll along the tube causing the tube to be compressed in an ever advancing sequence. The compression of the tube causes localised sealing of the tube or spot seals forming sealed compartments between successive compression points, and as the rollers roll along the tube, the sealed compartments, and their contents are progressively moved along the tube from inlet to outlet.
The last compression point forms an open ended compartment until the next roller in sequence contacts and compressors the tube to form a new “last” compression point and seals the chamber in front, while forming a new open chamber at the inlet. At the outlet, as a roller breaks contact with the tube, the first compartment in the sequence opens up pushing its contents out through the outlet.
The use of a variable speed motor driven pump for providing the flow of water from the tank to the boiler in a portable steam cleaner allows a user to vary the amount of steam being generated or used for a particular application at the user's choice. The peristaltic pump described provides a very useful motor driven pump for use in such an application.
The embodiments described above, are given by way of examples only and various modifications will be apparent to persons skilled in the art without departing from the spirit of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
0620857.3 | Oct 2006 | GB | national |