The present invention relates generally to control of a pump, and more particularly to control of a variable speed pumping system for a pool.
Conventionally, a pump to be used in a pool is operable at a finite number of predetermined speed settings (e.g., typically high and low settings). Typically these speed settings correspond to the range of pumping demands of the pool at the time of installation. Factors such as the volumetric flow rate of water to be pumped, the total head pressure required to adequately pump the volume of water, and other operational parameters determine the size of the pump and the proper speed settings for pump operation. Once the pump is installed, the speed settings typically are not readily changed to accommodate changes in the pool conditions and/or pumping demands.
Installation of the pump for an aquatic application such as a pool entails sizing the pump to meet the pumping demands of that particular pool and any associated features. Because of the large variety of shapes and dimensions of pools that are available, precise hydraulic calculations must be performed by the installer, often on-site, to ensure that the pumping system works properly after installation. The hydraulic calculations must be performed based on the specific characteristics and features of the particular pool, and may include assumptions to simplify the calculations for a pool with a unique shape or feature. These assumptions can introduce a degree of error to the calculations that could result in the installation of an unsuitably sized pump. Essentially, the installer is required to install a customized pump system for each aquatic application.
A plurality of aquatic applications at one location requires a pump to elevate the pressure of water used in each application. When one aquatic application is installed subsequent to a first aquatic application, a second pump must be installed if the initially installed pump cannot be operated at a speed to accommodate both aquatic applications. Similarly, features added to an aquatic application that use water at a rate that exceeds the pumping capacity of an existing pump will need an additional pump to satisfy the demand for water. As an alternative, the initially installed pump can be replaced with a new pump that can accommodate the combined demands of the aquatic applications and features.
During use, it is possible that a conventional pump is manually adjusted to operate at one of the finite speed settings. However, adjusting the pump to one of the settings may cause the pump to operate at a rate that exceeds a needed rate, while adjusting the pump to another setting may cause the pump to operate at a rate that provides an insufficient amount of flow and/or pressure. In such a case, the pump will either operate inefficiently or operate at a level below that which is desired. Additionally, where varying water demands are required for multiple aquatic applications, the water movement associated with such other applications can be utilized as part of an overall water movement to achieve desired values. As such, a reduction in energy consumption can be achieved by determining an overall water movement within the pool, and varying operation of the pump accordingly.
Accordingly, it would be beneficial to provide a pump that could be readily and easily adapted to provide a suitably supply of water at a desired pressure to aquatic applications having a variety of sizes and features. The pump should be customizable on-site to meet the needs of the particular aquatic application and associated features, capable of pumping water to a plurality of aquatic applications and features, and should be variably adjustable over a range of operating speeds to pump the water as needed when conditions change. Further, the pump should be responsive to a change of conditions and/or user input instructions.
In accordance with one aspect, the present invention provides a pumping system for moving water of a swimming pool, including a water pump for moving water in connection with performance of an operation upon the water; and a variable speed motor operatively connected to drive the pump. The pumping system further includes means for providing a target volume amount of water to be moved by the water pump, means for providing an operational time period for the pump, and means for determining a volume of water moved by the pump during the operational time period. The pumping system further includes means for altering the operational time period based upon the volume of water moved during the operational time period.
In accordance with another aspect, the present invention provides a pumping system for moving water of a swimming pool, including a water pump for moving water in connection with performance of an operation upon the water and a variable speed motor operatively connected to drive the pump. The pumping system further includes means for providing a target volume amount of water to be moved by the water pump, means for determining a volume of water moved by the pump, and means for altering operation of the motor when the volume of water moved by the pump exceeds the target volume amount.
In accordance with another aspect, the present invention provides a pumping system for moving water of a swimming pool, including a water pump for moving water in connection with performance of an operation upon the water, and a variable speed motor operatively connected to drive the pump. The pumping system further includes means for providing a target volume amount of water to be moved by the water pump, means for providing a time period value, and means for determining a target flow rate of water to be moved by the water pump based upon the target volume amount and time period value. The pumping system further includes means for controlling the motor to adjust the flow rate of water moved by the pump to the target flow rate.
In accordance with yet another aspect, the present invention provides a pumping system for moving water of a swimming pool, including a water pump for moving water in connection with performance of an operation upon the water, and a variable speed motor operatively connected to drive the pump. The pumping system further includes means for providing a target volume amount of water to be moved by the water pump, means for performing a first operation upon the moving water, the first operation moving the water at a first flow rate during a first time period, and means for performing a second operation upon the moving water, the second operation moving the water at a second flow rate during a second time period. The pumping system further includes means for determining a first volume of water moved by the pump during the first time period, means for determining a second volume of water moved by the pump during the second time period. The pumping system further includes means for determining a total volume of water moved by the pump based upon the first and second volumes, and means for altering operation of the motor when the total volume of water moved by the pump exceeds the target volume amount.
In accordance with still yet another aspect, the present invention provides a pumping system for moving water of a swimming pool, including a water pump for moving water in connection with performance of an operation upon the water, and a variable speed motor operatively connected to drive the pump. The pumping system further includes means for providing a target volume amount of water to be moved by the water pump, means for providing a range of time period values, and means for determining a range of flow rate values of water to be moved by the water pump based upon the target volume amount and time period values, each flow rate value being associated with a time period value. The pumping system further includes means for determining a range of motor speed values based upon the flow rate values, each motor speed value being associated with a flow rate value, and means for determining a range of power consumption values of the motor based upon the motor speed values, each power consumption value being associated with a motor speed value. The pumping system further includes means for determining an optimized flow rate value that is associated with the lowest power consumption value, and means for controlling the motor to adjust the flow rate of water moved by the pump to the optimized flow rate value.
The foregoing and other features and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings, in which:
Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. Further, in the drawings, the same reference numerals are employed for designating the same elements throughout the figures, and in order to clearly and concisely illustrate the present invention, certain features may be shown in somewhat schematic form.
An example variable speed pumping system 10 in accordance with one aspect of the present invention is schematically shown in
The swimming pool 14 is one example of a pool. The definition of “swimming pool” includes, but is not limited to, swimming pools, spas, and whirlpool baths. Features and accessories may be associated therewith, such as water jets, waterfalls, fountains, pool filtration equipment, chemical treatment equipment, pool vacuums, spillways and the like.
A water operation 22 is performed upon the water moved by the pump 16. Within the shown example, the water operation 22 is a filter arrangement that is associated with the pumping system 10 and the pool 14 for providing a cleaning operation (i.e., filtering) on the water within the pool. The filter arrangement 22 is operatively connected between the pool 14 and the pump 16 at/along an inlet line 18 for the pump. Thus, the pump 16, the pool 14, the filter arrangement 22, and the interconnecting lines 18 and 20 form a fluid circuit or pathway for the movement of water.
It is to be appreciated that the function of filtering is but one example of an operation that can be performed upon the water. Other operations that can be performed upon the water may be simplistic, complex or diverse. For example, the operation performed on the water may merely be just movement of the water by the pumping system (e.g., re-circulation of the water in a waterfall or spa environment).
Turning to the filter arrangement 22, any suitable construction and configuration of the filter arrangement is possible. For example, the filter arrangement 22 can include a sand filter, a cartridge filter, and/or a diatomaceous earth filter, or the like. In another example, the filter arrangement 22 may include a skimmer assembly for collecting coarse debris from water being withdrawn from the pool, and one or more filter components for straining finer material from the water. In still yet another example, the filter arrangement 22 can be in fluid communication with a pool cleaner, such as a vacuum pool cleaner adapted to vacuum debris from the various submerged surfaces of the pool. The pool cleaner can include various types, such as various manual and/or automatic types.
The pump 16 may have any suitable construction and/or configuration for providing the desired force to the water and move the water. In one example, the pump 16 is a common centrifugal pump of the type known to have impellers extending radially from a central axis. Vanes defined by the impellers create interior passages through which the water passes as the impellers are rotated. Rotating the impellers about the central axis imparts a centrifugal force on water therein, and thus imparts the force flow to the water. Although centrifugal pumps are well suited to pump a large volume of water at a continuous rate, other motor-operated pumps may also be used within the scope of the present invention.
Drive force is provided to the pump 16 via a pump motor 24. In the one example, the drive force is in the form of rotational force provided to rotate the impeller of the pump 16. In one specific embodiment, the pump motor 24 is a permanent magnet motor. In another specific embodiment, the pump motor 24 is an induction motor. In yet another embodiment, the pump motor 24 can be a synchronous or asynchronous motor. The pump motor 24 operation is infinitely variable within a range of operation (i.e., zero to maximum operation). In one specific example, the operation is indicated by the RPM of the rotational force provided to rotate the impeller of the pump 16. In the case of a synchronous motor 24, the steady state speed (RPM) of the motor 24 can be referred to as the synchronous speed. Further, in the case of a synchronous motor 24, the steady state speed of the motor 24 can also be determined based upon the operating frequency in hertz (Hz). Thus, either or both of the pump 16 and/or the motor 24 can be configured to consume power during operation.
A controller 30 provides for the control of the pump motor 24 and thus the control of the pump 16. Within the shown example, the controller 30 includes a variable speed drive 32 that provides for the infinitely variable control of the pump motor 24 (i.e., varies the speed of the pump motor). By way of example, within the operation of the variable speed drive 32, a single phase AC current from a source power supply is converted (e.g., broken) into a three-phase AC current. Any suitable technique and associated construction/configuration may be used to provide the three-phase AC current. The variable speed drive supplies the AC electric power at a changeable frequency to the pump motor to drive the pump motor. The construction and/or configuration of the pump 16, the pump motor 24, the controller 30 as a whole, and the variable speed drive 32 as a portion of the controller 30, are not limitations on the present invention. In one possibility, the pump 16 and the pump motor 24 are disposed within a single housing to form a single unit, and the controller 30 with the variable speed drive 32 are disposed within another single housing to form another single unit. In another possibility, these components are disposed within a single housing to form a single unit.
It is to be appreciated that the controller 30 may have various forms to accomplish the desired functions. In one example, the controller 30 includes a computer processor that operates a program. In the alternative, the program may be considered to be an algorithm. The program may be in the form of macros. Further, the program may be changeable, and the controller 30 is thus programmable. It is to be appreciated that the programming for the controller 30 may be modified, updated, etc. in various manners. It is further to be appreciated that the controller 30 can include either or both of analog and digital components.
Further still, the controller 30 can receive input from a user interface 31 that can be operatively connected to the controller in various manners. For example, the user interface 31 can include a keypad 40, buttons, switches, or the like such that a user could input various parameters into the controller 30. In addition or alternatively, the user interface 31 can be adapted to provide visual and/or audible information to a user. For example, the user interface 31 can include one or more visual displays 42, such as an alphanumeric LCD display, LED lights, or the like. Additionally, the user interface 31 can also include a buzzer, loudspeaker, or the like. Further still, as, shown in
The pumping system 10 has means used for control of the operation of the pump. In accordance with one aspect of the present invention, the pumping system 10 includes means for sensing, determining, or the like one or more parameters indicative of the operation performed upon the water. Within one specific example, the system includes means for sensing, determining or the like one or more parameters indicative of the movement of water within the fluid circuit.
The ability to sense, determine or the like one or more parameters may take a variety of forms. For example, one or more sensors 34 may be utilized. Such one or more sensors 34 can be referred to as a sensor arrangement. The sensor arrangement 34 of the pumping system 10 would sense one or more parameters indicative of the operation performed upon the water. Within one specific example, the sensor arrangement 34 senses parameters indicative of the movement of water within the fluid circuit. The movement along the fluid circuit includes movement of water through the filter arrangement 22. As such, the sensor arrangement 34 includes at least one sensor used to determine flow rate of the water moving within the fluid circuit and/or includes at least one sensor used to determine flow pressure of the water moving within the fluid circuit. In one example, the sensor arrangement 34 is operatively connected with the water circuit at/adjacent to the location of the filter arrangement 22. It should be appreciated that the sensors of the sensor arrangement 34 may be at different locations than the locations presented for the example. Also, the sensors of the sensor arrangement 34 may be at different locations from each other. Still further, the sensors may be configured such that different sensor portions are at different locations within the fluid circuit. Such a sensor arrangement 34 would be operatively connected 36 to the controller 30 to provide the sensory information thereto.
It is to be noted that the sensor arrangement 34 may accomplish the sensing task via various methodologies, and/or different and/or additional sensors may be provided within the system 10 and information provided therefrom may be utilized within the system. For example, the sensor arrangement 34 may be provided that is associated with the filter arrangement and that senses an operation characteristic associated with the filter arrangement. For example, such a sensor may monitor filter performance. Such monitoring may be as basic as monitoring filter flow rate, filter pressure, or some other parameter that indicates performance of the filter arrangement. Of course, it is to be appreciated that the sensed parameter of operation may be otherwise associated with the operation performed upon the water. As such, the sensed parameter of operation can be as simplistic as a flow indicative parameter such as rate, pressure, etc.
Such indication information can be used by the controller 30, via performance of a program, algorithm or the like, to perform various functions, and examples of such are set forth below. Also, it is to be appreciated that additional functions and features may be separate or combined, and that sensor information may be obtained by one or more sensors.
With regard to the specific example of monitoring flow rate and flow pressure, the information from the sensor arrangement 34 can be used as an indication of impediment or hindrance via obstruction or condition, whether physical, chemical, or mechanical in nature, that interferes with the flow of water from the pool to the pump such as debris accumulation or the lack of accumulation, within the filter arrangement 34. As such, the monitored information can be indicative of the condition of the filter arrangement.
In one example, the flow rate can be determined in a “sensorless” manner from a measurement of power consumption of the motor 24 and/or associated other performance values (e.g., relative amount of change, comparison of changed values, time elapsed, number of consecutive changes, etc.). The change in power consumption can be determined in various ways, such as by a change in power consumption based upon a measurement of electrical current and electrical voltage provided to the motor 24. Various other factors can also be included, such as the power factor, resistance, and/or friction of the motor 24 components, and/or even physical properties of the swimming pool, such as the temperature of the water. It is to be appreciated that in the various implementations of a “sensorless” system, various other variables (e.g., filter loading, flow rate, flow pressure, motor speed, time, etc.) can be either supplied by a user, other system elements, and/or determined from the power consumption.
The example of
Within another example (
It should be appreciated that the pump unit 112, which includes the pump 116 and a pump motor 124, a pool 114, a filter arrangement 122, and interconnecting lines 118 and 120 may be identical or different from the corresponding items within the example of
Turning back to the example of
Although the system 110 and the controller 130 may be of varied construction, configuration and operation, the function block diagram of
The performance value(s) 146 can be determined utilizing information from the operation of the pump motor 124 and controlled by the adjusting element 140. As such, a feedback iteration can be performed to control the pump motor 124. Also, operation of the pump motor and the pump can provide the information used to control the pump motor/pump. As mentioned, it is an understanding that operation of the pump motor/pump has a relationship to the flow rate and/or pressure of the water flow that is utilized to control flow rate and/or flow pressure via control of the pump.
As mentioned, the sensed, determined (e.g., calculated, provided via a look-up table, graph or curve, such as a constant flow curve or the like, etc.) information can be utilized to determine the various performance characteristics of the pumping system 110, such as input power consumed, motor speed, flow rate and/or the flow pressure. In one example, the operation can be configured to prevent damage to a user or to the pumping system 10, 110 caused by an obstruction. Thus, the controller (e.g., 30 or 130) provides the control to operate the pump motor/pump accordingly. In other words, the controller (e.g., 30 or 130) can repeatedly monitor one or more performance value(s) 146 of the pumping system 10,110, such as the input power consumed by, or the speed of, the pump motor (e.g., 24 or 124) to sense or determine a parameter indicative of an obstruction or the like.
Turning to the issue of operation of the system (e.g., 10 or 110) over a course of a long period of time, it is typical that a predetermined volume of water flow is desired. For example, it may be desirable to move a volume of water equal to the volume within the pool. Such movement of water is typically referred to as a turnover, it may be desirable to move a volume of water equal to multiple turnovers within a specified time period (e.g., a day). Within an example in which the water operation includes a filter operation, the desired water movement (e.g., specific number of turnovers within one day) may be related to the necessity to maintain a desired water clarity.
Within yet another aspect of the present invention, the pumping system 10 may operate to have different constant flow rates during different time periods. Such different time periods may be sub-periods (e.g., specific hours) within an overall time period (e.g., a day) within which a specific number of water turnovers is desired. During some time periods a larger flow rate may be desired, and a lower flow rate may be desired at other time periods. Within the example of a swimming pool with a filter arrangement as part of the water operation, it may be desired to have a larger flow rate during pool-use time (e.g., daylight hours) to provide for increased water turnover and thus increased filtering of the water. Within the same swimming pool example, it may be desired to have a lower flow rate during non-use (e.g., nighttime hours).
Turning to one specific example, attention is directed to the top-level operation chart that is shown in
Briefly, the Vacuum run operation 206 is entered and utilized when a vacuum device is utilized within the pool 14. For example, such a vacuum device is typically connected to the pump 16 possibly through the filter arrangement 22, via a relatively long extent of hose and is moved about the pool 14 to clean the water at various locations and/or the surfaces of the pool at various locations. The vacuum device may be a manually moved device or may autonomously move.
Similarly, the manual run operation 208 is entered and utilized when it is desired to operate the pump outside of the other specified operations. The heater run operation 212 is for operation performed in the course of heating the fluid (e.g., water) pumped by the pumping system 10.
Turning to the filter mode 210, this is a typical operation performed in order to maintain water clarity within the pool 14. Moreover, the filter mode 210 is operated to obtain effective filtering of the pool while minimizing energy consumption. Specifically, the pump is operated to move water through the filter arrangement. It is to be appreciated that the various operations 204-212 can be initiated manually by a user, automatically by the means for operating 30, and/or even remotely by the various associated components, such as a heater or vacuum, as will be discussed further herein.
It should be appreciated that maintenance of a constant flow volume despite changes in pumping system 10, such as an increasing impediment caused by filter dirt accumulation, can require an increasing flow rate or flow pressure of water and result in an increasing motive force from the pump/motor. As such, one aspect of the present invention is to provide a means for operating the motor/pump to provide the increased motive force that provides the increased flow rate and/or pressure to maintain the constant water flow.
It is also be appreciated that operation of the pump motor/pump (e.g., motor speed) has a relationship to the flow rate and/or pressure of the water flow that is utilized to control flow rate and/or flow pressure via control of the pump. Thus, in order to provide an appropriate volumetric flow rate of water for the various operations 104-112, the motor 24 can be operated at various speeds. In one example, to provide an increased flow rate or flow pressure, the motor speed can be increased, and conversely, the motor speed can be decreased to provide a decreased flow rate or flow pressure.
Focusing on the aspect of minimal energy usage, within some know pool filtering applications, it is common to operate a known pump/filter arrangement for some portion (e.g., eight hours) of a day at effectively a very high speed to accomplish a desired level of pool cleaning. With the present invention, the system (e.g., 10 or 110) with the associated filter arrangement (e.g., 22 or 122) can be operated continuously (e.g., 24 hours a day, or some other amount of time) at an ever-changing minimum level to accomplish the desired level of pool cleaning. It is possible to achieve a very significant savings in energy usage with such a use of the present invention as compared to the known pump operation at the high speed. In one example, the cost savings would be in the range of 90% as compared to a known pump/filter arrangement.
Turning to one aspect that is provided by the present invention, the system can operate to maintain a constant flow of water within the fluid circuit. Maintenance of constant flow is useful in the example that includes a filter arrangement. Moreover, the ability to maintain a constant flow is useful when it is desirable to achieve a specific flow volume during a specific period of time. For example, it may be desirable to filter pool water and achieve a specific number of water turnovers within each day of operation to maintain a desired water clarity.
In an effort to minimize energy consumption, the pumping system 10, 110 can be configured to operate the variable speed motor 24, 124 at a minimum speed while still achieving a desired water flow during a time period (e.g., a desired number of turnovers per day). In one example, a user can provide the pumping system 10, 110 directly with a desired flow rate as determined by the user through calculation, look-up table, etc. However, this may require the user to have an increased understanding of the pool environment and its interaction with the pumping system 10, 110, and further requires modification of the flow rate whenever changes are made to the pool environment.
In another example, the controller 30, 130 can be configured to determine a target flow rate of the water based upon various values. As such, the pumping system 10 can include means for providing a target volume amount of water to be moved by the pumping system 10, 110, and means for providing a time period value for operation thereof. Either or both of the means for providing a target volume amount and a time period can include various input devices, including both local input devices, such as the keypad 40 of the user interface 31, 131, and/or remote input devices, such, as input devices linked by a computer network or the like. In addition or alternatively, the controller 30, 130 can even include various methods of calculation, look-up table, graphs, curves, or the like for the target volume amount and/or the time period, such as to retrieve values from memory or the like.
Further, the target volume amount of water can be based upon the volume of the pool (e.g., gallons), or it can even be based upon both the volume of the pool and a number of turnovers desired to be performed within the time period. Thus, for example, where a pool has a volume of 17,000 gallons, the target volume amount could be equal to 17,000 gallons. However, where a user desires multiple turnovers, such as two turnovers, the target volume amount is equal to the volume of the pool multiplied by the number of turnovers (e.g., 17,000 gallons multiplied by 2 turnovers equals 34,000 gallons to be moved). Further, the time period can include various units of time, such as seconds, minutes, hours, days, weeks, months, years, etc. Thus, a user need only input a volume of the swimming poll, and may further input a desired number of turnovers.
Additionally, the pumping system 10, 110 can further include means for determining the target flow rate of water to be moved by the pump based upon the provided target volume amount and time period value. As stated above, the target flow rate (e.g., gallons per minute (gpm)) can be determined by calculation by dividing the target volume amount by the time period value. For example, the equation can be represented as follows: Flow rate=(Pool volume·times·Turnovers per day)/(Cycle 1 time+Cycle 2 time+Cycle 3 time+etc.).
As shown in chart of
Further still, after the target flow rate is determined, the pumping system 10, 110 can include means for controlling the motor 24, 124 to adjust the flow rate of water moved by the pump to the determined target flow rate. In one example, the means for controlling can include the controller 30, 130. As mentioned previously, various performance values of the pumping system 10, 110 are interrelated, and can be determined (e.g., calculated, provided via a look-up table, graph or curve, such as a constant flow curve or the like, etc.) based upon particular other performance characteristics of the pumping system 110, such as input power consumed, motor speed, flow rate and/or the flow pressure. In one example, the controller 30, 130 can be configured to determine (e.g., calculation, look-up table, etc.) a minimum motor speed for operating the motor 24, 124 based upon the determined target flow rate. In another example, the controller 30, 130 can be configured to incrementally increase the motor speed, beginning at a baseline value, such as the motor's slowest operating speed, until the pump 24, 124 achieves the target flow rate. As such, the pump 24, 124 can operate at the minimum speed required to maintain the target flow rate in a steady state condition.
It is to be appreciated that the maintenance of a constant flow volume (e.g., the target flow rate) despite changes in pumping system 10, 110, such as an increasing impediment caused by filter dirt accumulation, can require an increasing target flow rate or flow pressure of water, and can result in an increasing power consumption of the pump/motor. However, as discussed herein, the controller 30 can still be configured to maintain the motor speed in a state of minimal energy consumption.
Turning now to another aspect of the present invention, the pumping system 10, 110 can control operation of the pump based upon performance of a plurality of water operations. For example, the pumping system 10, 110 can perform a first water operation with at least one predetermined parameter. The first operation can be routine filtering and the parameter may be timing and or water volume movement (e.g., flow rate, pressure, gallons moved). The pump can also be operated to perform a second water operation, which can be anything else besides just routine filtering (e.g., cleaning, heating, etc.). However, in order to provide for energy conservation, the first operation (e.g., just filtering) can be controlled in response to performance of the second operation (e.g., running a cleaner).
The filtering function, as a free standing operation, is intended to maintain clarity of the pool water. However, it should be appreciated that the pump (e.g., 16 or 116) may also be utilized to operate other functions and devices such as a separate cleaner, a water slide, or the like. As shown in
Further, associated with such other functions and devices is a certain amount of water movement. The present invention, in accordance with one aspect, is based upon an appreciation that such other water movement may be considered as part of the overall desired water movement, cycles, turnover, filtering, etc. As such, water movement associated with such other functions and devices can be utilized as part of the overall water movement to achieve desired values within a specified time frame. Utilizing such water movement can allow for minimization of a purely filtering aspect to permit increased energy efficiency by avoiding unnecessary pump operation.
For example,
Turning now to
It should be appreciated that pump operation for all of these cycles, functions, and devices on an unchangeable schedule would be somewhat wasteful. As such, the present invention provides for a reduction of a routine filtration cycle (e.g., cycle 322) in response to occurrence of one or more secondary operations (e.g., cycle 332). As with the previously discussed cycle 302, the pumping system 10, 110 would normally move approximately 17,000 gallons if it is operated at a rate of 20 gallons per minute for 14 hours (e.g., 8:00 am-10:00 pm). However, because the secondary operation (e.g., cycle 332) requires a higher flow rate (e.g., 50 gpm versus 20 gpm), operation of the routine filtration cycle (e.g., cycle 322) can now be reduced. For example, if the routine filtration cycle 322 is operated at 20 gpm for 10 hours (e.g., 8:00 am to 6:00 pm), the pumping system will have moved approximately 12,000 gallons.
Next, if the secondary operation cycle 332 operates at 50 gpm for 1 hour (e.g., 6:00 pm to 7:00 pm), the pumping system 10, 110 will have moved approximately 3,000 gallons, Thus, by the end of the secondary cycle 332 (e.g., 7:00 pm) the pumping system 10, 110 will have cumulatively moved approximately 15,000 gallons. As such, the pumping system needs only move an additional 2,000 gallons. If the pumping system 10, 110 returns to the initial 20 gpm flow rate, then it need only to run for approximately an additional 1.5 hours (e.g., 8:30 pm) instead of the originally scheduled 3 additional hours (e.g., originally scheduled for 10:00 pm end time, see
Accordingly, the pumping system 10, 110 can alter operation motor 24, 124 based upon the operation of multiple cycles 322, 332 to conserve energy and increase efficiency of the pumping system 10, 110 (e.g., a power save mode). It is to be appreciated that the pumping system 10, 110 can alter operation of the motor by further slowing the motor speed, such as in situations where at least some water flow is required to be maintained within the pool, or can even stop operation of the motor 24, 124 to eliminate further power consumption.
Reducing power consumption of the pumping system 10, 110 as described above can be accomplished in various manners. In one example, the pumping system 10, 110 can include means for providing a target volume amount of water to be moved by the pump 24, 124, and means for providing an operational time period for the pump 24, 124 (e.g., a time period during which the pump 24, 124 is in an operational state). As stated previously, either or both of the means for providing the target volume amount and the operational time period can include various local or remote input devices, and/or even calculation, charts, look-up tables, etc.
The pumping system 10, 110 can further include means for determining a volume of water moved by the pump 24, 124 during the operational time period. The means for determining a volume of water moved can include a sensor 50, 150, such as a flow meter or the like for measuring the volume of water moved by the pump 24, 124. The controller 30, 130 can then use that information to determine a cumulative volume of water flow through the pool. In addition or alternatively, the controller 30, 130 can indirectly determine a volume of water moved through a “sensorless” analysis of one or more performance values 146 of the pumping system 10, 110 during operation thereof. For example, as previously discussed, it is an understanding that operation of the pump motor/pump (e.g., power consumption, motor speed, etc.) has a relationship to the flow rate and/or pressure of the water flow (e.g., flow, pressure) that can be utilized to determine particular operational values (e.g., through calculation, charts, look-up table, etc.).
The pumping system 10, 110 can further include means for altering the operational time period based upon the volume of water moved during the operational time period. As discussed above, the controller 30, 130 can be configured to determine the cumulative volume of water flow through the pool. It is to be appreciated that the determination of cumulative water flow can be performed at various time intervals, randomly, or can even be performed in real time. As such, the controller 30, 130 can be configured to monitor the cumulative volume of water being moved by the pumping system 10, 110 during the operational time period (e.g., keep a running total or the like).
Thus, as illustrated above with the discussion associated with
In another example, the operational time period can be bounded by an end time, and/or can even be bounded by a start time and an end time. Thus, the controller 30, 130 can further comprise means for determining an end time (e.g., such as end time 326) based upon the operational time period. For example, as shown in
Accordingly, in an effort to conserve energy consumption of the motor 24, 124, the pumping system 10, 110 can further include means for altering operation of the motor 24, 124 based upon the operational time period. For example, the controller 30, 130 can be configured to reduce (e.g., operate at a slower speed), or even stop, operation of the motor 24, 124 based upon the operational time period. Thus, when the operational time period in real time exceeds the end time 326, the controller 30, 130 can reduce or stop operation of the motor 24, 124 to conserve energy consumption thereof. Thus, as illustrated in
It is further to be appreciated that the various examples discussed herein have included only two cycles, and that the addition of a second cycle is associated with a greater water flow that thereby necessitates the overall operational time period of the motor 24, 124 to be reduced. However, the present invention can include various numbers of operational cycles, each cycle having various operational time periods and/or various water flow rates. In addition or alternatively, the present invention can operate in a dynamic manner to accommodate the addition or removal of various operational cycles at various times, even during a current operational cycle.
In addition or alternatively, the present invention can further be adapted to increase an operational time period of the pump 24, 124 in the event that one or more additional operational cycles include a lower flow rate. Such an increase in the operational time period can be accomplished in a similar fashion to that discussed above, though from a point of view of a total volume flow deficiency. For example, where a primary filtering cycle includes a steady state flow rate of 20 gpm, and a secondary cycle includes a flow rate of only 10 gpm, the controller 30, 130 can be configured to alter the operational time period to be longer to thereby make up for a deficiency in overall water volume moved. In addition or alternatively, the controller 30, 130 could also be configured to increase the flow rate of the primary cycle to make up for the water volume deficiency without altering the operational time period (e.g., increase the flow rate to 30 gpm without changing the end time). As discussed herein, the controller 30, 130 can choose among the various options based upon various considerations, such as minimizing power consumption or time-of-day operation.
Reducing power consumption of the pumping system 10, 110 as described above can also be accomplished in various other manners. Thus, in another example, the pumping system 10, 110 can further include means for determining a volume of water moved by the pump 24, 124, such as through a sensor 50, 150 (e.g, flow meter or the like), or even through a “sensorless” method implemented with the controller 30, 130 as discussed previously herein. The volume of water moved can include water moved from one or more operational cycles (e.g., see
Additionally, the pumping system 10, 110 can further include means for altering operation of the motor 24, 124 when the volume of water moved by the pump 12, 112 exceeds a target volume amount. As discussed above, the target volume amount of water can be provided in various manners, including input by a user (e.g., through a local or remote user interface 31, 131) and/or determination by the controller 30, 130.
Thus, for example, where the target volume amount is 17,000 gallons, the controller 30, 130 can monitor the total volume of water moved by the pumping system 10, 110, and can alter operation of the motor 24, 124 when the total volume of water moved exceeds 17,000 gallons, regardless of a time schedule. It is to be appreciated that the pumping system 10, 110 can alter operation of the motor by slowing the motor speed, such as in situations where at least some water flow is required to be maintained within the pool, or can even stop operation of the motor 24, 124 to eliminate further power consumption.
In addition to monitoring the volume flow of water moved by the pump 24, 124, the controller 30, 130 can also monitor the volume flow of water moved within a time period, such as the operational time period discussed above. Thus, for example, where the operation time period is determined to be fourteen hours, the controller 30, 130 can monitor the volume flow rate of water moved only during the fourteen hours. As such, the controller 30, 130 can then alter operation of the motor 24, 124 depending upon whether the cumulative volume of water moved (e.g., including water flow from various operational cycles) exceeds the target volume amount during that fourteen hour time period. It is to be appreciated that, similar to the above description, the controller 30, 130 can also be adapted to increase the flow rate of water moved by the pump 24, 124 to make up for a water volume deficiency (e.g., the total volume of water does not exceed the target volume of water by the end of the time period). However, it is to be appreciated that a time period is not required, and the total volume of water moved can be determined independently of a time period.
Turning now to yet another aspect of the present invention, the pumping system 10, 110 can further be configured to determine an optimized flow rate value based upon various variables. The determination of an optimized flow rate can be performed within the pumping system 10, 110, such as within the controller 30, 130. However, it is to be appreciated that the determination of an optimized flow rate can even be performed remotely, such as on a computer or the like that may or may not be operatively connected to the pumping system 10, 110. For example, the determination of an optimized flow rate value can be performed on a personal computer or the like, and can even take the form of a computer program or algorithm to aid a user reducing power consumption of the pump 24, 124 for a specific application (e.g., a specific swimming pool).
For the sake of brevity, the following example will include a discussion of the controller 30, 130, and the various elements can be implemented in a computer program, algorithm, or the like. In determining an optimized flow rate, the pumping system 10, 110 can include means for providing a range of time period values, such as a range of seconds, minutes, hours, days, weeks, months, years, etc. For example, as shown on chart 400 of
Further, the pumping system 10, 110 can include means for determining a range of flow rate values of water to be moved by the pump 24, 124 based upon a target volume of water and the range of time period values. As discussed above, the target volume of water to be moved by the pump 24, 124 can be provided by a user interface 31, 131, and/or determined by calculation, look-up table, chart, etc. In one example, a user can provide the target volume of water through the keypad 40. Thus, a particular flow rate value (e.g., gallons per minute) can be determined for each time value within the range of time values by dividing the target volume of water by each time value. For example, where the target volume of water is equal to 17,000 gallons, and where the range of time values includes 10 hours, 15 hours, and 20 hours, the associated range of flow rates can be calculate to be approximately 28 gpm, 19 gpm, and 14 gpm.
Further still, the pumping system 10, 110 can include means for determining a range of motor speed values (e.g., RPM) based upon the range of determined flow rate values. Each motor speed value can be associated with a flow rate value. In one example, the controller 30, 130 can determine each motor speed value through calculation, look-up table, chart, etc. As discussed previously, a relationship can be established between the various operating characteristics of the pumping system 10, 110, such as motor speed, power consumption, flow rate, flow pressure, etc. Thus, for example, a particular motor speed can be determined from operation of the motor 24, 124 at a particular flow rate and at a particular flow pressure. As such, a range of motor speed values can be determined and associated with each of the flow rate values.
The pumping system 10, 110 can further include means for determining a range of power consumption values (e.g., instantaneous power in Watts or even power over time in kWh) of the motor 24, 124 based upon the determined motor speed values. Each power consumption value can be associated with a motor speed value. As before, a relationship can be established between the various operating characteristics of the pumping system 10, 110, such as motor speed, power consumption, flow rate, flow pressure, etc. Thus, for example, a particular power consumption value can be determined from operation of the motor 24, 124 at a particular motor speed and flow rate. As such, a range of power consumption values can be determined and associated with each of the motor speed values.
The pumping system 10, 110 can further include means for determining an optimized flow rate value that is associated with the lowest power consumption value of the motor 24, 124. For example, the optimized flow rate value can be the flow rate value of the range of flow rate values that is associated, through the intermediate values discussed above, with the lowest power consumption value of the range of power consumption values. In another example, as shown in the chart 400 of
The chart 400 includes operational data for three pool sizes, such as 17,000 gallon pool 404, a 30,000 gallon pool 406, and a 50,000 gallon pool 408, though various size pools can be similarly shown, and only the pool size associated with a user's particular swimming pool is required. As illustrated, each set of operational data 404, 406, 408 includes minimum and maximum values (e.g., minimum and maximum power consumption values). Thus, by determining a minimum value of the power consumption for a particular pool size, an optimal time period (e.g., hours per day for operation of the pump) can be determined, and subsequently an optimal flow rate can be determined. However, as shown, the minimum power consumption value for the various pool sizes 404, 406, 408 can occur at different values. For example, regarding the 17,000 gallon pool 404, the minimum power consumption value can occur with a relatively lesser operational time (e.g., operating the pump for less hours per day). However, it is to be appreciated that as the pool volume is increased, operation of the pump 24, 124 for a lesser amount of time can generally require a higher flow rate, which can generally require a higher motor speed and higher power consumption. Conversely, operating the motor 24, 124 at a slower speed for a longer period of time can result in a relatively lower power consumption. Thus, regarding the 50,000 gallon pool 408, the minimum power consumption value can occur with a relatively greater operational time, such as around 16 or 17 hours per day.
The minimum value of the power consumption can be determined in various manners. In one example, the operational data can be arranged in tables or the like, and the minimum data point located therein. In another example, the chart 400 can include a mathematical equation 410, 412, 414 adapted to approximately fit to the operational data of each pool 404, 406, 408, respectively. The approximate mathematical equation can have various forms, such as a linear, polynomial, and/or exponential equation, and can be determined by various known methods, such as a regression technique or the like. The controller 30, 130 can determine the minimum power consumption value by finding the lowest value of the mathematical equation, which can be performed by various known techniques. Because the fit line can be represented by a continuous equation, the values can include whole numbers (e.g., 20 gpm for 14 hours) or can even include decimals (e.g., 24.5 gpm for 12.7 hours). However, it is to be appreciated that because the mathematical equation is an approximation of the operational data 404, 406, 408, various other factors, such as correction factors or the like, may be applied to facilitate determination of the minimum value.
Further still, it is to be appreciated that variations in cycle times and/or determinations of flow rates can be based upon the varying cost of electricity over time. For example, in some geographical regions, energy cost is relatively higher during the daytime hours, and relatively lower during the nighttime hours. Thus, a determined flow rate and operational schedule may include a lower flow rate operable for a longer period of time during the nighttime hours to further reduce a user's energy costs.
Thus, once the controller 30, 130 determines an optimal flow rate (or a user inputs an optimal flow rate based upon a remote determination made using a computer program running tan a personal computer or the like), the pumping system 10, 110 can further include means for controlling the motor 24, 124 to adjust the flow rate of water moved by the pump 12, 112 to the optimized flow rate value. The controller 30, 130 can operate to maintain that optimized flow rate value as discussed previously herein, and/or can even adjust the flow rate among various operational flow rates. Additionally, the controller 30, 130 can further monitor an operational time period and/or a total volume of water moved by the system, as discussed herein, and can alter operation of the motor accordingly.
It is to be appreciated that the physical appearance of the components of the system (e.g., 10 or 110) may vary. As some examples of the components, attention is directed to
It should be evident that this disclosure is by way of example and that various changes may be made by adding, modifying or eliminating details without departing from the scope of the teaching contained in this disclosure. As such it is to be appreciated that the person of ordinary skill in the art will perceive changes, modifications, and improvements to the example disclosed herein. Such changes, modifications, and improvements are intended to be within the scope of the present invention.
This application is a divisional of co-pending U.S. application Ser. No. 14/465,659, filed Aug. 21, 2014, which is a continuation of U.S. application Ser. No. 12/749,262, filed Mar. 29, 2010, which issued as U.S. Pat. No. 8,840,376, which is a divisional of U.S. application Ser. No. 11/609,029, filed Dec. 11, 2006, which issued as U.S. Pat. No. 7,686,589, which is a continuation-in-part of U.S. application Ser. No. 10/926,513, filed Aug. 26, 2004, which issued as U.S. Pat. No. 7,874,808, and U.S. application Ser. No. 11/286,888, filed Nov. 23, 2005, which issued as U.S. Pat. No. 8,019,479, the entire disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
981213 | Mollitor | Jan 1911 | A |
1993267 | Ferguson | Mar 1935 | A |
2238597 | Page | Apr 1941 | A |
2458006 | Kilgore | Jan 1949 | A |
2488365 | Abbott et al. | Nov 1949 | A |
2494200 | Ramqvist | Jan 1950 | A |
2615937 | Ludwig | Oct 1952 | A |
2716195 | Anderson | Aug 1955 | A |
2767277 | Wirth | Oct 1956 | A |
2778958 | Hamm et al. | Jan 1957 | A |
2881337 | Wall | Apr 1959 | A |
3116445 | Wright | Dec 1963 | A |
3191935 | Decker | Jun 1965 | A |
3204423 | Resh, Jr. | Oct 1965 | A |
3213304 | Landerg et al. | Oct 1965 | A |
3226620 | Elliott et al. | Dec 1965 | A |
3227808 | Morris | Jan 1966 | A |
3291058 | McFarlin | Dec 1966 | A |
3316843 | Vaughan | May 1967 | A |
3481973 | Wygant | Dec 1969 | A |
3530348 | Connor | Sep 1970 | A |
3558910 | Dale et al. | Jan 1971 | A |
3559731 | Stafford | Feb 1971 | A |
3562614 | Gramkow | Feb 1971 | A |
3566225 | Paulson | Feb 1971 | A |
3573579 | Lewus | Apr 1971 | A |
3581895 | Howard et al. | Jun 1971 | A |
3593081 | Forst | Jul 1971 | A |
3594623 | LaMaster | Jul 1971 | A |
3596158 | Watrous | Jul 1971 | A |
3613805 | Lindstad | Oct 1971 | A |
3624470 | Johnson | Nov 1971 | A |
3634842 | Niedermeyer | Jan 1972 | A |
3652912 | Bordonaro | Mar 1972 | A |
3671830 | Kruger | Jun 1972 | A |
3726606 | Peters | Apr 1973 | A |
1061919 | Miller | May 1973 | A |
3735233 | Ringle | May 1973 | A |
3737749 | Schmit | Jun 1973 | A |
3753072 | Jurgens | Aug 1973 | A |
3761750 | Green | Sep 1973 | A |
3761792 | Whitney | Sep 1973 | A |
3777232 | Woods et al. | Dec 1973 | A |
3777804 | McCoy | Dec 1973 | A |
3778804 | Adair | Dec 1973 | A |
3780759 | Yahle et al. | Dec 1973 | A |
3781925 | Curtis | Jan 1974 | A |
3787882 | Fillmore | Jan 1974 | A |
3792324 | Suarez | Feb 1974 | A |
3800205 | Zalar | Mar 1974 | A |
3814544 | Roberts et al. | Jun 1974 | A |
3838597 | Montgomery et al. | Oct 1974 | A |
3867071 | Hartley | Feb 1975 | A |
3882364 | Wright | May 1975 | A |
3902369 | Metz | Sep 1975 | A |
3910725 | Rule | Oct 1975 | A |
3913342 | Barry | Oct 1975 | A |
3916274 | Lewus | Oct 1975 | A |
3941507 | Niedermeyer | Mar 1976 | A |
3949782 | Athey et al. | Apr 1976 | A |
3953777 | McKee | Apr 1976 | A |
3956760 | Edwards | May 1976 | A |
3963375 | Curtis | Jun 1976 | A |
3972647 | Niedermeyer | Aug 1976 | A |
3976919 | Vandevier | Aug 1976 | A |
3987240 | Schultz | Oct 1976 | A |
4000446 | Vandevier | Dec 1976 | A |
4021700 | Ellis-Anwyl | May 1977 | A |
4030450 | Hoult | Jun 1977 | A |
4041470 | Slane et al. | Aug 1977 | A |
4061442 | Clark et al. | Dec 1977 | A |
4087204 | Niedermeyer | May 1978 | A |
4108574 | Bartley et al. | Aug 1978 | A |
4123792 | Gephart et al. | Oct 1978 | A |
4133058 | Baker | Jan 1979 | A |
4142415 | Jung et al. | Mar 1979 | A |
4151080 | Zuckerman et al. | Apr 1979 | A |
4157728 | Mitamura et al. | Jun 1979 | A |
4168413 | Halpine | Sep 1979 | A |
4169377 | Scheib | Oct 1979 | A |
4182363 | Fuller et al. | Jan 1980 | A |
4185187 | Rogers | Jan 1980 | A |
4187503 | Walton | Feb 1980 | A |
4206634 | Taylor | Jun 1980 | A |
4215975 | Niedermeyer | Aug 1980 | A |
4222711 | Mayer | Sep 1980 | A |
4225290 | Allington | Sep 1980 | A |
4228427 | Niedermeyer | Oct 1980 | A |
4233553 | Prince | Nov 1980 | A |
4241299 | Bertone | Dec 1980 | A |
4255747 | Bunia | Mar 1981 | A |
4263535 | Jones | Apr 1981 | A |
4276454 | Zathan | Jun 1981 | A |
4286303 | Genheimer et al. | Aug 1981 | A |
4303203 | Avery | Dec 1981 | A |
4307327 | Streater et al. | Dec 1981 | A |
4309157 | Niedermeyer | Jan 1982 | A |
4314478 | Beaman | Feb 1982 | A |
4319712 | Bar | Mar 1982 | A |
4322297 | Bajka | Mar 1982 | A |
4330412 | Frederick | May 1982 | A |
4332527 | Moldovan et al. | Jun 1982 | A |
4353220 | Curwein | Oct 1982 | A |
4366426 | Turlej | Dec 1982 | A |
4369438 | Wilhelmi | Jan 1983 | A |
4370098 | McClain et al. | Jan 1983 | A |
4370690 | Baker | Jan 1983 | A |
4371315 | Shikasho | Feb 1983 | A |
4375613 | Fuller et al. | Mar 1983 | A |
4384825 | Thomas et al. | May 1983 | A |
4394262 | Bukowski et al. | Jul 1983 | A |
4399394 | Ballman | Aug 1983 | A |
4402094 | Sanders | Sep 1983 | A |
4409532 | Hollenbeck | Oct 1983 | A |
4419625 | Bejot et al. | Dec 1983 | A |
4420787 | Tibbits et al. | Dec 1983 | A |
4421643 | Frederick | Dec 1983 | A |
4425836 | Pickrell | Jan 1984 | A |
4427545 | Arguilez | Jan 1984 | A |
4428434 | Gelaude | Jan 1984 | A |
4429343 | Freud | Jan 1984 | A |
4437133 | Rueckert | Mar 1984 | A |
4448072 | Tward | May 1984 | A |
4449260 | Whitaker | May 1984 | A |
4453118 | Phillips | Jun 1984 | A |
4456432 | Mannino | Jun 1984 | A |
4462758 | Speed | Jul 1984 | A |
4463304 | Miller | Jul 1984 | A |
4468604 | Zaderej | Aug 1984 | A |
4470092 | Lombardi | Sep 1984 | A |
4473338 | Garmong | Sep 1984 | A |
4494180 | Streater | Jan 1985 | A |
4496895 | Kawate et al. | Jan 1985 | A |
4504773 | Suzuki et al. | Mar 1985 | A |
4505643 | Millis et al. | Mar 1985 | A |
D278529 | Hoogner | Apr 1985 | S |
4514989 | Mount | May 1985 | A |
4520303 | Ward | May 1985 | A |
4529359 | Sloan | Jul 1985 | A |
4541029 | Ohyama | Sep 1985 | A |
4545906 | Frederick | Oct 1985 | A |
4552512 | Gallup et al. | Nov 1985 | A |
4564041 | Kramer | Jan 1986 | A |
4564882 | Baxter | Jan 1986 | A |
4581900 | Lowe | Apr 1986 | A |
4604563 | Min | Aug 1986 | A |
4605888 | Kim | Aug 1986 | A |
4610605 | Hartley | Sep 1986 | A |
4620835 | Bell | Nov 1986 | A |
4622506 | Shemanske | Nov 1986 | A |
4635441 | Ebbing et al. | Jan 1987 | A |
4647825 | Profio et al. | Mar 1987 | A |
4651077 | Woyski | Mar 1987 | A |
4652802 | Johnston | Mar 1987 | A |
4658195 | Min | Apr 1987 | A |
4658203 | Freymuth | Apr 1987 | A |
4668902 | Zeller, Jr. | May 1987 | A |
4670697 | Wrege | Jun 1987 | A |
4676914 | Mills et al. | Jun 1987 | A |
4678404 | Lorett et al. | Jul 1987 | A |
4678409 | Kurokawa | Jul 1987 | A |
4686439 | Cunningham | Aug 1987 | A |
4695779 | Yates | Sep 1987 | A |
4697464 | Martin | Oct 1987 | A |
4703387 | Mller | Oct 1987 | A |
4705629 | Weir | Nov 1987 | A |
4716605 | Shepherd | Jan 1988 | A |
4719399 | Wrege | Jan 1988 | A |
4728882 | Stanbro | Mar 1988 | A |
4751449 | Chmiel | Jun 1988 | A |
4751450 | Lorenz | Jun 1988 | A |
4758697 | Jeuneu | Jul 1988 | A |
4761601 | Zaderej | Aug 1988 | A |
4764417 | Gulya | Aug 1988 | A |
4764714 | Alley | Aug 1988 | A |
4766329 | Santiago | Aug 1988 | A |
4767280 | Markuson | Aug 1988 | A |
4780050 | Caine et al. | Oct 1988 | A |
4781525 | Hubbard | Nov 1988 | A |
4782278 | Bossi | Nov 1988 | A |
4786850 | Chmiel | Nov 1988 | A |
4789307 | Sloan | Dec 1988 | A |
4795314 | Prybella et al. | Jan 1989 | A |
4801858 | Min | Jan 1989 | A |
4804901 | Pertessis | Feb 1989 | A |
4806457 | Yanagisawa | Feb 1989 | A |
4820964 | Kadah | Apr 1989 | A |
4827197 | Giebler | May 1989 | A |
4834624 | Jensen | May 1989 | A |
4837656 | Barnes | Jun 1989 | A |
4839571 | Farnham | Jun 1989 | A |
4841404 | Marshall et al. | Jun 1989 | A |
4843295 | Thompson | Jun 1989 | A |
4862053 | Jordan | Aug 1989 | A |
4864287 | Kierstead | Sep 1989 | A |
4885655 | Springer et al. | Dec 1989 | A |
4891569 | Light | Jan 1990 | A |
4896101 | Cobb | Jan 1990 | A |
4907610 | Meincke | Mar 1990 | A |
4912936 | Denpou | Apr 1990 | A |
4913625 | Gerlowski | Apr 1990 | A |
4949748 | Chatrathi | Aug 1990 | A |
4958118 | Pottebaum | Sep 1990 | A |
4963778 | Jensen | Oct 1990 | A |
4967131 | Kim | Oct 1990 | A |
4971522 | Butlin | Nov 1990 | A |
4975798 | Edwards et al. | Dec 1990 | A |
4977394 | Manson et al. | Dec 1990 | A |
4985181 | Strada et al. | Jan 1991 | A |
4986919 | Allington | Jan 1991 | A |
4996646 | Farrington | Feb 1991 | A |
D315315 | Stairs, Jr. | Mar 1991 | S |
4998097 | Noth et al. | Mar 1991 | A |
5015151 | Snyder, Jr. et al. | May 1991 | A |
5015152 | Greene | May 1991 | A |
5017853 | Chmiel | May 1991 | A |
5026256 | Kuwabara | Jun 1991 | A |
5028854 | Moline | Jul 1991 | A |
5041771 | Min | Aug 1991 | A |
5051068 | Wong | Sep 1991 | A |
5051681 | Schwarz | Sep 1991 | A |
5076761 | Krohn | Dec 1991 | A |
5076763 | Anastos et al. | Dec 1991 | A |
5079784 | Rist et al. | Jan 1992 | A |
5091817 | Alley | Feb 1992 | A |
5098023 | Burke | Mar 1992 | A |
5099181 | Canon | Mar 1992 | A |
5100298 | Shibata | Mar 1992 | A |
RE33874 | Miller | Apr 1992 | E |
5103154 | Dropps | Apr 1992 | A |
5117233 | Hamos et al. | May 1992 | A |
5123080 | Gillett | Jun 1992 | A |
5129264 | Lorenc | Jul 1992 | A |
5135359 | Dufresne | Aug 1992 | A |
5145323 | Farr | Sep 1992 | A |
5151017 | Sears et al. | Sep 1992 | A |
5154821 | Reid | Oct 1992 | A |
5156535 | Budris | Oct 1992 | A |
5158436 | Jensen | Oct 1992 | A |
5159713 | Gaskell | Oct 1992 | A |
5164651 | Hu | Nov 1992 | A |
5166595 | Leverich | Nov 1992 | A |
5167041 | Burkitt | Dec 1992 | A |
5172089 | Wright et al. | Dec 1992 | A |
D334542 | Lowe | Apr 1993 | S |
5206573 | McCleer et al. | Apr 1993 | A |
5213477 | Watanabe et al. | May 1993 | A |
5222867 | Walker, Sr. et al. | Jun 1993 | A |
5234286 | Wagner | Aug 1993 | A |
5234319 | Wilder | Aug 1993 | A |
5235235 | Martin | Aug 1993 | A |
5238369 | Far | Aug 1993 | A |
5240380 | Mabe | Aug 1993 | A |
5245272 | Herbert | Sep 1993 | A |
5247236 | Schroeder | Sep 1993 | A |
5255148 | Yeh | Oct 1993 | A |
5272933 | Collier | Dec 1993 | A |
5295790 | Bossart et al. | Mar 1994 | A |
5295857 | Toly | Mar 1994 | A |
5296795 | Dropps | Mar 1994 | A |
5302885 | Schwarz | Apr 1994 | A |
5319298 | Wanzong et al. | Jun 1994 | A |
5324170 | Anastos et al. | Jun 1994 | A |
5327036 | Carey | Jul 1994 | A |
5342176 | Redlich | Aug 1994 | A |
5347664 | Hamza et al. | Sep 1994 | A |
5349281 | Bugaj | Sep 1994 | A |
5351709 | Vos | Oct 1994 | A |
5351714 | Barnowski | Oct 1994 | A |
5352969 | Gilmore et al. | Oct 1994 | A |
5360320 | Jameson et al. | Nov 1994 | A |
5361215 | Tompkins | Nov 1994 | A |
5363912 | Wolcott | Nov 1994 | A |
5394748 | McCarthy | Mar 1995 | A |
5418984 | Livingston, Jr. | May 1995 | A |
D359458 | Pierret | Jun 1995 | S |
5422014 | Allen et al. | Jun 1995 | A |
5423214 | Lee | Jun 1995 | A |
5425624 | Williams | Jun 1995 | A |
5443368 | Weeks et al. | Aug 1995 | A |
5444354 | Takahashi | Aug 1995 | A |
5449274 | Kochan, Jr. | Sep 1995 | A |
5449997 | Gilmore et al. | Sep 1995 | A |
5450316 | Gaudet et al. | Sep 1995 | A |
D363060 | Hunger | Oct 1995 | S |
5457373 | Heppe et al. | Oct 1995 | A |
5457826 | Haraga et al. | Oct 1995 | A |
5466995 | Genga | Nov 1995 | A |
5469215 | Nashiki | Nov 1995 | A |
5471125 | Wu | Nov 1995 | A |
5473497 | Beatty | Dec 1995 | A |
5483229 | Tamura et al. | Jan 1996 | A |
5495161 | Hunter | Feb 1996 | A |
5499902 | Rockwood | Mar 1996 | A |
5511397 | Makino et al. | Apr 1996 | A |
5512809 | Banks et al. | Apr 1996 | A |
5512883 | Lane | Apr 1996 | A |
5518371 | Wellstein | May 1996 | A |
5519848 | Wloka | May 1996 | A |
5520517 | Sipin | May 1996 | A |
5522707 | Potter | Jun 1996 | A |
5528120 | Brodetsky | Jun 1996 | A |
5529462 | Hawes | Jun 1996 | A |
5532635 | Watrous | Jul 1996 | A |
5540555 | Corso et al. | Jul 1996 | A |
D372719 | Jensen | Aug 1996 | S |
5545012 | Anastos et al. | Aug 1996 | A |
5548854 | Bloemer et al. | Aug 1996 | A |
5549456 | Burrill | Aug 1996 | A |
5550497 | Carobolante | Aug 1996 | A |
5550753 | Tompkins et al. | Aug 1996 | A |
5559418 | Burkhart | Sep 1996 | A |
5559720 | Tompkins | Sep 1996 | A |
5559762 | Sakamoto | Sep 1996 | A |
5561357 | Schroeder | Oct 1996 | A |
5562422 | Ganzon et al. | Oct 1996 | A |
5563759 | Nadd | Oct 1996 | A |
D375908 | Schumaker | Nov 1996 | S |
5570481 | Mathis et al. | Nov 1996 | A |
5571000 | Zimmerman | Nov 1996 | A |
5577890 | Nielson et al. | Nov 1996 | A |
5580221 | Triezenberg | Dec 1996 | A |
5582017 | Noji et al. | Dec 1996 | A |
5587899 | Ho et al. | Dec 1996 | A |
5589076 | Womack | Dec 1996 | A |
5589753 | Kadah | Dec 1996 | A |
5592062 | Bach | Jan 1997 | A |
5598080 | Jensen | Jan 1997 | A |
5601413 | Langley | Feb 1997 | A |
5604491 | Coonley et al. | Feb 1997 | A |
5614812 | Wagoner | Mar 1997 | A |
5616239 | Wendell et al. | Apr 1997 | A |
5618460 | Fowler | Apr 1997 | A |
5622223 | Vasquez | Apr 1997 | A |
5624237 | Prescott et al. | Apr 1997 | A |
5626464 | Schoenmeyr | May 1997 | A |
5628896 | Klingenberger | May 1997 | A |
5629601 | Feldstein | May 1997 | A |
5632468 | Schoenmeyr | May 1997 | A |
5633540 | Moan | May 1997 | A |
5640078 | Kou et al. | Jun 1997 | A |
5654504 | Smith et al. | Aug 1997 | A |
5654620 | Langhorst | Aug 1997 | A |
5669323 | Pritchard | Sep 1997 | A |
5672050 | Webber et al. | Sep 1997 | A |
5682624 | Ciochetti | Nov 1997 | A |
5690476 | Miller | Nov 1997 | A |
5708337 | Breit et al. | Jan 1998 | A |
5708348 | Frey et al. | Jan 1998 | A |
5711483 | Hays | Jan 1998 | A |
5712795 | Layman et al. | Jan 1998 | A |
5713320 | Pfaff et al. | Feb 1998 | A |
5727933 | Laskaris et al. | Mar 1998 | A |
5730861 | Sterghos | Mar 1998 | A |
5731673 | Gilmore | Mar 1998 | A |
5736884 | Ettes et al. | Apr 1998 | A |
5739648 | Ellis et al. | Apr 1998 | A |
5744921 | Makaran | Apr 1998 | A |
5752785 | Tanaka et al. | May 1998 | A |
5754036 | Walker | May 1998 | A |
5754421 | Nystrom | May 1998 | A |
5763969 | Metheny et al. | Jun 1998 | A |
5767606 | Bresolin | Jun 1998 | A |
5777833 | Romillon | Jul 1998 | A |
5780992 | Beard | Jul 1998 | A |
5791882 | Stucker | Aug 1998 | A |
5796234 | Vrionis | Aug 1998 | A |
5802910 | Krahn et al. | Sep 1998 | A |
5804080 | Klingenberger | Sep 1998 | A |
5808441 | Nehring | Sep 1998 | A |
5814966 | Williamson | Sep 1998 | A |
5818708 | Wong | Oct 1998 | A |
5818714 | Zou | Oct 1998 | A |
5819848 | Ramusson | Oct 1998 | A |
5820350 | Mantey et al. | Oct 1998 | A |
5828200 | Ligman et al. | Oct 1998 | A |
5833437 | Kurth et al. | Nov 1998 | A |
5836271 | Saski | Nov 1998 | A |
5845225 | Mosher | Dec 1998 | A |
5856783 | Gibb | Jan 1999 | A |
5863185 | Cochimin et al. | Jan 1999 | A |
5883489 | Konrad | Mar 1999 | A |
5884205 | Elmore et al. | Mar 1999 | A |
5892349 | Bogwicz | Apr 1999 | A |
5894609 | Barnett | Apr 1999 | A |
5898958 | Hall | May 1999 | A |
5906479 | Hawes | May 1999 | A |
5907281 | Miller, Jr. et al. | May 1999 | A |
5909352 | Klabunde et al. | Jun 1999 | A |
5909372 | Thybo | Jun 1999 | A |
5914881 | Trachier | Jun 1999 | A |
5920264 | Kim et al. | Jul 1999 | A |
5930092 | Nystrom | Jul 1999 | A |
5941690 | Lin | Aug 1999 | A |
5944444 | Motz et al. | Aug 1999 | A |
5945802 | Konrad | Aug 1999 | A |
5946469 | Chidester | Aug 1999 | A |
5947689 | Schick | Sep 1999 | A |
5947700 | McKain et al. | Sep 1999 | A |
5959431 | Xiang | Sep 1999 | A |
5959534 | Campbell | Sep 1999 | A |
5961291 | Sakagami et al. | Oct 1999 | A |
5963706 | Baik | Oct 1999 | A |
5969958 | Nielsen | Oct 1999 | A |
5973465 | Rayner | Oct 1999 | A |
5973473 | Anderson | Oct 1999 | A |
5977732 | Matsumoto | Nov 1999 | A |
5983146 | Sarbach | Nov 1999 | A |
5986433 | Peele et al. | Nov 1999 | A |
5987105 | Jenkins et al. | Nov 1999 | A |
5991939 | Mulvey | Nov 1999 | A |
6030180 | Clarey et al. | Feb 2000 | A |
6037742 | Rasmussen | Mar 2000 | A |
6043461 | Holling et al. | Mar 2000 | A |
6045331 | Gehm et al. | Apr 2000 | A |
6045333 | Breit | Apr 2000 | A |
6046492 | Machida | Apr 2000 | A |
6048183 | Meza | Apr 2000 | A |
6056008 | Adams et al. | May 2000 | A |
6059536 | Stingl | May 2000 | A |
6065946 | Lathrop | May 2000 | A |
6072291 | Pedersen | Jun 2000 | A |
6080973 | Thweatt, Jr. | Jun 2000 | A |
6081751 | Luo | Jun 2000 | A |
6091604 | Plougsgaard | Jul 2000 | A |
6092992 | Imblum | Jul 2000 | A |
6094026 | Cameron | Jul 2000 | A |
D429699 | Davis | Aug 2000 | S |
D429700 | Liebig | Aug 2000 | S |
6094764 | Veloskey et al. | Aug 2000 | A |
6098654 | Cohen et al. | Aug 2000 | A |
6102665 | Centers et al. | Aug 2000 | A |
6110322 | Teoh et al. | Aug 2000 | A |
6116040 | Stark | Sep 2000 | A |
6119707 | Jordan | Sep 2000 | A |
6121746 | Fisher | Sep 2000 | A |
6121749 | Wills et al. | Sep 2000 | A |
6125481 | Sicilano | Oct 2000 | A |
6125883 | Creps et al. | Oct 2000 | A |
6142741 | Nishihata | Nov 2000 | A |
6146108 | Mullendore | Nov 2000 | A |
6150776 | Potter et al. | Nov 2000 | A |
6157304 | Bennett et al. | Dec 2000 | A |
6164132 | Matulek | Dec 2000 | A |
6171073 | McKain et al. | Jan 2001 | B1 |
6178393 | Irvin | Jan 2001 | B1 |
6184650 | Gelbman | Feb 2001 | B1 |
6188200 | Maiorano | Feb 2001 | B1 |
6198257 | Belehradek et al. | Mar 2001 | B1 |
6199224 | Versland | Mar 2001 | B1 |
6203282 | Morin | Mar 2001 | B1 |
6208112 | Jensen et al. | Mar 2001 | B1 |
6212956 | Donald | Apr 2001 | B1 |
6213724 | Haugen | Apr 2001 | B1 |
6216814 | Fujita et al. | Apr 2001 | B1 |
6222355 | Ohshima | Apr 2001 | B1 |
6227808 | McDonough | May 2001 | B1 |
6232742 | Wacknov | May 2001 | B1 |
6236177 | Zick | May 2001 | B1 |
6238188 | McDonough | May 2001 | B1 |
6247429 | Nara | Jun 2001 | B1 |
6249435 | Lifson | Jun 2001 | B1 |
6251285 | Clochetti | Jun 2001 | B1 |
6253227 | Vicente et al. | Jun 2001 | B1 |
D445405 | Schneider | Jul 2001 | S |
6254353 | Polo | Jul 2001 | B1 |
6257304 | Jacobs et al. | Jul 2001 | B1 |
6257833 | Bates | Jul 2001 | B1 |
6259617 | Wu | Jul 2001 | B1 |
6264431 | Trizenberg | Jul 2001 | B1 |
6264432 | Kilayko et al. | Jul 2001 | B1 |
6280611 | Henkin et al. | Aug 2001 | B1 |
6282370 | Cline et al. | Aug 2001 | B1 |
6298721 | Schuppe et al. | Oct 2001 | B1 |
6299414 | Schoenmeyr | Oct 2001 | B1 |
6299699 | Porat et al. | Oct 2001 | B1 |
6318093 | Gaudet et al. | Nov 2001 | B2 |
6320348 | Kadah | Nov 2001 | B1 |
6326752 | Jensen et al. | Dec 2001 | B1 |
6329784 | Puppin | Dec 2001 | B1 |
6330525 | Plays | Dec 2001 | B1 |
6342841 | Stingl | Jan 2002 | B1 |
6349268 | Ketonen et al. | Feb 2002 | B1 |
6350105 | Kobayashi et al. | Feb 2002 | B1 |
6351359 | Jager | Feb 2002 | B1 |
6354805 | Moeller | Mar 2002 | B1 |
6355177 | Senner et al. | Mar 2002 | B2 |
6356464 | Balakrishnan | Mar 2002 | B1 |
6356853 | Sullivan | Mar 2002 | B1 |
6362591 | Moberg | Mar 2002 | B1 |
6364620 | Fletcher et al. | Apr 2002 | B1 |
6364621 | Yamauchi | Apr 2002 | B1 |
6366053 | Belehradek | Apr 2002 | B1 |
6366481 | Balakrishnan | Apr 2002 | B1 |
6369463 | Maiorano | Apr 2002 | B1 |
6373204 | Peterson | Apr 2002 | B1 |
6373728 | Aarestrup | Apr 2002 | B1 |
6374854 | Acosta | Apr 2002 | B1 |
6375430 | Eckert et al. | Apr 2002 | B1 |
6380707 | Rosholm | Apr 2002 | B1 |
6388642 | Cotis | May 2002 | B1 |
6390781 | McDonough | May 2002 | B1 |
6406265 | Hahn | Jun 2002 | B1 |
6407469 | Cline et al. | Jun 2002 | B1 |
6411481 | Seubert | Jun 2002 | B1 |
6415808 | Joshi | Jul 2002 | B2 |
6416295 | Nagai | Jul 2002 | B1 |
6426633 | Thybo | Jul 2002 | B1 |
6443715 | Mayleben et al. | Sep 2002 | B1 |
6445565 | Toyoda et al. | Sep 2002 | B1 |
6447446 | Smith et al. | Sep 2002 | B1 |
6448713 | Farkas et al. | Sep 2002 | B1 |
6450771 | Centers | Sep 2002 | B1 |
6462971 | Balakrishnan et al. | Oct 2002 | B1 |
6464464 | Sabini | Oct 2002 | B2 |
6468042 | Moller | Oct 2002 | B2 |
6468052 | McKain et al. | Oct 2002 | B2 |
6474949 | Arai | Nov 2002 | B1 |
6475180 | Peterson et al. | Nov 2002 | B2 |
6481973 | Struthers | Nov 2002 | B1 |
6483278 | Harvest | Nov 2002 | B2 |
6483378 | Blodgett | Nov 2002 | B2 |
6490920 | Netzer | Dec 2002 | B1 |
6493227 | Nielson et al. | Dec 2002 | B2 |
6496392 | Odel | Dec 2002 | B2 |
6499961 | Wyatt | Dec 2002 | B1 |
6501629 | Mariott | Dec 2002 | B1 |
6503063 | Brunsell | Jan 2003 | B1 |
6504338 | Eichorn | Jan 2003 | B1 |
6520010 | Bergveld | Feb 2003 | B1 |
6522034 | Nakayama | Feb 2003 | B1 |
6523091 | Tirumala | Feb 2003 | B2 |
6527518 | Ostrowski | Mar 2003 | B2 |
6534940 | Bell et al. | Mar 2003 | B2 |
6534947 | Johnson | Mar 2003 | B2 |
6537032 | Horiuchi | Mar 2003 | B1 |
6538908 | Balakrishnan et al. | Mar 2003 | B2 |
6539797 | Livingston | Apr 2003 | B2 |
6543940 | Chu | Apr 2003 | B2 |
6548976 | Jensen | Apr 2003 | B2 |
6564627 | Sabini | May 2003 | B1 |
6570778 | Lipo et al. | May 2003 | B2 |
6571807 | Jones | Jun 2003 | B2 |
6590188 | Cline | Jul 2003 | B2 |
6591697 | Henyan | Jul 2003 | B2 |
6591863 | Ruschell | Jul 2003 | B2 |
6595051 | Chandler, Jr. | Jul 2003 | B1 |
6595762 | Khanwilkar et al. | Jul 2003 | B2 |
6604909 | Schoenmeyr | Aug 2003 | B2 |
6607360 | Fong | Aug 2003 | B2 |
6616413 | Humpheries | Sep 2003 | B2 |
6623245 | Meza et al. | Sep 2003 | B2 |
6625824 | Lutz et al. | Sep 2003 | B1 |
6626840 | Drzewiecki | Sep 2003 | B2 |
6628501 | Toyoda | Sep 2003 | B2 |
6632072 | Lipscomb et al. | Oct 2003 | B2 |
6636135 | Vetter | Oct 2003 | B1 |
6638023 | Scott | Oct 2003 | B2 |
D482664 | Hunt | Nov 2003 | S |
6643153 | Balakrishnan | Nov 2003 | B2 |
6651900 | Yoshida | Nov 2003 | B1 |
6655922 | Flek | Dec 2003 | B1 |
6663349 | Discenzo et al. | Dec 2003 | B1 |
6665200 | Goto | Dec 2003 | B2 |
6672147 | Mazet | Jan 2004 | B1 |
6675912 | Carrier | Jan 2004 | B2 |
6676382 | Leighton et al. | Jan 2004 | B2 |
6676831 | Wolfe | Jan 2004 | B2 |
6687141 | Odell | Feb 2004 | B2 |
6687923 | Dick | Feb 2004 | B2 |
6690250 | Moller | Feb 2004 | B2 |
6696676 | Graves et al. | Feb 2004 | B1 |
6700333 | Hirshi et al. | Mar 2004 | B1 |
6709240 | Schmalz | Mar 2004 | B1 |
6709241 | Sabini | Mar 2004 | B2 |
6709575 | Verdegan | Mar 2004 | B1 |
6715996 | Moeller | Apr 2004 | B2 |
6717318 | Mathiasssen | Apr 2004 | B1 |
6732387 | Waldron | May 2004 | B1 |
6737905 | Noda | May 2004 | B1 |
D490726 | Eungprabhanth | Jun 2004 | S |
6742387 | Hamamoto | Jun 2004 | B2 |
6747367 | Cline et al. | Jun 2004 | B2 |
6758655 | Sacher | Jul 2004 | B2 |
6761067 | Capano | Jul 2004 | B1 |
6768279 | Skinner | Jul 2004 | B1 |
6770043 | Kahn | Aug 2004 | B1 |
6774664 | Godbersen | Aug 2004 | B2 |
6776038 | Horton et al. | Aug 2004 | B1 |
6776584 | Sabini et al. | Aug 2004 | B2 |
6778868 | Imamura et al. | Aug 2004 | B2 |
6779205 | Mulvey | Aug 2004 | B2 |
6782309 | Laflamme | Aug 2004 | B2 |
6783328 | Lucke | Aug 2004 | B2 |
6789024 | Kochan, Jr. et al. | Sep 2004 | B1 |
6794921 | Abe | Sep 2004 | B2 |
6797164 | Leaverton | Sep 2004 | B2 |
6798271 | Swize | Sep 2004 | B2 |
6799950 | Meier et al. | Oct 2004 | B2 |
6806677 | Kelly et al. | Oct 2004 | B2 |
6837688 | Kimberlin et al. | Jan 2005 | B2 |
6842117 | Keown | Jan 2005 | B2 |
6847130 | Belehradek et al. | Jan 2005 | B1 |
6847854 | Discenzo | Jan 2005 | B2 |
6854479 | Harwood | Feb 2005 | B2 |
6863502 | Bishop et al. | Mar 2005 | B2 |
6867383 | Currier | Mar 2005 | B1 |
6875961 | Collins | Apr 2005 | B1 |
6882165 | Ogura | Apr 2005 | B2 |
6884022 | Albright | Apr 2005 | B2 |
D504900 | Wang | May 2005 | S |
D505429 | Wang | May 2005 | S |
6888537 | Albright | May 2005 | B2 |
6895608 | Goettl | May 2005 | B2 |
6900736 | Crumb | May 2005 | B2 |
6906482 | Shimizu | Jun 2005 | B2 |
D507243 | Miller | Jul 2005 | S |
6914793 | Balakrishnan | Jul 2005 | B2 |
6922348 | Nakajima | Jul 2005 | B2 |
6925823 | Lifson | Aug 2005 | B2 |
6933693 | Schuchmann | Aug 2005 | B2 |
6941785 | Haynes et al. | Sep 2005 | B2 |
6943325 | Pittman | Sep 2005 | B2 |
6973794 | Street | Sep 2005 | B2 |
D511530 | Wang | Nov 2005 | S |
D512026 | Nurmi | Nov 2005 | S |
6965815 | Tompkins et al. | Nov 2005 | B1 |
6966967 | Curry | Nov 2005 | B2 |
D512440 | Wang | Dec 2005 | S |
6973974 | McLoughlin et al. | Dec 2005 | B2 |
6976052 | Tompkins et al. | Dec 2005 | B2 |
D513737 | Riley | Jan 2006 | S |
6981399 | Nybo et al. | Jan 2006 | B1 |
6981402 | Bristol | Jan 2006 | B2 |
6984158 | Satoh | Jan 2006 | B2 |
6989649 | Melhorn | Jan 2006 | B2 |
6993414 | Shah | Jan 2006 | B2 |
6998807 | Phillips | Feb 2006 | B2 |
6998977 | Gregori et al. | Feb 2006 | B2 |
7005818 | Jensen | Feb 2006 | B2 |
7012394 | Moore et al. | Mar 2006 | B2 |
7015599 | Gull et al. | Mar 2006 | B2 |
7040107 | Lee et al. | May 2006 | B2 |
7042192 | Mehlhorn | May 2006 | B2 |
7050278 | Poulsen | May 2006 | B2 |
7055189 | Goettl | Jun 2006 | B2 |
7070134 | Hoyer | Jul 2006 | B1 |
7077781 | Ishikawa | Jul 2006 | B2 |
7080508 | Stavale | Jul 2006 | B2 |
7081728 | Kemp | Jul 2006 | B2 |
7083392 | Meza et al. | Aug 2006 | B2 |
7083438 | Massaro et al. | Aug 2006 | B2 |
7089607 | Barnes et al. | Aug 2006 | B2 |
7100632 | Harwood | Sep 2006 | B2 |
7102505 | Kates | Sep 2006 | B2 |
7107184 | Gentile et al. | Sep 2006 | B2 |
7112037 | Sabini et al. | Sep 2006 | B2 |
7114926 | Oshita | Oct 2006 | B2 |
7117120 | Beck et al. | Oct 2006 | B2 |
7141210 | Bell | Nov 2006 | B2 |
7142932 | Spria et al. | Nov 2006 | B2 |
D533512 | Nakashima | Dec 2006 | S |
7163380 | Jones | Jan 2007 | B2 |
7172366 | Bishop, Jr. | Feb 2007 | B1 |
7174273 | Goldberg | Feb 2007 | B2 |
7178179 | Barnes | Feb 2007 | B2 |
7183741 | Mehlhorn | Feb 2007 | B2 |
7195462 | Nybo et al. | Mar 2007 | B2 |
7201563 | Studebaker | Apr 2007 | B2 |
7221121 | Skaug | May 2007 | B2 |
7244106 | Kallaman | Jul 2007 | B2 |
7245105 | Joo | Jul 2007 | B2 |
7259533 | Yang et al. | Aug 2007 | B2 |
7264449 | Harned et al. | Sep 2007 | B1 |
7281958 | Schuttler et al. | Oct 2007 | B2 |
7292898 | Clark et al. | Nov 2007 | B2 |
7307538 | Kochan, Jr. | Dec 2007 | B2 |
7309216 | Spadola et al. | Dec 2007 | B1 |
7318344 | Heger | Jan 2008 | B2 |
D562349 | Butler | Feb 2008 | S |
7327275 | Brochu | Feb 2008 | B2 |
7339126 | Niedermeyer | Mar 2008 | B1 |
D567189 | Stiles, Jr. | Apr 2008 | S |
7352550 | Mladenik | Apr 2008 | B2 |
7375940 | Bertrand | May 2008 | B1 |
7388348 | Mattichak | Jun 2008 | B2 |
7407371 | Leone | Aug 2008 | B2 |
7427844 | Mehlhorn | Sep 2008 | B2 |
7429842 | Schulman et al. | Sep 2008 | B2 |
7437215 | Anderson et al. | Oct 2008 | B2 |
D582797 | Fraser | Dec 2008 | S |
D583828 | Li | Dec 2008 | S |
7458782 | Spadola et al. | Dec 2008 | B1 |
7459886 | Potanin et al. | Dec 2008 | B1 |
7484938 | Allen | Feb 2009 | B2 |
7516106 | Ehlers | Apr 2009 | B2 |
7517351 | Culp et al. | Apr 2009 | B2 |
7525280 | Fagan et al. | Apr 2009 | B2 |
7528579 | Pacholok et al. | May 2009 | B2 |
7542251 | Ivankovic | Jun 2009 | B2 |
7542252 | Chan et al. | Jun 2009 | B2 |
7572108 | Koehl | Aug 2009 | B2 |
7612510 | Koehl | Nov 2009 | B2 |
7612529 | Kochan, Jr. | Nov 2009 | B2 |
7623986 | Miller | Nov 2009 | B2 |
7641449 | Iimura et al. | Jan 2010 | B2 |
7652441 | Ho | Jan 2010 | B2 |
7686587 | Koehl | Mar 2010 | B2 |
7686589 | Stiles et al. | Mar 2010 | B2 |
7690897 | Branecky | Apr 2010 | B2 |
7700887 | Niedermeyer | Apr 2010 | B2 |
7704051 | Koehl | Apr 2010 | B2 |
7707125 | Haji-Valizadeh | Apr 2010 | B2 |
7727181 | Rush | Jun 2010 | B2 |
7739733 | Szydlo | Jun 2010 | B2 |
7746063 | Sabini et al. | Jun 2010 | B2 |
7751159 | Koehl | Jul 2010 | B2 |
7753880 | Malackowski | Jul 2010 | B2 |
7755318 | Panosh | Jul 2010 | B1 |
7775327 | Abraham | Aug 2010 | B2 |
7777435 | Aguilar | Aug 2010 | B2 |
7788877 | Andras | Sep 2010 | B2 |
7795824 | Shen et al. | Sep 2010 | B2 |
7808211 | Pacholok et al. | Oct 2010 | B2 |
7815420 | Koehl | Oct 2010 | B2 |
7821215 | Koehl | Oct 2010 | B2 |
7845913 | Stiles et al. | Dec 2010 | B2 |
7854597 | Stiles et al. | Dec 2010 | B2 |
7857600 | Koehl | Dec 2010 | B2 |
7874808 | Stiles | Jan 2011 | B2 |
7878766 | Meza | Feb 2011 | B2 |
7900308 | Erlich | Mar 2011 | B2 |
7925385 | Stavale et al. | Apr 2011 | B2 |
7931447 | Levin et al. | Apr 2011 | B2 |
7945411 | Keman et al. | May 2011 | B2 |
7976284 | Koehl | Jul 2011 | B2 |
7983877 | Koehl | Jul 2011 | B2 |
7990091 | Koehl | Aug 2011 | B2 |
8007255 | Hattori et al. | Aug 2011 | B2 |
8011895 | Ruffo | Sep 2011 | B2 |
8019479 | Stiles | Sep 2011 | B2 |
8032256 | Wolf et al. | Oct 2011 | B1 |
8043070 | Stiles | Oct 2011 | B2 |
8049464 | Muntermann | Nov 2011 | B2 |
8098048 | Hoff | Jan 2012 | B2 |
8104110 | Caudill et al. | Jan 2012 | B2 |
8126574 | Discenzo et al. | Feb 2012 | B2 |
8133034 | Mehlhorn et al. | Mar 2012 | B2 |
8134336 | Michalske et al. | Mar 2012 | B2 |
8164470 | Brochu et al. | Apr 2012 | B2 |
8177520 | Mehlhorn | May 2012 | B2 |
8281425 | Cohen | Oct 2012 | B2 |
8299662 | Schmidt et al. | Oct 2012 | B2 |
8303260 | Stavale et al. | Nov 2012 | B2 |
8313306 | Stiles et al. | Nov 2012 | B2 |
8316152 | Geltner et al. | Nov 2012 | B2 |
8317485 | Meza et al. | Nov 2012 | B2 |
8337166 | Meza et al. | Dec 2012 | B2 |
8380355 | Mayleben et al. | Feb 2013 | B2 |
8405346 | Trigiani | Mar 2013 | B2 |
8405361 | Richards et al. | Mar 2013 | B2 |
8444394 | Koehl | May 2013 | B2 |
8465262 | Stiles et al. | Jun 2013 | B2 |
8469675 | Stiles et al. | Jun 2013 | B2 |
8480373 | Stiles et al. | Jul 2013 | B2 |
8500413 | Stiles et al. | Aug 2013 | B2 |
8540493 | Koehl | Sep 2013 | B2 |
8547065 | Trigiani | Oct 2013 | B2 |
8573952 | Stiles et al. | Nov 2013 | B2 |
8579600 | Vijayakumar et al. | Nov 2013 | B2 |
8602745 | Stiles | Dec 2013 | B2 |
8641383 | Meza | Feb 2014 | B2 |
8641385 | Koehl | Feb 2014 | B2 |
8669494 | Tran | Mar 2014 | B2 |
8756991 | Edwards | Jun 2014 | B2 |
8763315 | Hartman | Jul 2014 | B2 |
8774972 | Rusnak | Jul 2014 | B2 |
8801389 | Stiles, Jr. et al. | Aug 2014 | B2 |
8981684 | Drye et al. | Mar 2015 | B2 |
9030066 | Drye | May 2015 | B2 |
9051930 | Stiles, Jr. et al. | Jun 2015 | B2 |
9238918 | McKinzie | Jan 2016 | B2 |
9822782 | McKinzie | Nov 2017 | B2 |
9932984 | Stiles, Jr. | Apr 2018 | B2 |
20010002238 | McKain | May 2001 | A1 |
20010029407 | Tompkins | Oct 2001 | A1 |
20010041139 | Sabini et al. | Nov 2001 | A1 |
20020000789 | Haba | Jan 2002 | A1 |
20020002989 | Jones | Jan 2002 | A1 |
20020010839 | Tirumala et al. | Jan 2002 | A1 |
20020018721 | Kobayashi | Feb 2002 | A1 |
20020032491 | Imamura et al. | Mar 2002 | A1 |
20020035403 | Clark et al. | Mar 2002 | A1 |
20020050490 | Pittman et al. | May 2002 | A1 |
20020070611 | Cline et al. | Jun 2002 | A1 |
20020070875 | Crumb | Jun 2002 | A1 |
20020076330 | Lipscomb et al. | Jun 2002 | A1 |
20020082727 | Laflamme et al. | Jun 2002 | A1 |
20020089236 | Cline et al. | Jul 2002 | A1 |
20020093306 | Johnson | Jul 2002 | A1 |
20020101193 | Farkas | Aug 2002 | A1 |
20020111554 | Drzewiecki | Aug 2002 | A1 |
20020131866 | Phillips | Sep 2002 | A1 |
20020136642 | Moller | Sep 2002 | A1 |
20020143478 | Vanderah et al. | Oct 2002 | A1 |
20020150476 | Lucke | Oct 2002 | A1 |
20020163821 | Odell | Nov 2002 | A1 |
20020172055 | Balakrishnan | Nov 2002 | A1 |
20020176783 | Moeller | Nov 2002 | A1 |
20020190687 | Bell et al. | Dec 2002 | A1 |
20030000303 | Livingston | Jan 2003 | A1 |
20030017055 | Fong | Jan 2003 | A1 |
20030030954 | Bax et al. | Feb 2003 | A1 |
20030034284 | Wolfe | Feb 2003 | A1 |
20030034761 | Goto | Feb 2003 | A1 |
20030048646 | Odell | Mar 2003 | A1 |
20030049134 | Leighton et al. | Mar 2003 | A1 |
20030063900 | Wang et al. | Apr 2003 | A1 |
20030099548 | Meza | May 2003 | A1 |
20030106147 | Cohen et al. | Jun 2003 | A1 |
20030061004 | Discenzo | Jul 2003 | A1 |
20030138327 | Jones et al. | Jul 2003 | A1 |
20030174450 | Nakajima et al. | Sep 2003 | A1 |
20030186453 | Bell | Oct 2003 | A1 |
20030196942 | Jones | Oct 2003 | A1 |
20040000525 | Hornsby | Jan 2004 | A1 |
20040006486 | Schmidt et al. | Jan 2004 | A1 |
20040009075 | Meza | Jan 2004 | A1 |
20040013531 | Curry et al. | Jan 2004 | A1 |
20040016241 | Street et al. | Jan 2004 | A1 |
20040025244 | Lloyd et al. | Feb 2004 | A1 |
20040055363 | Bristol | Mar 2004 | A1 |
20040062658 | Beck et al. | Apr 2004 | A1 |
20040064292 | Beck | Apr 2004 | A1 |
20040071001 | Balakrishnan | Apr 2004 | A1 |
20040080325 | Ogura | Apr 2004 | A1 |
20040080352 | Noda | Apr 2004 | A1 |
20040090197 | Schuchmann | May 2004 | A1 |
20040095183 | Swize | May 2004 | A1 |
20040116241 | Ishikawa | Jun 2004 | A1 |
20040117330 | Ehlers et al. | Jun 2004 | A1 |
20040118203 | Heger | Jun 2004 | A1 |
20040149666 | Ehlers et al. | Aug 2004 | A1 |
20040205886 | Goettel | Oct 2004 | A1 |
20040213676 | Phillips | Oct 2004 | A1 |
20040261167 | Panopoulos | Dec 2004 | A1 |
20040265134 | Iimura et al. | Dec 2004 | A1 |
20050050908 | Lee et al. | Mar 2005 | A1 |
20050058548 | Thomas et al. | Mar 2005 | A1 |
20050086957 | Lifson | Apr 2005 | A1 |
20050092946 | Fellington et al. | May 2005 | A1 |
20050095150 | Leone et al. | May 2005 | A1 |
20050097665 | Goettel | May 2005 | A1 |
20050123408 | Koehl | Jun 2005 | A1 |
20050133088 | Bologeorges | Jun 2005 | A1 |
20050137720 | Spira et al. | Jun 2005 | A1 |
20050156568 | Yueh | Jul 2005 | A1 |
20050158177 | Mehlhorn | Jul 2005 | A1 |
20050162787 | Weigel | Jul 2005 | A1 |
20050167345 | De Wet et al. | Aug 2005 | A1 |
20050168900 | Brochu et al. | Aug 2005 | A1 |
20050170936 | Quinn | Aug 2005 | A1 |
20050180868 | Miller | Aug 2005 | A1 |
20050190094 | Andersen | Sep 2005 | A1 |
20050193485 | Wolfe | Sep 2005 | A1 |
20050195545 | Mladenik | Sep 2005 | A1 |
20050226731 | Mehlhorn | Oct 2005 | A1 |
20050235732 | Rush | Oct 2005 | A1 |
20050248310 | Fagan et al. | Nov 2005 | A1 |
20050260079 | Allen | Nov 2005 | A1 |
20050281679 | Niedermeyer | Dec 2005 | A1 |
20050281681 | Anderson | Dec 2005 | A1 |
20060045750 | Stiles | Mar 2006 | A1 |
20060045751 | Beckman et al. | Mar 2006 | A1 |
20060078435 | Burza | Apr 2006 | A1 |
20060078444 | Sadler | Apr 2006 | A1 |
20060090255 | Cohen | May 2006 | A1 |
20060093492 | Janesky | May 2006 | A1 |
20060106503 | Lamb et al. | May 2006 | A1 |
20060127227 | Mehlhorn | Jun 2006 | A1 |
20060138033 | Hoal et al. | Jun 2006 | A1 |
20060146462 | McMillian et al. | Jul 2006 | A1 |
20060162787 | Yeh | Jul 2006 | A1 |
20060169322 | Torkelson | Aug 2006 | A1 |
20060201555 | Hamza | Sep 2006 | A1 |
20060204367 | Meza | Sep 2006 | A1 |
20060226997 | Kochan, Jr. | Oct 2006 | A1 |
20060235573 | Guion | Oct 2006 | A1 |
20060269426 | Llewellyn | Nov 2006 | A1 |
20070001635 | Ho | Jan 2007 | A1 |
20070041845 | Freudenberger | Feb 2007 | A1 |
20070061051 | Maddox | Mar 2007 | A1 |
20070080660 | Fagan et al. | Apr 2007 | A1 |
20070113647 | Mehlhorn | May 2007 | A1 |
20070114162 | Stiles et al. | May 2007 | A1 |
20070124321 | Szydlo | May 2007 | A1 |
20070154319 | Stiles | Jul 2007 | A1 |
20070154320 | Stiles | Jul 2007 | A1 |
20070154321 | Stiles | Jul 2007 | A1 |
20070154322 | Stiles | Jul 2007 | A1 |
20070154323 | Stiles | Jul 2007 | A1 |
20070160480 | Ruffo | Jul 2007 | A1 |
20070163929 | Stiles | Jul 2007 | A1 |
20070177985 | Walls et al. | Aug 2007 | A1 |
20070183902 | Stiles | Aug 2007 | A1 |
20070187185 | Abraham et al. | Aug 2007 | A1 |
20070188129 | Kochan, Jr. | Aug 2007 | A1 |
20070212210 | Kernan et al. | Sep 2007 | A1 |
20070212229 | Stavale et al. | Sep 2007 | A1 |
20070212230 | Stavale et al. | Sep 2007 | A1 |
20070219652 | McMillan | Sep 2007 | A1 |
20070258827 | Gierke | Nov 2007 | A1 |
20080003114 | Levin et al. | Jan 2008 | A1 |
20080031751 | Littwin et al. | Feb 2008 | A1 |
20080031752 | Littwin et al. | Feb 2008 | A1 |
20080039977 | Clark et al. | Feb 2008 | A1 |
20080041839 | Tran | Feb 2008 | A1 |
20080044293 | Hanke et al. | Feb 2008 | A1 |
20080063535 | Koehl | Mar 2008 | A1 |
20080095638 | Branecky | Apr 2008 | A1 |
20080095639 | Bartos | Apr 2008 | A1 |
20080131286 | Koehl | Jun 2008 | A1 |
20080131289 | Koehl | Jun 2008 | A1 |
20080131291 | Koehl | Jun 2008 | A1 |
20080131294 | Koehl | Jun 2008 | A1 |
20080131295 | Koehl | Jun 2008 | A1 |
20080131296 | Koehl | Jun 2008 | A1 |
20080140353 | Koehl | Jun 2008 | A1 |
20080152508 | Meza | Jun 2008 | A1 |
20080168599 | Caudill | Jul 2008 | A1 |
20080181785 | Koehl | Jul 2008 | A1 |
20080181786 | Meza | Jul 2008 | A1 |
20080181787 | Koehl | Jul 2008 | A1 |
20080181788 | Meza | Jul 2008 | A1 |
20080181789 | Koehl | Jul 2008 | A1 |
20080181790 | Meza | Jul 2008 | A1 |
20080189885 | Erlich | Aug 2008 | A1 |
20080229819 | Mayleben et al. | Sep 2008 | A1 |
20080260540 | Koehl | Oct 2008 | A1 |
20080288115 | Rusnak et al. | Nov 2008 | A1 |
20080298978 | Schulman et al. | Dec 2008 | A1 |
20090014044 | Hartman | Jan 2009 | A1 |
20090038696 | Levin et al. | Feb 2009 | A1 |
20090052281 | Nybo | Feb 2009 | A1 |
20090104044 | Koehl | Apr 2009 | A1 |
20090143917 | Uy et al. | Jun 2009 | A1 |
20090204237 | Sustaeta et al. | Aug 2009 | A1 |
20090204267 | Sustaeta et al. | Aug 2009 | A1 |
20090208345 | Moore et al. | Aug 2009 | A1 |
20090210081 | Sustaeta et al. | Aug 2009 | A1 |
20090269217 | Vijayakumar | Oct 2009 | A1 |
20090290991 | Mehlhorn et al. | Nov 2009 | A1 |
20100079096 | Braun et al. | Apr 2010 | A1 |
20100154534 | Hampton | Jun 2010 | A1 |
20100166570 | Hampton | Jul 2010 | A1 |
20100197364 | Lee | Aug 2010 | A1 |
20100303654 | Petersen et al. | Dec 2010 | A1 |
20100306001 | Discenzo | Dec 2010 | A1 |
20100312398 | Kidd et al. | Dec 2010 | A1 |
20110036164 | Burdi | Feb 2011 | A1 |
20110044823 | Stiles | Feb 2011 | A1 |
20110052416 | Stiles | Mar 2011 | A1 |
20110061415 | Ward | Mar 2011 | A1 |
20110066256 | Sesay et al. | Mar 2011 | A1 |
20110077875 | Tran | Mar 2011 | A1 |
20110084650 | Kaiser et al. | Apr 2011 | A1 |
20110110794 | Mayleben et al. | May 2011 | A1 |
20110280744 | Ortiz et al. | Nov 2011 | A1 |
20110311370 | Sloss et al. | Dec 2011 | A1 |
20120013285 | Kasunich et al. | Jan 2012 | A1 |
20120020810 | Stiles, Jr. et al. | Jan 2012 | A1 |
20120100010 | Stiles et al. | Apr 2012 | A1 |
20130106217 | Drye | May 2013 | A1 |
20130106321 | Drye et al. | May 2013 | A1 |
20130106322 | Drye | May 2013 | A1 |
20140018961 | Guzelgunler | Jan 2014 | A1 |
20140372164 | Egan et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
3940997 | Feb 1998 | AU |
2005204246 | Mar 2006 | AU |
2007332716 | Jun 2008 | AU |
2007332769 | Jun 2008 | AU |
2548437 | Jun 2005 | CA |
2731482 | Jun 2005 | CA |
2517040 | Feb 2006 | CA |
2528580 | May 2007 | CA |
2672410 | Jun 2008 | CA |
2672459 | Jun 2008 | CA |
1821574 | Aug 2006 | CN |
101165352 | Apr 2008 | CN |
3023463 | Feb 1981 | DE |
2946049 | May 1981 | DE |
29612980 | Oct 1996 | DE |
19736079 | Aug 1997 | DE |
19645129 | May 1998 | DE |
29724347 | Nov 2000 | DE |
10231773 | Feb 2004 | DE |
19938490 | Apr 2005 | DE |
9804835 | Feb 1998 | EA |
0150068 | Jul 1985 | EP |
0226858 | Jul 1987 | EP |
0246769 | Nov 1987 | EP |
0306814 | Mar 1989 | EP |
0314249 | Mar 1989 | EP |
0709575 | May 1996 | EP |
0735273 | Oct 1996 | EP |
0833436 | Apr 1998 | EP |
0831188 | Feb 1999 | EP |
0978657 | Feb 2000 | EP |
1112680 | Apr 2001 | EP |
1134421 | Sep 2001 | EP |
0916026 | May 2002 | EP |
1315929 | Jun 2003 | EP |
1429034 | Jun 2004 | EP |
1585205 | Oct 2005 | EP |
1630422 | Mar 2006 | EP |
1698815 | Sep 2006 | EP |
1790858 | May 2007 | EP |
1995462 | Nov 2008 | EP |
2102503 | Sep 2009 | EP |
2122171 | Nov 2009 | EP |
2122172 | Nov 2009 | EP |
2273125 | Jan 2011 | EP |
2529965 | Jan 1984 | FR |
2703409 | Oct 1994 | FR |
2124304 | Feb 1984 | GB |
55072678 | May 1980 | JP |
5010270 | Jan 1993 | JP |
2009006258 | Dec 2009 | MX |
0042339 | Jul 2000 | WO |
0127508 | Apr 2001 | WO |
0147099 | Jun 2001 | WO |
02018826 | Mar 2002 | WO |
03025442 | Mar 2003 | WO |
03099705 | Dec 2003 | WO |
2004006416 | Jan 2004 | WO |
2004073772 | Sep 2004 | WO |
2004088694 | Oct 2004 | WO |
05011473 | Feb 2005 | WO |
2005011473 | Feb 2005 | WO |
2005055694 | Jun 2005 | WO |
2005111473 | Nov 2005 | WO |
2006069568 | Jul 2006 | WO |
2008073329 | Jun 2008 | WO |
2008073330 | Jun 2008 | WO |
2008073386 | Jun 2008 | WO |
2008073413 | Jun 2008 | WO |
2008073418 | Jun 2008 | WO |
2008073433 | Jun 2008 | WO |
2008073436 | Jun 2008 | WO |
2011100067 | Aug 2011 | WO |
2014152926 | Sep 2014 | WO |
200506869 | May 2006 | ZA |
200509691 | Nov 2006 | ZA |
200904747 | Jul 2010 | ZA |
200904849 | Jul 2010 | ZA |
200904850 | Jul 2010 | ZA |
Entry |
---|
9PX-42—Hayward Pool Systems; “Hayward EcoStar & EcoStar SVRS Variable Speed Pumps Brochure;” Civil Action 5:11-cv-00459D; 2010. |
205-24—Exh23—Piaintiff's Preliminary Disclosure of Asserted Claims and Preliminary Infringement Contentions; cited in Civil Action 5:11-cv-00459; Feb. 21, 2012. |
PX-34—Pentair; “IntelliTouch Pool & Spa Control System User's Guide”; pp. 1-129; 2011; cited in Civil Action 5:11-cv-00459; 2011. |
PX-138—Deposition of Dr. Douglas C. Hopkins; pp. 1-391; 2011; taken in Civil Action 10-cv-1662. |
PX-141—Danfoss; “Whitepaper Automatic Energy Optimization;” pp. 1-4; 2011; cited in Civil Action 5:11-cv-00459. |
9PX10—Pentair; “IntelliPro VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-6; cited in Civil Action 5:11-cv-00459D. |
9PX11—Pentair; “IntelliTouch Pool & Spa Control Control Systems;” 2011; pp. 1-5; cited in Civil Action 5:11-cv-004590. |
Robert S. Carrow; “Electrician's Technical Reference-Variable Frequency Drives;” 2001; pp. 1-194. |
Baldor; “Balder Motors and Drives Series 14 Vector Drive Control Operating & Technical Manual;” Mar. 22, 1992; pp. 1-92. |
Commander; “Commander SE Advanced User Guide;” Nov. 2002; pp. 1-118. |
Baldor; “Baldor Series 10 Inverter Control: Installation and Operating Manual”; Feb. 2000; pp. 1-74. |
Dinverter; “Dinverter 28 User Guide;” Nov. 1998; pp. 1-94. |
Pentair Pool Products, “IntelliFlo 4×160 a Breakthrough Energy-Efficiency and Service Life;” pp. 1-4; Nov, 2005; www.pentairpool.com. |
Pentair Water and Spa, Inc. “The Pool Pro's guide to Breakthrough Efficiency, Convenience & Profitability,” pp. 1-8, Mar. 2006; www.pentairpool.com. |
Danfoss; “VLT8000 Aqua Instruction Manual;” Apr. 16, 2004; pp. 1-71. |
“Product Focus—New AC Drive Series Target Water, Wastewater Applications;” WaterWorld Articles; Jul. 2002; pp. 1-2. |
Pentair; “Pentair RS-485 Pool Controller Adapter” Published Advertisement; Mar. 22, 2002; pp. 1-2. |
Compool; “Compool CP3800 Pool-Spa Control System Installation and Operating Instructions;” Nov. 7, 1997; pp. 1-45. |
Hayward; “Hayward Pro-Series High-Rate Sand Filter Owner's Guide,” 2002; pp. 1-4. |
Danfoss; “Danfoss VLT 6000 Series Adjustable Frequency Drive Installation, Operation and Maintenance Manual;” Mar. 2000; pp. 1-118. |
Brochure entitled “Constant Pressure Water for Private Well Systems,” for Myers Pentair Pump Group, Jun. 28, 2000. |
Brochure for AMTROL, Inc. entitled “AMTROL unearths the facts about variable speed pumps and constant pressure calves,” Mar. 2002. |
Goulds Pumps “Balanced Flow Systems” Installation Record, dated at least as early as Dec. 14, 2012. |
Texas Instruments, Digital Signal Processing Solution for AC Induction Motor, Application Note, BPRA043 (1996). |
Texas Instruments, Zhenyu Yu and David Figoli, DSP Digital Control System Applications—AC Induction Motor Control Using Constant V/Hz Principle and Space Vector PWM Technique with TMS320C240, Application Report No. SPRA284A (Apr. 1998). |
Texas Instruments, TMS320F/C240 DSP Controllers Reference Guide Peripheral Library and Specific Devices, Literature No. SPRU 161D (Nov. 2002). |
Texas Instruments, MSP430x33x—Mixed Signal Microcontrollers, SLAS 163 (Feb. 1998). |
Microchip Technology, Inc., PICMicro Mid-Range MCU Family Reference Manual (Dec. 1997). |
7—Motion for Preliminary Injunction by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459D, filed Sep. 30, 2011. |
540X48—Hopkins; “Partitioning Oigitally . . . Applications to Ballasts;” pp. 1-6; cited in Civil Action 5:11-cv-00459D, Mar. 2002. |
Load Controls Incorporated, product web pages including Affidavit of Christopher Butler of Internet Archive attesting to the authenticity of the web pages, dated Apr. 17, 2013, 19 pages. |
Cliff Wyatt, “Monitoring Pumps,” World Pumps, vol. 2004, Issue 459, Dec. 2004, pp. 17-21. |
Wen Technology, Inc., Unipower® HPL110 Digital Power Monitor Installation and Operation, copyright 1999, pp. 1-20, Raleigh, North Carolina. |
Wen Technology, Inc., Unipower® HPL110, HPL420 Programming Suggestions for Centrifugal Pumps, copyright 1999, 4 pages, Raleigh, North Carolina. |
Danfoss, VLT® AQUA Drive, “The ultimate solution for Water, Wastewater, & Irrigation”, May 2007, pp. 1-16. |
Danfoss, SALT Drive Systems, “Increase oil & gas production, Minimize energy consumption”, copyright 2011, pp. 1-16. |
Schlumberger Limited, Oilfield Glossary, website Search Results for “pump-off”, copyright 2014, 1 page. |
45—Plaintiffs' Reply to Defendants' Answer to Complaint & Counterclaim for Civil Action 5:11-cv-00459D, filed Nov. 2, 2011. |
50—Amended Answer to Complaint & Counterclaim by Defendants for Civil Action 5:11-cv-00459D, filed Nov. 23, 2011. |
54DX32—Hopkins; “High-Temperature, High-Density . . . Embedded Operation;” pp. 1-8; cited in Civil Action 5:11-cv-00459D, Mar. 2006. |
Pentair; “Pentair IntelliTouch Operating Manual;” May 22, 2003; pp. 1-60. |
USPTO Patent Board Decision—Examiner Reversed; Appeal No. 2015-007909 re: U.S. Pat. No. 7,686,58762; dated Apr. 1, 2016. |
USPTO Patent Board Decision—Examiner Affirmed in Part; Appeal No. 2016-002780 re: U.S. Pat. No. 7,854,597B2; dated Aug. 30, 2016. |
USPTO Patent Board Decision—Decision on Reconsideration, Denied; Appeal No. 2015-007909 re: U.S. Pat. No. 7,686,587B2; dated Aug. 30, 2016. |
Board Decision for Appeal 2016-002726, Reexamination Control 95/002,005, U.S. Pat. No. 7,857,600B2 dated Jul. 1, 2016. |
U.S. Court of Appeals for the Federal Circuit, Notice of Entry of Judgment, accompanied by Opinion, in Case No. 2017-1021, Document 57-1, filed and entered Feb. 7, 2018, pp. 1-16. |
U.S. Court of Appeals for the Federal Circuit, Notice of Entry of Judgment, accompanied by Opinion, in Case No. 2017-1124, Document 54-1, filed and entered Feb. 26, 2018, pp. 1-10. |
U.S. Patent Trial and Appeal Board's Rule 36 Judgment, without opinion, in Case No. 2016-2598, dated Aug. 15, 2017, pp. 1-2. |
51—Response by Defendants in Opposition to Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011. |
Amended Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459, adding U.S. Pat. No. 8,043,070, filed Jan. 17, 2012. |
53—Declaration of Douglas C. Hopkins & Exhibits re Response Opposing Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Dec. 2, 2011. |
89—Reply to Response to Motion for Preliminary Injunction Filed by Danfoss Drives A/S & Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-004590; Jan. 3, 2012. |
105—Declaration re Memorandum in Opposition, Declaration of Lars Hoffmann Berthelsen for Civil Action 5:11-cv-00459D; Jan. 11, 2012. |
112—Amended Complaint Against All Defendants, with Exhibits for Civil Action 5:11-cv-00459D; Jan. 17, 2012. |
119—0rder Denying Motion for Preliminary Injunction for Civil Action 5:11-cv-00459D; Jan. 23, 2012. |
123—Answer to Amended Complaint, Counterclaim Against Danfoss Drives A/S, Pentair Water Pool & Spa, Inc. for Civil Action 5:11-cv-00459D; Jan. 27, 2012. |
152—0rder Denying Motion for Reconsideration for Civil Action 5:11-cv-00459D; Apr. 4, 2012. |
168—Amended Motion to Stay Action Pending Reexamination of Asserted Patents by Defendants for Civil Action 5:11-cv-004590; Jun. 13, 2012. |
174—Notice and Attachments re Joint Claim Construction Statement for Civil Action 5:11-cv-00459D; Jun. 5, 2012. |
186—0rder Setting Hearings—Notice of Markman Hearing Set for Oct. 17, 2012 for Civil Action 5:11-cv-00459D; Jul. 12, 2012. |
204—Response by Plaintiffs Opposing Amended Motion to Stay Action Pending Reexamination of Asserted Patents for Civil Action 5:11-cv-004590; Jul. 2012. |
210—0rder Granting Joint Motion for Leave to Enlarge p. Limit for Civil Action 5:11-cv-004590; Jul. 2012. |
218—Notice re Plaintiffs re Order on Motion for Leave to File Excess pp. re Amended Joint Claim Construction Statement for Civil Action 5:11-cv-004590; Aug. 12012. |
54DX16—Hayward EcoStar Technical Guide (Version2); pp. 1-51; cited in Civil Action 5:11-cv-004590, copyright 2011. |
54DX17—Hayward ProLogic Automation & Chlorination Operation Manual (Rev. F); pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-004590; Dec. 2, 2011. |
54DX18—STMicroelectronics; “AN1946—Sensorless BLOC Motor Control & BEMF Sampling Methods with ST7MC;” 2007; pp. 1-35; Civil Action 5:11-cv-004590. |
54DX19—STMicroelectronics; “AN1276 Bloc Motor Start Routine for ST72141 Microcontroller;” pp. 1-18; cited in Civil Action 5:11-cv-004590, copyright 2000. |
54DX21—Danfoss; “VLT 8000 Aqua Instruction Manual;” Apr. 2004; 1-210; Cited in Civil Action 5:11-cv-004590. |
54DX22—Danfoss; “VLT 8000 Aqua Instruction Manual;” pp. 1-35; cited in Civil Action 5:11-cv-004590; Dec. 2, 2011. |
54DX23—Commander; “Commander Se Advanced User Guide;” Nov. 2002; pp. 1-190; cited in Civil Action 5:11-cv-004590. |
540X30—Sabbagh et al.; “A Model for OptimaL.Control of Pumping Stations in Irrigation Systems;” Jul. 1988; NL pp. 119-133; Civil Action 5:11-cv-004590. |
540X31—0anfoss; “VLT 5000 FLUX Aqua OeviceNet Instruction Manual;” Apr. 28, 2003; pp. 1-39; cited in Civil Action 5:11-cv-004590. |
540X32—0anfoss; “VLT 5000 FLUX Aqua Profibus Operating Instructions;” May 22, 2003; 1-64; cited in Civil Action 5:11-cv-004590. |
540X33—Pentair; “IntelliTouch Owner's Manual Set-Up & Programming;” May 22, 2003; Sanford, NC; pp. 1-61; cited in Civil Action 5:11-cv-004590. |
540X34—Pentair; “Compool3800 Pool-Spa Control System Installation & Operating Instructions;” Nov. 7, 1997; pp. 1-45; cited in Civil Action 5:11-cv-004590. |
540X35—Pentair Advertisement in “Pool & Spa News;” Mar. 22, 2002; pp. 1-3; cited in Civil Action 5:11-cv-004590. |
5540X36—Hayward; “Pro-Series High-Rate Sand Filter Owner's Guide;” 2002; Elizabeth, NJ; pp. 1-5; cited in Civil Action 5:11-cv-00459D. |
540X37—Danfoss; “VLT 8000 Aqua Fact Sheet;” Jan. 2002; pp. 1-3; cited in Civil Action 5:11-cv-004590. |
540X38—0anfoss; “VLT 6000 Series Installation, Operation & Maintenance Manual;” Mar. 2000; pp. 1-118; cited in Civil Action 5:11-cv-004590. |
540X45—Hopkins; “Synthesis of New Class of Converters that Utilize Energy Recirculation;” pp. 1-7; cited in Civil Action 5:11-cv-004590; 1994. |
540X46—Hopkins; “High-Temperature, High-Oensity . . . Embedded Operation;” pp. 1-8; cited in Civil Action 5:11-cv-004590; Mar. 2006. |
540X47—Hopkins; “Optimally Selecting Packaging Technologies . . . Cost & Performance;” pp. 1-9; cited in Civil Action 5:11-cv-004590; Jun. 1999. |
9PX5—Pentair; Selected Website Pages.; pp. 1-29; cited in Civil Action 5:11-cv-004590; Sep. 2011. |
9PX6—Pentair; “IntelliFio Variable Speed Pump” Brochure; 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX7—Pentair; “IntelliFio Vf Intelligent Variable Flow Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX8—Pentair; “IntelliFio VS+SVRS Intelligent Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX9—Sta-Rite; “IntelliPro Variable Speed Pump;” 2011; pp. 1-9; cited in Civil Action 5:11-cv-004590. |
9PX14—Pentair; “IntelliFio Installation and User's Guide;” pp. 1-53; Jul. 26, 2011; Sanford, NC; Cited in Civil Action 5:11-cv-004590. |
9PX16—Hayward Pool Products; “EcoStar Owner's Manual (Rev. B);” pp. 1-32; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; 2010. |
9PX17—Hayward Pool Products; “EcoStar & EcoStar Svrs Brochure;” pp. 1-7; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 30, 2011. |
9PX19—Hayward Pool Products;“Hayward Energy Solutions Brochure;” pp. 1-3; www.haywardnet.com; cited in Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX20—Hayward Pool Products; “ProLogic Installation Manual (Rev. G);” pp. 1-25; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX21—Hayward Pool Products; “ProLogic Operation Manual (Rev. F);” pp. 1-27; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX22-Hayward Pool Products; “Wireless & Wired Remote Controls Brochure;” pp. 1-5; 2010; Elizabeth, NJ; cited in Civil Action 5:11-cv-00459D. |
9PX23—Hayward Pool Products; Selected Pages from Hayward's Website:/www.hayward-pool.com; pp. 1-27; cited in Civil Action 5:11-cv-004590; Sep. 2011. |
9PX28—Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar Pumps;” p. 1; cited in Civil Action 5:11-cv-00459D; Sep. 2011. |
9PX29—-Hayward Pool Products; “Selected Page from Hayward's Website Relating to EcoStar SVRS Pumps;” cited in Civil Action 5:11-cv-00459; Sep. 2011. |
9PX30—Hayward Pool Systems; “Selected Pages from Hayward's Website Relating to ProLogic Controllers;” pp. 1-5; Civil Action 5:11-cv-00459D; Sep. 2011. |
Flotec Owner's Manual, dated 2004. 44 pages. |
Glentronics Home Page, dated 2007. 2 pages. |
Goulds Pumps SPBB Battery Back-Up Pump Brochure, dated 2008. 2 pages. |
Goulds Pumps SPBB/SPBB2 Battery Backup Sump Pumps, dated 2007. |
ITT Red Jacket Water Products Installation, Operation and Parts Manual, dated 2009. 8 pages. |
Liberty Pumps PC-Series Brochure, dated 2010. 2 pages. |
“Lift Station Level Control” by Joe Evans PhD, www.pumped101.com, dated Sep. 2007. 5 pages. |
The Basement Watchdog A/C-D/C Battery Backup Sump Pump System Instruction Manual and Safety Warnings, dated 2010. 20 pages. |
The Basement Watchdog Computer Controlled A/C-D/C Sump Pump System Instruction Manual, dated 2010. 17 pages. |
Pentair Water Ace Pump Catalog, dated 2007, 44 pages. |
ITT Red Jacket Water Products RJBB/RJBB2 Battery Backup Sump Pumps; May 2007, 2 pages. |
U.S. Appl. No. 12/869,570 Appeal Decision dated May 24, 2016. |
Allen-Bradley; “1336 Plus II Adjustable Frequency AC Drive with Sensorless Vector User Manual;” Sep. 2005; pp. 1-212. |
USPTO Patent Trial and Appeal Board, Paper 43—Final Written Decision, Case IPR2013-00287, U.S. Pat. No. 7,704,051 B2, Nov. 19, 2014, 28 pages. |
Danfoss, VLT 8000 AQUA Operating Instructions, coded MG.80.A2.02 in the footer, 181 pages, dated at least as early as Dec. 30, 2014. |
Per Brath—Danfoss Drives A/S, Towards Autonomous Control of HVAC Systems, thesis with translation of Introduction, Sep. 1999, 216 pages. |
Karl Johan Åström and Björn Wittenmark—Lund Institute of Technology, Adaptive Control—Second Edition, book, Copyright 1995, 589 pages, Addison-Wesley Publishing Company, United States and Canada. |
Bimal K. Bose—The University of Tennessee, Knoxville, Modern Power Electronics and AC Drives, book, Copyright 2002, 728 pages, Prentice-Hall, Inc., Upper Saddle River, New Jersey. |
Waterworld, New AC Drive Series Targets Water, Wastewater Applications, magazine, Jul. 2002, 5 pages, vol. 18, Issue 7. |
Texas Instruments, TMS320F/C240 DSP Controllers Peripheral Library and Specific Devices, Reference Guide, Nov. 2002, 485 pages, printed in U.S.A. |
Microchip Technology Inc., PICmicro® Advanced Analog Microcontrollers for 12-Bit ADC on 8-Bit MCUs, Convert to Microchip, brochure, Dec. 2000, 6 pages, Chandler, Arizona. |
W.K. Ho, S.K. Panda, K.W. Lim, F.S. Huang—Department of Electrical Engineering, National University of Singapore, Gain-scheduling control of the Switched Reluctance Motor, Control Engineering Practice 6, copyright 1998, pp. 181-189, Elsevier Science Ltd. |
Jan Eric Thorsen—Danfoss, Technical Paper—Dynamic simulation of DH House Stations, presented by 7. Dresdner Fernmwärme-Kolloquium Sep. 2002, 10 pages, published in Euro Heat & Power Jun. 2003. |
Texas Instruments, Electronic Copy of TMS320F/C240 DSP Controllers Reference Guide, Peripheral Library and Specific Devices, Jun. 1999, 474 pages. |
Rajwardhan Patil, et al., A Multi-Disciplinary Mechatronics Course with Assessment—Integrating Theory and Application through Laboratory Activities, International Journal of Engineering Education, copyright 2012, pp. 1141-1149, vol. 28, No. 5, Tempus Publications, Great Britain. |
James Shirley, et al., A mechatronics and material handling systems laboratory: experiments and case studies, International Journal of Electrical Engineering Education 48/1, pp. 92-103, dated at least as early as May 22, 2014. |
Board Decision for Appeal 2015-007909, Reexamination Control 95/002,008, U.S. Pat. No. 7,686,587B2 dated Apr. 1, 2016. |
Bibliographic Data Sheet—U.S. Appl. No. 10/730,747 Applicant: Robert M. Koehl Reasons for Inclusion: Printed publication US 2005/0123408 A1 for U.S. Appl. No. 10/730,747, dated Sep. 7, 2007. |
Shabnam Moghanrabi; “Better, Stronger, Faster;” Pool & Spa News, Sep. 3, 2004; pp. 1-5; www/poolspanews.com. |
Grundfos Pumps Corporation; “The New Standard in Submersible Pumps;” Brochure; pp. 1-8; Jun. 1999; Fresno, CA USA. |
Grundfos Pumps Corporation; “Grundfos SQ/SQE Data Book;” pp. 1-39; Jun. 1999; Fresno, CA USA. |
Goulds Pumps; “Balanced Flow System Brochure;” pp. 1-4; 2001. |
Goulds Pumps; “Balanced Flow Submersible System Installation, Operation & Trouble-Shooting Manual;” pp. 1-9; 2000; USA. |
Goulds Pumps; “Balanced Flow Submersible System Informational Seminar;” pp. 1-22; dated at least as early as Dec. 30, 2014. |
Goulds Pumps; “Balanced Flow System Variable Speed Submersible Pump” Specification Sheet; pp. 1-2; Jan. 2000; USA. |
Goulds Pumps; Advertisement from “Pumps & Systems Magazine;” entitled “Cost Effective Pump Protection+ Energy Savings,” Jan. 2002; Seneca Falls, NY. |
Goulds Pumps; “Hydro-Pro Water System Tank Installation, Operation & Maintenance Instructions;” pp. 1-30; Mar. 31, 2001; Seneca Falls, NY USA. |
Goulds Pumps; “Pumpsmart Control Solutions” Advertisement from Industrial Equipment News; Aug. 2002; New York, NY USA. |
Goulds Pumps; “Model BFSS List Price Sheet;” Feb. 5, 2001. |
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump System” Brochure; pp. 1-4; Jan 2001; USA. |
Goulds Pumps; “Balanced Flow System Model BFSS Variable Speed Submersible Pump” Brochure; pp. 1-3; Jan. 2000; USA. |
Goulds Pumps; “Balanced Flow System . . . The Future of Constant Pressure Has Arrived;” Advertisement, dated at least as early as Jul. 3, 2013. |
AMTROL Inc.; “AMTROL Unearths the Facts About Variable Speed Pumps and Constant Pressure Valves;” pp. 1-5; Mar. 2002; West Warwick, RI USA. |
Franklin Electric; “CP Water-Subdrive 75 Constant Pressure Controller” Product Data Sheet; May 2001; Bluffton, IN USA. |
Franklin-electric.com Franklin Electric; “Franklin Aid, Subdrive 75: You Made It Better;” vol. 20, No. 1; pp. 1-2; Jan/Feb 2002; www.franklin-electric.com. |
Grundfos; “SQ/SQE—A New Standard in Submersible Pumps;” Brochure; pp. 1-14; Denmark, dated at least as early as Jul. 3, 2013. |
Grundfos; “JetPaq—The Complete Pumping System;” Brochure; pp. 1-4; Clovis, CA USA, dated at least as early as Jul. 3, 2013. |
Email Regarding Grundfos' Price lncreases/SQ/SQE Curves; pp. 1-7; Dec. 19, 2001. |
F.E. Myers; “Featured Product: F.E. Myers Introducts Revolutionary Constant Pressure Water System;” pp. 1-8; Jun. 28, 2000; Ashland, OH USA. |
“Water Pressure Problems” Published Article; The American Well Owner; No. 2, Jul. 2000. |
Bjarke Soerensen; “Have You Chatted With Your Pump Today?” Article Reprinted with Permission of Grundfos Pump University; pp. 1-2; USA, dated at least as early as Dec. 30, 2014. |
“Understanding Constant Pressure Control;” pp. 1-3; Nov. 1, 1999. |
“Constant Pressure is the Name of the Game;” Published Article from National Driller; Mar. 2001. |
SJE-Rhombus; “Variable Frequency Drives for Constant Pressure Control;” Aug. 2008; pp. 1-4; Detroit Lakes, MN USA. |
SJE-Rhombus; “Constant Pressure Controller for Submersible Well Pumps;” Jan. 2009; pp. 1-4; Detroit Lakes, MN USA. |
SJE-Rhombus; “SubCon Variable Frequency Drive;” Dec. 2008; pp. 1-2; Detroit Lakes, MN USA. |
Grundfos; “SmartFio SQE Constant Pressure System;” Mar. 2002; pp. 1-4; Olathe, KS USA. |
Grundfos; “Grundfos SmartFio SQE Constant Pressure System;” Mar. 2003; pp. 1-2; USA. |
Grundfos; “Uncomplicated Electronics . . . Advanced Design;” pp. 1-10; dated at least as early as Dec. 30, 2014. |
Grundfos; “CU301 Installation & Operation Manual;” Apr. 2009; pp. 1-2; www.grundfos.com. |
Grundfos; “CU301 Installation & Operating Instructions;” Sep. 2005; pp. 1-30; Olathe, KS USA. |
ITT Corporation; “Goulds Pumps Balanced Flow Submersible Pump Controller;” Jul. 2007; pp. 1-12. |
ITT Corporation; “Goulds Pumps Balanced Flow;” Jul. 2006; pp. 1-8. |
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 2 HP Submersible Pumps;” Jun. 2005; pp. 1-4 USA. |
ITT Corporation; “Goulds Pumps Balanced Flow Constant Pressure Controller for 3 HP Submersible Pumps;” Jun. 2005; pp. 1-4; USA. |
Franklin Electric; Constant Pressure in Just the Right Size;' Aug. 2006; pp. 1-4; Bluffton, IN USA. |
Franklin Electric; “Franklin Application Installation Data;” vol. 21, No. 5, Sep./Oct. 2003; pp. 1-2; www.franklin-electric.com. |
Franklin Electric; “Monodrive MonodriveXT Single-Phase Constant Pressure;” Sep. 2008; pp. 1-2; Bluffton, IN USA. |
Docket Report for Case No. 5:11-cv-00459-D; Nov. 2012. |
1—Complaint Filed by Pentair Water Pool & Spa, Inc. and Danfoss Drives A/S with respect to Civil Action No. 5:11-cv-00459-D; Aug. 31, 2011. |
7—Motion for Preliminary Injunction by Danfoss Drives AIS & Pentair Water Pool & Spa, Inc. with respect to Civil Action No. 5:11-cv-00459-D; Sep. 30, 2011. |
22—Memorandum in Support of Motion for Preliminary Injunction by Plaintiffs with respect to Civil Action 5:11-cv-00459-D; Sep. 2, 2011. |
23—Declaration of E. Randolph Collins, Jr. in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011. |
24—Declaration of Zack Picard in Support of Motion for Preliminary Injunction with respect to Civil Action 5:11-cv-00459-D; Sep. 30, 2011. |
32—Answer to Complaint with Jury Demand & Counterclaim Against Plaintiffs by Hayward Pool Products & Hayward Industries for Civil Action 5:11-cv-004590; Oct. 12, 2011. |
USPTO Patent Trial and Appeal Board, Paper 47—Final Written Decision, Case IPR2013-00285, U.S. Pat. No. 8,019,479 B2, Nov. 19, 2014, 39 pages. |
Pentair Pool Products, WhisperFlo Pump Owner's Manual, Jun. 5, 2001, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20180216621 A1 | Aug 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14465659 | Aug 2014 | US |
Child | 15939715 | US | |
Parent | 11609029 | Dec 2006 | US |
Child | 12749262 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12749262 | Mar 2010 | US |
Child | 14465659 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10926513 | Aug 2004 | US |
Child | 11609029 | US | |
Parent | 11286888 | Nov 2005 | US |
Child | 10926513 | US |