This U.S. patent application claims priority to and the benefit of Chinese patent application number 201820195113.5, filed Feb. 5, 2018, the entire disclosure of which is incorporated herein by reference.
The present disclosure relates to a pump, and more particularly to a pump with a waterproof structure that includes at least one blocking member.
This section provides background information related to the present disclosure which is not necessarily prior art.
In order to prevent water in a pump body from leaking into the motor, traditional pumps generally include a shaft seal placed around a pump shaft between the pump housing and the motor. However, after a certain amount of use, the shaft seal may become damaged, which may cause fluid in the pump body to leak and damage interrelated parts, such as the pump motor. Attempts to avoid this leakage have included incorporating a lip seal. A lip seal may form a relatively impervious cavity with the pump shaft to constrain outflow of water and thus prevent unwanted leakage into interrelated parts. While these traditional seals offer certain improvements in the art, they are also known to suffer some drawbacks. For example, when the pump is in operation, an impeller is driven by a pump shaft that is rotated at a high speed relative to the lip seal causing wear. More specifically, the lip seal directly contacts with the pump shaft, so when the pump is in operation, the lip seal and the pump shaft develop a certain amount of friction therebetween, which can easily cause wear of the lip seal and lead to seal failure between the lip seal and the pump shaft. As a result, water leaking from the shaft seal can flow through the seal and into the motor, potentially damaging the motor and interrelated parts.
Even more problematic, water in the motor can cause the water to be charged and thus produce a safety hazard for electric shock. Therefore, there is a need in the art to design a pump that can effectively prevent water leaking from the shaft seal from flowing into the motor, thereby enabling longer and safer use of the pump.
This section provides a general summary of the disclosure and should not be interpreted as a complete and comprehensive listing of all of the objects, aspects, features and advantages associated with the present disclosure.
In order to solve at least the problem that a sealing structure is easy to be broken in the prior art, the present disclosure provides improved pumps with a waterproof structure.
According to one exemplary embodiment, the present disclosure provides a pump having a waterproof structure, comprising a motor having a motor housing, a pump body having an impeller and a first drainage chamber and a first drainage outlet, a pump shaft having a first end and a second end located opposite from the first end. The first end is connected to the motor and the second end is connected to the impeller and a shaft seal forms a fluid seal to prevent flow of a fluid through the shaft seal. A first blocking member located between the motor and the shaft seal, wherein the first blocking member is coupled around the pump shaft and creates a seal, and wherein the first blocking member is adapted to block any fluid leaking from the shaft seal and guide the leaking fluid flow through the first drainage chamber and the first drainage outlet.
According to one aspect of the present disclosure, the first blocking member includes an outer periphery that is at least partially received within the first drainage chamber.
According to another aspect, the first blocking member is annular.
According to yet another aspect, the first blocking member is annular.
According yet another aspect of the present disclosure, the first blocking member includes an inclined surface at least partially received within the first drainage chamber to guide the fluid blocked by the first blocking member to the first drainage chamber.
According yet another aspect, the pump further includes a second blocking member located between the motor and the first blocking member, wherein the second blocking member blocks any fluid that leaks by the first blocking member, and wherein the pump body includes a second drainage chamber and a second drainage outlet through which leaked fluid from the second blocking member is diverted.
In accordance to one embodiment of the present disclosure, the motor housing includes an opening portion allowing the pump shaft to pass therethrough and the pump further includes a third blocking member located around the opening portion and adapted to block any fluid leaking through the second blocking member and prevent the leaking fluid from entering the motor housing through the opening portion.
According to another embodiment of the present disclosure, the pump further comprises a reinforcing member connecting the first blocking member and the second blocking member.
According to yet another embodiment of the present disclosure, the first blocking member, the reinforcing member and the second blocking member comprise an integral member.
According to another embodiment of the present disclosure, the third blocking member extends axially to an outer edge and the second blocking member includes a cavity within which at least part of the outer edge of the third blocking member is received.
In accordance with yet another aspect, the third blocking member is attached to the motor housing and has a frustoconical shape extending radially outward to the outer edge, wherein the outer edge of the third blocking member is located adjacent to the second blocking member and within the cavity.
According to another aspect, the second blocking member includes a blocking surface facing the impeller and at least partially located within the second drainage chamber to block any fluid that leaks by the first blocking member.
According to one embodiment of the present disclosure, the pump body further comprises a pump body cover mounted over the first drainage chamber, the pump body cover including a first extension portion that extends toward the pump shaft and around at least a portion of the first blocking member to guide any fluid that leaks by the first blocking member to the first drainage chamber.
According to one embodiment of the present disclosure, the pump body cover includes a second extension portion that extends along an axis of the pump shaft; the second extension portion, the first extension portion, the reinforcing member and the second blocking member forming the second drainage chamber; and the second extension portion forming the second drainage outlet.
According to one embodiment of the present disclosure, the second blocking member includes a guiding surface adapted to guide any fluid leaking from the first drainage chamber through the second drainage chamber and the second drainage outlet.
According to one embodiment of the present disclosure, the second blocking member further includes a blocking surface adapted to block any fluid that is not guided to the second drainage chamber by the guiding surface.
According to another embodiment of the present disclosure, the second blocking member further includes a blocking surface adapted to block any fluid that is not guided to the second drainage chamber by the guiding surface.
According to one embodiment of the present disclosure, the first blocking member, the reinforcing member and the second blocking member form at least one aperture through which the shaft sleeve extends, the pump further including a sealing member that is located between the shaft sleeve and at least one of the first blocking member, the reinforcing member and the second blocking member to prevent fluid from leaking between the shaft sleeve and at least one aperture.
According to one embodiment, the present disclosure provides a pump comprising a motor having a motor housing including an opening portion, a pump body having an impeller, and a pump shaft having a first end and a second end located opposite from the first end. The first end is connected to the motor and the second end is connected to the impeller through the opening portion of the motor housing. A shaft seal forming a fluid seal to prevent a flow of fluid through the shaft seal. A first blocking member located between the motor and shaft seal and coupled around the pump shaft. A second blocking member adjacent to the first blocking member, wherein the first blocking member and the second blocking member are adapted to block any fluid leaking from the shaft seal. A third blocking member located around the opening portion and adapted to block and prevent flow into the opening portion of any fluid that is not blocked by the first blocking member and second blocking member.
According to one embodiment of the present disclosure, the third blocking member extends axially to an outer edge and the second blocking member comprises a cavity in which the outer edge of the third blocking member is at least partially located.
In accordance with yet another embodiment, the motor housing includes an opening portion and the pump shaft extends through the opening portion, the third blocking member is formed around the opening portion and extends radially outward and axially to form a frustoconical shape that terminates at the outer edge, wherein the cavity in the second blocking member includes an opening for insertion of at least part of the third blocking member, and the outer edge of the third blocking member is located in the cavity axially closer to the second blocking member than to the opening of the cavity.
Embodiments of pumps of the present disclosure may comprise a waterproof structure that may run synchronously with a pump shaft, which can effectively prevent fluid leaking from a shaft seal from flowing into a motor, thereby preventing contact between water and electricity and avoiding the risk of electric shock.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and are not intended to limit the scope of the present disclosure. The inventive concepts associated with the present disclosure will be more readily understood by reference to the following description in combination with the accompanying drawings wherein:
In the above drawings, the names of the parts indicated by the reference numerals are as follows:
100—pump, 101—motor, 111—motor housing, 112—opening portion, 201—pump body, 211—impeller, 221—first drainage chamber, 222—first drainage outlet, 231—pump body cover, 232—first extension portion, 233—second extension portion, 234—second drainage outlet, 241—shaft sleeve, 242—internal threads, 301—pump shaft, 311—pump shaft first end, 321—pump shaft second end, 331—external threads, 401—shaft seal, 501—first blocking member, 511—inclined surface, 601—second blocking member, 611—guiding surface, 612—blocking surface, 613—cavity, 614—wall portion, 621—second drainage chamber, 701—third blocking member, 801—reinforcing member, 802—through hole, 803—sealing member.
Example embodiments will now be described more fully with reference to the accompanying drawings. In general, the subject embodiments are directed to a pump with a waterproof structure that prevents fluid from leaking into a motor of the pump. However, the example embodiments are only provided so that this disclosure will be thorough, and will fully convey the scope to those skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies may not be described in detail.
As shown in
The motor 101 includes a motor housing 111 having an opening portion 112 from which the pump shaft 301 extends. The pump body 201 includes a first drainage chamber 221 having a first drainage outlet 222. An impeller 211 extends from the pump shaft 301. The pump shaft 301 includes a pump shaft first end 311 and a pump shaft second end 321 located opposite from the pump shaft first end 311. The pump shaft first end 311 is fixedly connected to the motor 101 and the pump shaft second end 321 is fixedly connected to the impeller 211 such that as the pump shaft 301 is driven by the motor 101, the impeller 211 also rotates. More specifically, the pump shaft 301 is a motor shaft and, in certain embodiments, it may also include an impeller shaft sleeve 241. The shaft seal 401 forms a fluid seal with the pump body 201 to prevent a fluid in the pump body from leaking. If and when the shaft seal 401 begins to fail, the first blocking member 501 blocks any leaking fluid. More specifically, the first blocking member 501 is located between the motor 101 and the shaft seal 401, and is connected to the pump shaft 301 in a sealing and a fixed manner to realize synchronous rotation with the pump shaft 301. As such, the first blocking member 501 and the pump shaft 301 do not move relative to each other, thereby preventing wear associated with a traditional shaft seal which may lead to seal failure. As explained above, continued use and other external factors may cause the shaft seal 401 to be damaged resulting in fluid leakage within the pump body 201. The first blocking member 501 blocks any fluid leaking from the shaft seal 401 and guides the blocked fluid to flow out along the first drainage outlet 222 through the first drainage chamber 221 of the pump body 201, as illustrated at least in
In the event of failure of the shaft seal 401, the seal between the shaft seal 401 and the pump shaft 301 is compromised, allowing fluid in the pump body 201 to leak through the shaft seal 401, as indicated by way of example with the arrows in
In order to more effectively direct any deflected water through the first drainage chamber 221, the outer periphery (outer edge) of the first blocking member 501 may be at least partially located within the first drainage chamber 221, as shown by way of example in
The pump 100 further includes a second blocking member 601. The second blocking member 601 may also be located between the motor 101 and the shaft seal 401, and may be closer to the motor 101 than the first blocking member 501, as shown by way of example in
The pump 100 may further include a third blocking member 701 configured to prevent the fluid directed out, bypassed, or leaked from the second blocking member 601 from flowing into the opening portion 112 of the motor housing 111. In this configuration, the second blocking member 601 and the third blocking member 701 overlap to constitute a third line of leakage defense for the pump 100. Specifically, the third blocking member 701 is formed by extending outward from the opening portion of the motor housing 111, meaning that the third blocking member 701 may be integrally formed or otherwise connected with the motor housing 111. In alternative embodiments, the third blocking member 701 and the motor housing 111 may be separately formed, and then sealingly and fixedly connected by welding, gluing or the like. The third blocking member 701 may be formed as a frustoconical shape and extend radially outward and be completely or partially received in the cavity 613 of the second blocking member 601. As such, any fluid that bypasses the blocking surface 612 of the second blocking member 601 falls against the motor housing 111 it is prevented from entering into the opening portion 112 by the presence of the third blocking member 701, which extending axially towards the second blocking member 601. Accordingly, rather than fall into the opening portion 112 of the motor 101, the water flows away from the motor 101. Alternatively, when the second blocking member 601 does not have the blocking surface 612, any portion of fluid that is directed out of or bypasses the first drainage chamber 221 may contact the motor housing 111 and be deflected by the third blocking member 701 that surrounds the opening portion 112 rather than falling into the opening portion 112 of the motor 101. It is to be understood that the present disclosure is not limited thereto, and the third blocking member 701 may be of any other suitable shape. The third blocking member 701 does not have to be completely received in the cavity 613 as long as there is some axial overlap between an outer axial edge of the third blocking member 701 and an opening of the cavity 613 in order to help prevent fluid flowing into the opening portion 112. For example, a frustoconical opening of the third blocking member 701 may be disposed opposite to an opening of the cavity 613, and an outer periphery (outer edge) of the third blocking member 701 may be received in the cavity 613 to prevent any fluid being directed out by the second blocking member 601 from getting into the opening portion 112 of the motor 101.
In the present embodiments, the impeller 211 may include a shaft sleeve 241 that is formed by extending toward the motor 101 and used to mount the pump shaft 301 to the impeller 211. As such, in certain embodiments the pump shaft 301 may include the shaft sleeve 241. The shaft sleeve 241 has internal threads 242, and the pump shaft 301 has external threads 331 mating with the internal threads 242. In certain embodiments, the shaft sleeve 241 may be detachably fixed to the pump shaft 301 by the internal threads 242 and the external threads 331, so as to run synchronously with the pump shaft 301. The geometric centers of the first blocking member 501, the second blocking member 601 and the reinforcing member 801 have at least one aperture. Alternatively each of these elements have an aperture for accepting the pump shaft 301, or three apertures total, that collectively form a through hole 802. The first blocking member 501, the second blocking member 601, and the reinforcing member 801 may be sleeved on the outer surface of the shaft sleeve 241 through the through hole 802 to all rotate with the pump shaft 301. A sealing member 803 may be disposed between the reinforcing member 801 and the shaft sleeve 241 to form a fluid seal with the shaft sleeve 241. In an alternative embodiment, a sealing member may also be disposed between the shaft sleeve and at least one of the first blocking member 501 and the second blocking member 601. In still another alternative embodiment, a sealing member may be provided between the shaft sleeve 241 and at least one of or each of the first blocking member 501, the second blocking member 601, and the reinforcing member 801.
In order to prevent the fluid leaking from the shaft seal from flowing into the motor 101, the present disclosure is not limited to the three lines of leakage defense in the above exemplary embodiments. In an alternative embodiment, the pump 100 of the present disclosure may not be provided with the above-described first line of leakage defense, and may be only provided with the above-described second line of leakage defense, and/or the above-described third line of leakage defense.
The pump of the present disclosure is provided with a sealed waterproof structure that may run synchronously with the pump shaft, and the sealed waterproof structure can effectively prevent fluid leaking from the shaft seal from flowing into the motor; and the sealed waterproof structure may run synchronously with the pump shaft, thereby avoiding the seal failure of the sealed blocking structure to cause fluid to flow into the motor.
Although some exemplary embodiments have been described herein, various modifications may be made to these embodiments without departing from the spirit of the disclosure, and all such modifications still belong to the concept of the present disclosure and fall within the scope of the present disclosure.
The specific embodiments disclosed herein are merely used to illustrate the disclosure, and it will be apparent to those skilled in the art that various modifications may be made in accordance with the teachings herein, and the disclosure may be practiced in various equivalents. Thus, the specific embodiments of the disclosure disclosed above are illustrative only, and the scope of the disclosure is not limited by the details of the structure or design disclosed herein, unless otherwise stated in the claims. Accordingly, the specific exemplary embodiments disclosed above may have various alternatives, combinations and modifications, and all fall within the scope of the disclosure. The pump disclosed herein, by way of example, may still be suitably implemented in the absence of any component not specifically disclosed herein or in the absence of optional components disclosed herein. All values and ranges disclosed above may also vary. Whenever a numerical range with a lower limit and an upper limit may be disclosed, any numerical value falling within the range and any subsets of the range are specifically disclosed. Specifically, any range of values disclosed herein can be understood to comprise any value and range that is encompassed within the broader numerical range. Likewise, the terms in the claims have their clear and ordinary meaning unless the applicant clearly and definitely dictates otherwise.
Additionally, the number of the members in the claims comprises one or at least one unless otherwise stated. If the words or terms used in the present specification are inconsistent with the usage or meaning in other documents, the definitions of the present disclosure shall prevail.
Number | Date | Country | Kind |
---|---|---|---|
201820195113.5 | Feb 2018 | CN | national |