The present invention relates generally to fluid dispenser systems and more particularly to pumps with self-adjusting volumes. fluid dispensers, and refill units having the same.
Liquid dispenser systems, such as liquid soap and sanitizer dispensers, provide a user with an amount of liquid upon actuation of the dispenser. In some circumstances, users desire dispensers to dispense less than a full dose of fluid. In many cases, the dispensers are modified so that the dispenser dispenses less then a full dose of fluid by reducing the length of stroke of the actuator, which “short strokes” the pump. Unfortunately, short stroking the pump often results in the pump failing to prime and/or inconsistencies in the volume of pump output. Attempts have been made to overcome the priming issues by altering the volume of the liquid chamber, see e.g. U.S. Pat. No. 9,062,667 titled Variable Volume Bore Piston Pump, or causing “lost motion” in the return stroke, see e.g. U.S. Pat. No. 8,955,718 titled Foam Pumps with Lost Motion and Adjustable Output Foam Pumps. These systems may suffer from disadvantages such as, for example, inconsistencies in volumes of air to liquid and/or noise and/or additional wear to parts. In some prior art systems, pump valving is made more complex and expensive due to added parts or features. Further some of these prior art systems waste energy with every activation due to lost motion needed to reset the pump to its at rest position.
Exemplary embodiments of pumps, refill units and dispenser systems are disclosed herein. An exemplary refill unit for a soap, sanitizer or lotion includes a container for holding a fluid and a pump secured to the container. The pump includes a housing, a liquid piston, a liquid pump chamber, an air piston, an air pump chamber; and a piston holder. The liquid piston is connected to the air piston. The piston holder is connected to one of the liquid piston and the air piston. The connection comprises one or more projections and one or more grooves. The volume of the liquid pump chamber and the air pump chamber both change as a function of the engagement of the one or more projections with the one or more grooves.
Another exemplary refill unit for a soap, sanitizer or lotion includes a container for holding a fluid and a pump secured to the container. The pump has a housing, a liquid piston, a liquid pump chamber, an air piston, an air pump chamber, and a piston holder. The liquid piston is connected to the air piston. One or more projections on one of the piston holder and the liquid piston or air piston and one or more grooves on one of the piston holder and the liquid piston or air piston are also included. The volume of the air pump chamber and the volume of the liquid pump chamber are determined by the position of the one or more projections with respect to the one or more grooves.
An exemplary dispenser system includes a dispenser. The dispenser has an actuator that has an actuator drive stroke length. The drive stroke length may be set at one or more drive stroke lengths to dispense one or more different volumes of fluid. A refill unit for a soap, sanitizer or lotion is also included. The refill unit includes a container for holding a fluid and a pump secured to the container. The pump has a housing, a liquid piston, a liquid pump chamber, an air piston, an air pump chamber, and a piston holder. The liquid piston is connected to the air piston. One or more projections are on one of the piston holder and the liquid piston or air piston. One or more grooves are on one of the piston holder and the liquid piston or air piston. The volume of the air pump chamber and the volume of the liquid pump chamber are determined by the position of the one or more projections with respect to the one or more grooves which is determined by the one or more drive stroke lengths of the dispenser.
An exemplary pump includes a housing, a liquid piston, a liquid pump chamber, an air piston, an air pump chamber and a piston holder. The liquid piston is connected to the air piston. The piston holder is movably connected to one of the liquid piston and the air piston. The movable connection comprises one or more first members and one or more second members. The one or more first members engage with the one or more second members in at least two positions. The volume of the liquid pump chamber and the air pump chamber in a first position are less than the respective volumes of the liquid pump chamber and the air pump chamber in a second position.
These and other features and advantages of the present invention will become better understood with regard to the following description and accompanying drawings in which:
In this exemplary embodiment, the container 116 forms a liquid reservoir that contains a supply of foamable liquid within the disposable refill unit 110. In various embodiments, the contained liquid could be, for example, a soap, a sanitizer, a cleanser, a disinfectant, a lotion or the like. In the exemplary embodiment of a disposable refill unit 110, the container 116 is a collapsing container and can be made of thin plastic or like material. The container 116 may be refillable, replaceable or both refillable and replaceable. In some embodiments, the liquids may be non-foamable or non-foaming liquids. In some embodiments, the container 116 is a non-collapsing container, and in such cases, a venting valve (not shown) or venting mechanism may be used to vent the bottle to prevent or reduce collapsing of the bottle.
In the event the liquid in the container 116 of the installed disposable refill unit 110 runs out, or the installed refill unit 110 otherwise has a failure, the installed refill unit 110 may be removed from the foam dispenser 100. The empty or failed disposable refill unit 110 may then be replaced with a new disposable refill unit 110.
The housing 102 of the dispenser 100 contains one or more actuating members 104 to activate the pump 120. As used herein, actuator or actuating members or mechanisms include one or more parts that cause the dispenser 100 to move liquid, air and/or foam from container 116 out of outlet nozzle 125. Actuator 104 is generically illustrated because there are many different kinds of pump actuators which may be employed in the foam dispenser 100. The actuator 104 of the foam dispenser 100 may be any type of actuator, such as, for example, a manual lever, a manual pull bar, a manual push bar, a manual rotatable crank, an electrically driven, or motor driven actuator or other means for actuating the pump 120. In this exemplary embodiment, dispenser 100 has an electrically activated actuator 104. Dispenser 100 may include an optional sensor 132 for detecting the presence of an object and to provide for a hands-free dispenser system with touchless operation. Various intermediate linkages may also be included, such as for example linkage 105 which connects the actuator member 104 to the pump 120 within the system housing 102. An aperture 115 is located in bottom plate 103 of housing 102 and allows fluid to be dispensed from the nozzle 125 of pump 120 to a user.
In this exemplary embodiment, actuator 104 may be configured to dispense a plurality of different dose sizes or dispense volumes. In this exemplary embodiment, the different dose sizes or volumes dispense correspond to different actuation drive lengths (i.e. drive distances or stroke lengths) of the actuator 104. In this exemplary embodiment, the longer the drive length or stroke length of the actuator 104, the greater the dispense volume.
A liquid piston 310 reciprocates within the cylindrical wall 305. Liquid piston 310 has a liquid outlet valve 312 located proximate its inner end. In this exemplary embodiment, liquid outlet valve 312 is a wiper valve, however, liquid outlet valve 312 may be any type of one-way valve, such as for example, a wiper valve, ball and spring valve, an umbrella valve, a flapper valve or the like. A pump chamber 308 is formed by liquid inlet valve 304, liquid outlet valve 312, and cylindrical wall 305.
Liquid pump piston 310 reciprocates back and forth increasing and decreasing the volume of liquid pump chamber 308. Liquid pump piston 310 includes liquid outlet valve 312. Liquid outlet valve 312 has a wiper seal 312A. Wiper seal 312A is opposed to wiper seal 313, that is liquid flows past the wiper seals 312A and 313 in different directions. In addition, liquid pump piston 310 has a hollow shaft and one or more apertures 314 which are located between the opposed wiper seals 312A, 313. Apertures 314 allow liquid to flow from the liquid pump chamber 308 into the center of the liquid pump piston 310 toward outlet 336.
Foam pump 210 also includes an air pump chamber 324 and an air pump piston 320. Air pump piston 320 is connected to liquid pump piston 310 and accordingly, the two pistons 320, 310 move together. Air pump piston 320 includes a wiper seal 325 that rides against the inside wall of housing 302 to compress air in air chamber 324. Liquid pump piston 310 includes one or more air inlet apertures 323. Foam pump 210 includes two mix media 338, such as for example screens, that cause liquid flowing from foamable liquid container 202 through liquid pump piston 310 and air flowing from air pump chamber 324 through aperture 323 to mix together to form a rich foam. Other mix media, such as, for example, a porous member, one or more sponges, a plurality of baffles, or the like, may be used.
In addition, foam pump 210 includes an annular projection 334 for engaging with actuator linkage 275, which is connected to the dispenser (not shown) to move the liquid piston 310 and air piston 320 upward to dispense foam and downward to recharge the air pump chamber 324 and liquid pump chamber 308. In this exemplary embodiment, air pump chamber 324 is recharged by drawing in air through the outlet nozzle 336 and air outlet aperture 323. Drawing air in through the outlet nozzle 336 also sucks back residual foam and fluid to help prevent dripping after dispensing a dose of foam.
In this exemplary embodiment, the air piston 320 connects to a piston holder 330. Piston holder 330 releasably connects to actuator linkage 275 to operate pump 210. In this exemplary embodiment, piston holder 330 includes one or more projection members 332. In this exemplary embodiment, air piston 320 includes one or more grooves 326 sized to receive the one or more projections 332. In some embodiments, the one or more projections are located on the air piston 320 and the one or more grooves are located on piston holder 330. Preferably the one or more grooves 326 are arranged to provide for desired dose sizes. In some embodiments, the projection members 332 are annular projection members. In some embodiments, the projection members 332 have a sloped or serrated surface which allows the piston holder 330 to move easier in one direction with air piston 320 and not as easy in the opposite direction. On some embodiments, the one or more grooves 326 are annular grooves.
In these exemplary embodiments, when the pumps 210 are configured for a reduced volume dose output, the volume of both the liquid chamber and the air chamber are both reduced. In addition, during operation, the liquid piston 310 is moved to its inward (or upward in this exemplary embodiment) most point so that the liquid pump chamber 308 is at is smallest volume when the pump is fully compressed when the dispense cycle is complete. Similarly, the air piston 320 moves to its inward (or upward in this exemplary embodiment) most point so that air chamber 324 is at is smallest volume when the dispense cycle is complete. Ensuring that the liquid chamber 308 is compressed to its smallest volume when the dispense cycle is complete, eliminates, or reduces the risk of, priming issues. During operation, many pumps that are modified to reduce the dispense volume have priming issues because the liquid pump chamber is not fully compressed when dispensing a reduced volume and air in the pump chamber may merely compress and decompress without drawing in liquid.
In some exemplary embodiments, refill unit 200 are shipped with pump 210 in the position illustrated in
As can be seen, in this exemplar embodiment, the configuration of the liquid piston 310 and the air piston 320 are arraigned so that both the liquid piston 310 and the air piston 320 move to their uppermost positions irrespective of the volume of the dose to be dispensed. In other words, the volume of the liquid pump chamber 308 and the air pump chamber 324 are always compressed to their smallest volumes when the actuator linkage 275 is at the end of its dispense stroke length. In each of
During operation, the first dispense stroke causes foam pump 210 to automatically set its dose volume to the volume that the dispenser has been configured to dispense. Then as pistons 310, 320 move downward, liquid flows from the container 202 past one-way liquid inlet valve 304 into liquid pump chamber 308. As air pump chamber 324 expands, air is drawn in through outlet 336, through apertures 323 into air pump chamber 324.
When pistons 310, 320 move upward liquid flows from liquid pump chamber 308 past liquid outlet valve 313 through one or more apertures 314 into the center of liquid piston 310. Air flows from air pump chamber 324 through one or more apertures 323 into the center of piston 310 where the air and the liquid mix together. The liquid air mixture flows through mix media 338 and are dispensed out of outlet nozzle 336 as a rich foam.
A liquid piston 710 reciprocates within the cylindrical wall 705. Liquid piston 710 has a liquid outlet valve 712 located proximate its inner end. In this exemplary embodiment, liquid outlet valve 712 is a wiper valve, however, liquid outlet valve 712 may be any type of one-way valve, such as for example, a wiper valve, ball and spring valve, an umbrella valve, a flapper valve or the like. A pump chamber 708 is formed by liquid inlet valve 704, liquid outlet valve 712, and cylindrical wall 705.
Liquid pump piston 710 reciprocates back and forth increasing and decreasing the volume of liquid pump chamber 708. Liquid pump piston 710 includes a pair of opposed wiper seals 712A, 713, with wiper seal 712A being part of liquid outlet valve 712. In addition, liquid pump piston 710 has a hollow shaft and one or more apertures 714 between the opposed wiper seals 712A, 713 that allow liquid to flow from the liquid pump chamber 708 into the center of the liquid pump piston 710 toward outlet 736.
Foam pump 700 also includes an air pump chamber 724 and an air pump piston 720. Air pump piston 720 is connected to liquid pump piston 710 and accordingly, the two pistons 720, 710 move together. Air pump piston 720 includes a wiper seal 725 that rides against the inside wall of housing 702 to compress air in air chamber 724. Liquid pump piston 710 includes one or more air inlet apertures 714. Foam pump 700 includes two mix media 738, such as for example screens, that cause liquid flowing from foamable liquid container (not shown) through liquid pump piston 710 and air flowing from air pump chamber 724 through aperture 723 to mix together to form a rich foam. Other mix media, such as, for example, a porous member, one or more sponges, a plurality of baffles, or the like, may be used.
In addition, foam pump 700 includes an annular projection 734 for engaging with actuator linkage 775, which is connected to, and part of, the dispenser (not shown) to move the liquid piston 710 and air piston 720 upward to dispense foam and downward to recharge the air pump chamber 724 and liquid pump chamber 708. Air pump chamber 724 is recharged by drawing in air through the outlet nozzle 736 and air outlet aperture 723. Drawing air in through the outlet nozzle 736 also sucks back residual foam and fluid to help prevent dripping after dispensing a dose of foam.
In this exemplary embodiment, the air piston 720 connects to a piston holder 730. Piston holder 730 releasably connects to actuator linkage 775 to operate pump 700. In this exemplary embodiment, piston holder 730 includes one or more projection members 732 that are connected to release handles 740. The one or more projection members 732 are biased inward and engage with one or more grooves 726 in air piston housing 720. In some embodiments, the one or more projection members 732 are annular projection members. In some embodiments, the one or more projection members 732 extend at least partially around the circumference of the opening that receives the air piston housing 720. In some embodiments, the grooves have a sloped surface. In some embodiments, the one or more projection members 732 are biased inward by a biasing member. In some embodiments, the one or more projection members 732 are made of a resilient member and are naturally biased inward.
In some embodiments, release handles 740 are included and the release handles 740 may be manipulated to release the one or more projections 732 from the one or more grooves 726 and/or may be used to manually set the volume dose of the pump. In some embodiments, the one or more projections are located on the air piston 720 and the one or more grooves are located on piston holder 730. Preferably the one or more grooves 726 are arranged to provide for a plurality of different desired dose size volumes. The dose size volumes may be adjusted as described above.
In some exemplary embodiments, refill units (not shown) are shipped with pump 700 in the position illustrated in
In this exemplar embodiment, the configuration of the liquid piston 710 and the air piston 720 are arraigned so that both the liquid piston 710 and the air piston 720 move to their uppermost positions irrespective of the volume of the dose to be dispensed. In other words, the volume of the liquid pump chamber 708 and the air pump chamber 724 are always compressed to their smallest volumes when the actuator linkage 775 is at the end of its dispense stroke length.
During operation, the first dispense stroke causes foam pump 700 to automatically set its dose volume. Then as pistons 710, 720 move downward, liquid flows from the container (not shown) past one-way liquid inlet valve 704 into liquid pump chamber 708. As air pump chamber 724 expands, air is drawn in through outlet 736, through apertures 723 into air pump chamber 724.
When pistons 710, 720 move upward liquid flows from liquid pump chamber 708 past liquid outlet valve 713 through one or more apertures 714 into the center of liquid piston 710. Air flows from air pump chamber 724 through one or more apertures 723 into the center of piston 710 where the air and the liquid mix together. The liquid air mixture flows through mix media 738 and are dispensed out of outlet nozzle 736 as a rich foam.
A liquid piston 810 reciprocates within the cylindrical wall 805. Liquid piston 810 has a liquid outlet valve 812 located proximate its inner end. In this exemplary embodiment, liquid outlet valve 812 is a wiper valve, however, liquid outlet valve 812 may be any type of one-way valve, such as for example, a wiper valve, ball and spring valve, an umbrella valve, a flapper valve or the like. A pump chamber 808 is formed by liquid inlet valve 804, liquid outlet valve 812, and cylindrical wall 805.
Liquid pump piston 810 reciprocates back and forth increasing and decreasing the volume of liquid pump chamber 808. Liquid pump piston 810 includes a pair of opposed wiper seals 812A, 813, with wiper seal 812A being part of liquid outlet valve 812. In addition, liquid pump piston 810 has a hollow shaft and one or more apertures 814 between the opposed wiper seals 812A, 813 that allow liquid to flow from the liquid pump chamber 808 into the center of the liquid pump piston 810 toward outlet 836.
Foam pump 800 also includes an air chamber 824 and an air piston 820. Air piston 820 is connected to liquid pump piston 810 and accordingly, the two pistons 820, 810 move together. Air piston 820 includes one or more apertures 850. One or more apertures 850 in air piston 820 allow air to flow out to the air chamber 824 into the interior of housing 802 and out past piston holder 830. In this exemplary embodiment, there is no air passage between the air chamber 824 and the interior of piston 810.
Liquid pump 800 includes an annular projection 834 for engaging with actuator linkage 875, which is connected to the dispenser (not shown) to move the liquid piston 810 and air piston 820 upward to dispense liquid and downward to recharge the liquid pump chamber 808.
In this exemplary embodiment, the air piston 820 connects to a piston holder 830. Piston holder 830 releasably connects to actuator linkage 875 to operate pump 800. In this exemplary embodiment, piston holder 830 includes one or more projection members 832 that are connected to release handles 840. One or more projection members 832 are biased inward and engage with one or more grooves 826 in air piston housing 820. In some embodiments, the one or more projections are located on the air piston 820 and the one or more grooves are located on piston holder 830. Preferably the one or more grooves 826 are arranged to provide for desired dose sizes. The doses sizes may be adjusted as described above.
In some exemplary embodiments, refill units (not shown) are shipped with pump 800 in the position illustrated in
During operation, the first dispense stroke causes pump 800 to automatically set its dose volume. Then as pistons 810, 820 move downward, liquid flows from the container (not shown) past one-way liquid inlet valve 804 into liquid pump chamber 808.
When pistons 810, 820 move upward liquid flows from liquid pump chamber 808 past liquid outlet valve 813 through one or more apertures 814 into the center of liquid piston 810 and is dispensed out of outlet nozzle 836 as a liquid.
While the present invention has been illustrated by the description of embodiments thereof and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention, in its broader aspects, is not limited to the specific details, the representative apparatus and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
The present application claims the benefits of, and priority to, U.S. Provisional Patent Application No. 62/810,687, which is titled PUMPS WITH SELF-ADJUSTING VOLUMES, REFILL UNITS AND DISPENSERS HAVING SAME, which was filed on Feb. 26, 2019 and which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
62810687 | Feb 2019 | US |