The present invention relates to a punching machine including a separating mechanism for separating a punched sheet into a product and a scrap.
A punching machine punches a sheet into a predetermined shape by means of a Thomson blade, a die cut roller or the like, thereby forming a product from the sheet. The sheet punched by the punching machine includes a scrap as well as the product. In order to obtain the product from the sheet, therefore, it is necessary to separate the punched sheet into the product and the scrap and remove the scrap away.
In a conventional punching process of sheets, sheets are punched in such a manner that some joints are left between a product and a scrap. A certain number of the punched sheets are stacked, and the products and the scraps are simultaneously separated from each other in the stack. When such an operation is performed by a worker, not only the serious burden is imposed on the workers because large force is required, but also the working efficiency is low. On the other hand, when such an operation is performed by a machine, the working efficiency is high but a size of the machine becomes large and the machine becomes complicated.
In addition, there is provided a punching machine including a separating mechanism for separating each of punched sheets into a product and a scrap while sequentially conveying the sheets one by one (see for example JP-A-2000-127097). The punching machine described in JP-A-2000-127097 blows air jet onto the punched sheet without joints between the product and the scrap so as to separate the product and the scrap and remove the scrap away while conveying the sheet along a conveying path.
Although the punching machine can reliably separate the product and the scrap in the case that the scrap is small or has a simple shape, it cannot separate the product and the scrap with the air jet completely in case that the scrap is large or has a complicated shape.
Accordingly, it is an object of the present invention to provide a punching machine having a separating mechanism capable of reliably separating a product and a scrap.
In order to attain the object, a punching machine, comprising:
a die cut mechanism for punching a sheet into a predetermined shape to form a product from the sheet;
a separating mechanism for sequentially conveying the sheet punched by the die cut mechanism one by one along a conveying path, separating the sheet into the product and a scrap during the conveyance, and removing the scrap from the conveying path;
a control unit for controlling the separating mechanism; and
an input unit for receiving input from an operator,
the separating mechanism including:
first and second conveying units for conveying the sheet along the conveying path, the second conveying unit being disposed at a predetermined interval from a downstream end of the first conveying unit;
at least one movable guide disposed between the first conveying unit and the second conveying unit so as to separate the product and the scrap and guide the scrap out of the conveying path; and
a guide drive unit for moving the at least one movable guide in a vertical direction between a retreating position where the at least one movable guide retreats upward from the conveying path and a protruding position where the at least one movable guide protrudes into the conveying path,
the input unit including a setting section for setting a contact start point on the sheet where the at least one movable guide is started to come in contact with the sheet and a contact end point on the sheet where the at least one movable guide is started to separate from the sheet, the input unit further transmitting the information set by the setting section to the control unit,
the separating mechanism being controlled by the control unit based on at least the information set by the setting section so that the at least one movable guide moves from the retreating position to the protruding position to contact with the contact start point on the sheet, and then moves from the protruding position to the retreating position to separate from the contact end point on the sheet, while the sheet is conveyed from the first conveying unit to the second conveying unit.
Preferably, a plurality of the movable guides are disposed side by side in a direction perpendicular to the conveying direction of the sheet,
a pair of the contact start point and the contact end point can be separately set for each of the movable guides, and
the separating mechanism is controlled by the control unit so that each of the movable guides moves from the retreating position to the protruding position to contact with the contact start point on the sheet, and then moves from the protruding position to the retreating position to separate from the contact end point on the sheet, while the sheet is conveyed from the first conveying unit to the second conveying unit.
Preferably, a plurality of the movable guides are disposed side by side in a direction perpendicular to the conveying direction of the sheet, and a position of each of the movable guides can be changed in the perpendicular direction.
Preferably, pairs of the contact start point and the contact end point can be set for the movable guide or the respective movable guides, and the separating mechanism is controlled by the control unit so that the at least one movable guide moves to contact with the contact start points on the sheet and separate from the contact end points on the sheet while the sheet is conveyed from the first conveying unit to the second conveying unit.
Preferably, the setting of the contact start point is performed by inputting a distance from a leading end of the sheet to the contact start point and the setting of the contact end point is performed by inputting a distance from the leading end of the sheet to the contact end point.
Preferably, the punching machine further includes a sheet detector disposed upstream of the movable guide so as to detect a passage of the sheet and send a detection signal to the control unit, the control unit controlling the separating mechanism based on at least the detection signal and the information set by the setting section.
According to the present invention, at least one movable guide for separating the sheet into the product and the scrap is moved upward and downward between the retreating position and the protruding position. The input unit for receiving the input from the operator includes the setting section for setting the contact start point on the sheet and the contact end point on the sheet. The control unit controls the separating mechanism in such a manner that the at least one movable guides keeps contacting with an area of the sheet from the contact start point to the contact end point.
In other words, according to the punching machine of the present invention, the operator can freely set a timing for moving the at least one movable guide relative to the travelling sheet. Consequently, the operator can select the area of the sheet with which the at least one movable guide contacts corresponding to the shape of the product and the scrap. As a result, even if the scrap is large or has a complicated shape, the product and the scrap are reliably separated from each other.
A punching machine according to the present invention will be described below with reference to the accompanying drawings. With reference to
The sheet feeding mechanism 1 includes a shelf 6 on which a sheet stack T is placed. The sheet feeding mechanism 1 sequentially feeds the uppermost sheet S of the sheet stack T. The sheet conveying mechanism 2 includes a belt conveyer 7 for delivering the sheet S to the die cut mechanism 3.
With reference to
As shown in
While the die cut roller 8 and the anvil roller 9 are rotated, the sheet S is conveyed by the conveying rollers 12 and 13 between the die cut roller 8 and the anvil roller 9. Consequently, as shown in
As shown in
Each of the first conveying unit 15 and the second conveying unit 16 consists of a belt conveyor extending along the conveying path G. The first conveying unit 15 includes a pair of pulleys 150 and 151 whose shafts extend to a direction perpendicular to the conveying direction Y, an endless belt 152 extending between the pulleys 150 and 151, and a motor (not shown) which is coupled to the shaft of the pulley 150 and circulates the endless belt 152. The second conveying unit 16 has the same structure as the first conveying unit 15 and includes a pair of sprockets 160 and 161, an endless belt 162 and a motor (not shown). The second conveying unit 16 is disposed at a predetermined interval from a downstream end of the first conveying unit 15 so that a clearance 17 is formed between the downstream end of the first conveying unit 15 and an upstream end of the second conveying unit 16.
The separating mechanism 4 includes a scrap receiving box 18 disposed below the clearance 17 so as to receive the scrap Q removed from the conveying path G through the clearance 17, and a tray 19 disposed at a downstream end of the conveying path G so as to receive the conveyed product P.
As shown in
As shown in
The movable guide 21 includes a roller 210 having a shaft extending perpendicularly to the conveying direction Y. The guide drive unit 22 includes an air cylinder 24 having a piston rod 240, and an air supply source (not shown) for supplying air to the air cylinder 24 to reciprocate the piston rod 240. The air cylinder 24 is attached to the attachment member 23 in such a manner that the piston rod 240 faces downward. The movable guide 21 is attached to a tip of the piston rod 240. The guide drive unit 22 moves the movable guide 21 (the roller 210) in the vertical direction by means of the piston rod 240 between a retreating position and a protruding position. At the retreating position, as shown in
In this embodiment, as shown in
The separating mechanism 4 separates the sheet S into the product P and the scrap Q by means of the fixed guides 20a and 20b and the movable guides 21a to 21d while the sheet S is conveyed from the first conveying unit 15 to the second conveying unit 16.
With reference to
As shown in
Moreover, the input unit 27 includes a setting section 29 for setting contact start points on the sheet S where each of the movable guides 21a to 21d is started to come in contact with the travelling sheet S and contact end points on the sheet S where each of the movable guides 21a to 21d is started to separate from the travelling sheet S. By the setting section 29, the operator can set contact areas of the sheet S to be conveyed for each of the movable guides 21a to 21d.
The setting section 29 includes a matrix of input areas 30. The rows (a) to (d) correspond to the movable guides 21a to 21d, respectively. Each of the input areas 30 of the “ON1” column is used for setting the contact start point, and each of the input areas 30 of the “OFF1” column is used for setting the contact end point. The “ON2” to “OFF4” columns are also the same. Thus, the pairs of the contact start point and the contact end point can be set through the setting section 29 for each of the movable guides 21a to 21d. Consequently, each of the movable guides 21a to 21d can contact with the sheet S a plurality of times (four times in this embodiment) while the sheet S is conveyed.
In this embodiment, the setting of each of the contact start points is performed by inputting to the respective corresponding input areas 30 of the “ON1” to “ON4” columns a distance in the conveying direction Y from the leading end of the sheet S to the contact start point. Furthermore, the setting of each of the contact end points is performed by inputting to the respective corresponding input areas 30 of the “OFF1” to “OFF4” columns a distance in the conveying direction Y from the leading end of the sheet S to the contact end point.
For example, In case that the product P shown in
The separating mechanism 4 are controlled by the control unit 5 based on the detection signals from the sensor 25, the pluses from the encoder 26 and the information set by the setting section 29. With reference to
As shown in
When the pairs of the contact start point C1 and C2 and the contact end point D1 and D2 are set, the movable guide 21 further moves to contact with the next contact start point C2 on the sheet S after the first contact operation. Thereafter, the movable guides 21 moves to separate from the next contact end point D2 on the sheet S, thereby ending the second contact operation. Such operation is repeated while the sheet S is conveyed from the first conveying unit 15 to the second conveying unit 16:
In this embodiment, the pairs of the contact start point C1 and C2 and the contact end point D1 and D2 are individually set for each of the movable guides 21a to 21d. Each of the movable guides 21a to 21d moves separately downward from the retreating position to the protruding position to contact with the contact start points CI and C2 on the sheet S. Thereafter, each of movable guides 21a to 21d moves separately upward from the protruding position to the retreating position to separate from the contact end points D1 and D2 on the sheet S. The above mentioned operation is performed for the sheets S sequentially conveyed from the first conveying unit 15 to the second conveying unit 16.
In the case that the pairs of the contact start point C1 and C2 and the contact end point D1 and D2 are set as shown in
According to the separating mechanism 4, when a plurality of products P are formed from the sheet S as shown in
As described above, according to the punching machine in accordance with the present invention, the operator can freely set the timing for moving the movable guides 21a to 21d in the vertical direction relative to the travelling sheet S. Consequently, the operator can select the areas of the sheet with which the movable guides 21a to 21d contact corresponding to the shape of the product and the scrap. As a result, even if the scrap Q is large or has a complicated shape, the product P and the scrap Q are reliably separated from each other.
Further, the movable guides 21a to 21d move upward and downward to contact with the sheet S a plurality of times while the sheet S is conveyed from the first conveying unit 15 to the second conveying unit 16. The position of each of the movable guides 21a to 21d can be changed in the direction perpendicular to the conveying direction Y. In addition, the pairs of the contact start point and the contact end point can be set for each of the movable guides 21a to 21d, and the movable guides 21a to 21d individually moves upward and downward. Therefore, the product P and the scrap Q can be separated still more reliably.
Although the preferred embodiment of the present invention has been described above, the present invention is not restricted to the embodiment. Although in the above mentioned embodiment the movable guide 21 includes the roller 210 in order to guide the scrap Q out of the conveying path G, the movable guide 21 may include a guide surface having the same structure as the guide surface 200 of the fixed guide 20. Moreover, although in the above mentioned embodiment the guide drive unit 22 includes the air cylinder 24 in order to move the movable guide 21 in the vertical direction, the guide drive unit 22 may include another linear actuator such as an electromagnetic solenoid.
The sheet detector may be a mark detector for detecting a mark provided on the sheet S instead of the sensor 25. The mark detector reads the mark on the sheet S to detect the passage of the sheet S. For example, the mark detector is a transmission type photoelectric sensor for reading the mark based on light transmittance or a bar code reader for reading a bar code on the sheet S. Preferably, the mark is provided on the scrap Q of the sheet S.
The sheet detector may be a camera for imaging contents printed on the sheet S. Images of a part of the conveying path G are obtained by the camera at regular intervals and sent to the control unit 5. In the control unit 5, the predetermined image processing is performed to determine whether the printed contents are included in the image or not, and thereby the passage of the sheet S is detected based on the result of the determination.
In order to avoid detection errors, at least two of the sensors 25, the mark detectors, and the cameras may be used together.
If the sheet detector is disposed upstream of the movable guide 21, it does not need to be provided above the first conveying unit 15. For example, as shown in
In this case, the movable guide 21 moves upward and downward at the timing determined based on the detection signals from the sensor 31, the speed of the sheet S conveyed by the conveying rollers 12 and 13, the speed V of the sheet S conveyed by the first conveying unit 15, and the travelling distance of the sheet S from the sensor 31 to the movable guide 21. The sensor 31 may be replaced with the mark detector or the camera. In order to move the movable guide 21 at the more accurate timing, the sheet detector is preferably disposed close to the movable guide 21.
In the above mentioned embodiment, as shown in
Number | Date | Country | Kind |
---|---|---|---|
2013-092321 | Apr 2013 | JP | national |
2014-056148 | Mar 2014 | JP | national |