This invention relates to punching small orifice holes and, more particularly, to the use of a magnetostrictive device as the driving force for punching orifice holes into an orifice disc that is used for fuel injectors.
Conventional devices for supplying the force to punch orifice holes in an orifice disc used for a fuel injector include mechanical presses, air cylinders, air/oil cylinders, hydraulic cylinders, and electromagnetic solenoids. Except for the electromagnetic solenoid, these devices deliver the driving force at a relatively slow velocity. The disadvantage of using an electromagnetic solenoid is that it is physically large and not compact as is necessary for driving individual punches.
Thus, there is a need to provide a cost-effective, high-velocity and compact device as the driving force for moving an individual punch in making holes, such as orifice holes in an orifice disc.
An object of the invention is to fulfill the need referred to above. In accordance with the principles of the present invention, this objective is achieved by a method for punching a hole in material. A magnetostrictive device is provided and includes a coil, a magnetostrictive member, and a punch operatively associated with the magnetostrictive member. The magnetostrictive member is constructed and arranged to lengthen, when exposed to a magnetic field created by the coil, thereby moving the punch. Material to be punched is associated with the punch. The coil is energized to create a magnetic field and thus lengthen the magnetostrictive member so that the punch moves through the material, creating a hole in the material.
In accordance with another aspect of the invention, a punch assembly includes a die constructed and arranged to support material to be punched. A magnetostrictive device includes a coil, a magnetostrictive member, and a punch operatively associated with the magnetostrictive member. The magnetostrictive member is constructed and arranged to lengthen when exposed to a magnetic field created by the coil. When the coil is energized and the magnetostrictive member lengthens, the punch moves through the material and into the die, thereby creating a hole in the material.
Other objects, features and characteristics of the present invention, as well as the methods of operation and the functions of the related elements of the structure, the combination of parts and economics of manufacture will become more apparent upon consideration of the following detailed description and appended claims with reference to the accompanying drawings, all of which form a part of this specification.
The invention will be better understood from the following detailed description of the preferred embodiments thereof, taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like parts, in which:
With reference to
The assembly 10 includes a hardened magnetic steel piston 28, defining a punch, moveably positioned at the proximal end of the magnetostrictive member 22 within a bore 29 of a conventional punch holder/stripper plate 30. A return spring 32 urges the piston 28 into contact with the proximal end of the magnetostrictive member 22, thereby exerting a preload on the magnetostrictive member 22. The spring 32 is provided between a surface of the piston 28 and a surface of the punch holder/stripper plate 30. According to a presently preferred embodiment, the magnetostrictive member 22 should be prestressed to a nominal value (i.e., about 7.6 MPa for Terfenol-D) to maximize magnetostriction. This prestress is preferably provided by a high spring rate disc spring 32 (e.g., chrome-vanadium steel belleville springs) chosen and stressed to optimize their cycle life.
In operation, the steel piston 28 moves downwardly under a force exerted by the magnetostrictive member 22 due to the magnetostrictive member 22 lengthening as a result of being exposed to a magnetic field created by energizing the coil 26. Thus, the end 34 of the piston 28 punches a hole through the material 12 that is supported by a die 36. After punching the hole in the material 12, the end 34 of the piston 28 is received in a bore 38 in the die 36. The punch holder/stripper plate 30 guides the punch and also holds the material 12 down as the punch 28 is pulled out. The bore 38 and the end 34 of the piston 28 are preferably round to create circular holes, but they can be of any configuration to produce the desired shaped hole in the material 12. When current is removed from the coil 26, the magnetostrictive member 22 returns to its original, unstretched length. The lengthening and contraction of the magnetostrictive member 22 can occur in milliseconds.
The punch assembly 10 is particularly useful in the manufacture of orifice discs (e.g. material 12 in
l1/h1=l2/h2
The magnetization force, and therefore the amount of stretching of the magnetostrictive member 22, is determined primarily by the current in coil 26 and number of coil turns. The number of coil turns may be calculated or experimentally determined for a given configuration. The coil current should be maintained within a reasonable range that would avoid saturating the magnetostrictive material or dissipating excessive power in the coil. In a preferred embodiment, the current can be varied by an external driver or determined from the operating voltage and coil resistance.
By using the magnetostrictive device 14 to drive an individual punch 28 in the punch assembly 10, the benefits of high velocity and compactness can be realized in making orifice holes in an orifice disc. The high velocity, (i.e., 3000 strokes per minute) makes a cleaner hole, results in better tool life, yields a more stable process in making orifice disc which will yield orifice discs with less variance.
The term “magnetostriction” literally means magnetic contraction, but is generally understood to encompass the following similar effects associated with ferromagnetic materials: the Guillemin Effect, which is the tendency of a bent ferromagnetic rod to straighten in a longitudinal magnetic field; the Wiedemann Effect, which is the twisting of a rod carrying an electric current when placed in a magnetic field; the Joule Effect, which is a gradual increasing of length of a ferromagnetic rod when subjected to a gradual increasing longitudinal magnetic field; and the Villari Effect, which is a change of magnetic induction in the presence of a longitudinal magnetic field (Inverse Joule Effect).
While the present invention is described primarily with reference to Terfenol-D as a preferred magnetostrictive material, it will be appreciated by those skilled in the art that other alloys having similar magnetostrictive properties may be substituted and are included within the scope of the present invention. Furthermore, permanent magnets (not shown) can be employed to bias the Terfenol-D magnetic domains in various coil combinations.
Control of the punch assembly 10, 10′ can be achieved, for example, with the control strategy disclosed in U.S. Pat. No. 6,720,684, the contents of which is hereby incorporated by reference in its entirety into this specification.
The foregoing preferred embodiments have been shown and described for the purposes of illustrating the structural and functional principles of the present invention, as well as illustrating the methods of employing the preferred embodiments and are subject to change without departing from such principles. Therefore, this invention includes all modifications encompassed within the spirit of the following claims.
This application is claims the benefit of U.S. Provisional Application No. 60/581,275, filed on Jun. 18, 2004, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3874207 | Lemelson | Apr 1975 | A |
4621772 | Blythe et al. | Nov 1986 | A |
4854024 | Grieb et al. | Aug 1989 | A |
5205147 | Wada et al. | Apr 1993 | A |
5245904 | Meyerle | Sep 1993 | A |
6570474 | Czimmek | May 2003 | B2 |
6720684 | Czimmek | Apr 2004 | B2 |
6968723 | Akahane et al. | Nov 2005 | B2 |
Number | Date | Country |
---|---|---|
05185292 | Jul 1993 | JP |
05200446 | Aug 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20060005674 A1 | Jan 2006 | US |
Number | Date | Country | |
---|---|---|---|
60581275 | Jun 2004 | US |