The application claims the benefit of Taiwan application serial No. 104125815, filed on Aug. 7, 2015, and the subject matter of which is incorporated herein by reference.
1. Field of the Invention
The present disclosure generally relates to a puncturing instrument and, more particularly, to a puncturing instrument that can be punctured into a body tissue.
2. Description of the Related Art
In the conventional surgery, a large incision is often formed on a body part. However, minimally invasive surgery (MIS) technology has been developed as the advance of the medical technology. In the minimally invasive surgery, a small incision instead of a large incision is formed on a body part. The minimally invasive surgery technology reduces not only the size of the wound but also the cost of the medical care. Thus, the period of hospitalization is significantly reduced.
As an example of the laparoscopic surgery, a conventional puncturing instrument (such as a veress needle) is inserted into the abdominal cavity of the patient from the belly skin, and air is pumped into the abdominal cavity to cause expansion of the abdominal cavity. Thus, the pneumoperitoneum procedure is complete. Then, the surgical instrucments are used to perform the surgery for the organs inside the abdominal cavity. One embodiment of such a conventional puncturing instrument can be seen in U.S. Pat. No. 5,098,388 entitled “Veress needle assembly” and U.S. Pat. No. 5,669,883 entitled “Veress needle and cannula assembly.”
The conventional puncturing instrument only has the inflation function. In this regard, the surgeon performs the puncturing operation in the abdominal cavity merely through the sense of operating the puncturing instrument and the experience without actually seeing the internal structure of the abdominal cavity. After the abdominal cavity is expanded by the pumped air, the surgical instrucments are inserted into the abdominal cavity to perform the surgery. However, when an unexpected situation (such as abdominal adhesion, which occurs at the possibility of smaller than 1%) is encountered if the patient hasn't had any abdominal surgery before, it is highly likely that the puncturing instrument injures the surrounding blood vessels and organs during the puncturing operation. As a result, bleeding may occur inside the body without the patient actually knowing it, leaving the patient in danger of losing their life. Thus, the puncturing operation is critical to the success of the surgery and determines whether there will be a complication or not.
In light of this, it is necessary to improve the conventional puncturing instrument.
It is therefore the objective of this disclosure to provide a puncturing instrument that can detect the condition of a body tissue in an optical manner.
It is another objective of this disclosure to provide a puncturing equipment that can automatically recognize the condition of a body tissue.
It is a further objective of this disclosure to provide a signal processing method of the puncturing equipment which recognizes the condition of a body tissue by the absorbed reflected spectrum of the body tissue.
In an embodiment of the disclosure, a puncturing instrument including a first tube, a second tube and a light-guiding member is disclosed. The first tube includes two first openings. One of the two first openings forms a sharp portion. The second tube is received in the first tube and includes two second openings and a gas outlet. One of the two second openings is provided with a lens, and the gas outlet is adjacent to the lens and the sharp portion of the first opening. The light-guiding member is received in the second tube.
In the disclosure, a puncturing equipment including the puncturing instrument and a computer system is disclosed. The puncturing instrument includes a first tube, a second tube and a light-guiding member. The first tube includes two first openings. One of the two first openings forms a sharp portion. The second tube is received in the first tube and includes two second openings and a gas outlet. One of the two second openings is provided with a lens, and the gas outlet is adjacent to the lens and the sharp portion of the first opening. The light-guiding member is received in the second tube. The computer system is coupled with the light-guiding member of the puncturing instrument and controls a light source to transmit light to the light-guiding member. The light-guiding member receives a reflected spectrum, compares the reflected spectrum with a reference spectrum, and determines a difference between the reflected spectrum and the reference spectrum. The computer system issues a warning message if the difference is larger than a threshold, or receives another reflected spectrum if the difference is not larger than the threshold.
In a form shown, the light-guiding member may include a plurality of parallel fibers that is bonded together as a beam of fiber.
In the form shown, the plurality of parallel fibers includes a first fiber and a plurality of second fibers. The first fiber is adapted to transmit light to the lens. The plurality of second fibers includes outer surfaces coupled with an outer surface of the first fiber, so as to receive the light from the lens.
In the form shown, a first engaging portion may be arranged on an inner surface of the second tube, and the light-guiding member may include a second engaging portion engaged with the first engaging portion. The first engaging portion may be adjacent to the lens.
In the form shown, a first guiding portion may be arranged on an inner surface of the second tube and may extend along a longitudinal axis of the second tube. A second guiding portion is arranged on an outer surface of the light-guiding member. The second guiding portion may be slidably engaged with the first guiding portion.
In the disclosure, a signal processing method of the puncturing equipment is disclosed. The signal processing method may be executed by a computer system and includes receiving a reflected spectrum, comparing the reflected spectrum with a reference spectrum to determine a difference therebetween, and issuing a warning message if the difference is larger than a threshold or receiving another reflected spectrum if the difference is not larger than the threshold.
In another form shown, the threshold is a waist threshold. The reference spectrum includes a first waveform with a first maximum value, and a width of the first waveform at half of the first maximum value is defined as a reference waistline. The reflected spectrum includes a second waveform with a second maximum value, and a width of the second waveform at half of the second maximum value is defined as a reflected waistline. The computer system issues the warning message if the difference between the reference waistline and the reflected waistline is larger than the waist threshold.
In the other form shown, the threshold is a peak threshold. The reference spectrum includes a first waveform having a first peak, a second peak, a third peak, a fourth peak and a fifth peak from left to right. The reflected spectrum includes a second waveform having a first peak, a second peak, a third peak, a fourth peak and a fifth peak from left to right. The computer system issues the warning message if a difference between the first peaks of the reference spectrum and the reflected spectrum, between the second peaks of the reference spectrum and the reflected spectrum, or between the third peaks of the reference spectrum and the reflected spectrum, is larger than the peak threshold.
In the other form shown, the computer system is connected to the light-guiding member of the puncturing instrument through a light cable. The light cable is provided with a light emitting element and at least one image retrieving element. The light emitting element emits the light towards the light-guiding member, and the at least one image retrieving element retrieves the reflected spectrum from the light-guiding member.
In the other form shown, the puncturing instrument further includes an air valve coupled to one end of the puncturing equipment opposite to the gas outlet.
In the other form shown, the puncturing instrument further includes air valve coupled to one end of the puncturing equipment opposite to the gas outlet, so as to regulate an amount of air.
In the other form shown, the puncturing instrument further includes a sheath coupled with an outer surface of the puncturing instrument.
The reference spectrum may be pre-stored in the computer system.
In the above puncturing instrument, the puncturing equipment, and the signal processing method of the puncturing equipment, the optical response of the body tissue can be observed in real time. The observed result may be compared with the reference spectrum. In this regard, a warning message may be issued if an abnormality has been found in order not to cause the internal bleeding of the patient resulting from the injury of the surrounding blood vessels and organs. Advantageously, the probability of a successful puncturing operation can be increased, and the probability of the failure and the incidence of a complication can be reduced. Thus, the puncturing instrument, the puncturing equipment, and the signal processing method of the puncturing equipment according to the embodiment of the disclosure are suitable for use in medical care.
The present disclosure will become more fully understood from the detailed description given hereinafter and the accompanying drawings which are given by way of illustration only, and thus are not limitative of the present disclosure, and wherein:
In the various figures of the drawings, the same numerals designate the same or similar parts. Furthermore, when the terms “first”, “second”, “third”, “fourth”, “inner”, “outer”, “top”, “bottom”, “front”, “rear” and similar terms are used hereinafter, it should be understood that these terms have reference only to the structure shown in the drawings as it would appear to a person viewing the drawings, and are utilized only to facilitate describing the disclosure.
The term “coupling” refers to the intercommunication between two devices via the optical technology, such as the connection between an optical fiber and an optical cable, as it can be readily appreciated by the persons skilled in the art. However, this is not taken as a limited sense.
Referring to
Referring to
Referring to
Referring to
Referring to
Besides, a signal processing method of the puncturing equipment is disclosed according to the disclosure and is executed by the computer system “B.” The method includes receiving the reflected spectrum, determining a difference between the reflected spectrum and the reference spectrum, and issuing a warning message if the difference is larger than a threshold or receiving another reflected spectrum if the difference is not larger than the threshold. The details have been described before so they are not discussed herein again.
The puncturing instrument, the puncturing equipment, and the signal processing method of the puncturing equipment have the following characteristics. The second tube of the puncturing instrument is received in the first tube, and the light-guiding member is received in the second tube. The computer system is coupled with the light-guiding member of the puncturing instrument to control the light transmission from the light source to the light-guiding member. The computer system further receives the reflected spectrum via the light-guiding member and determines a difference between the reflected spectrum and the reference spectrum. If the difference is larger than a threshold, a warning message is issued. Moreover, the puncturing instrument according to the embodiment of the disclosure may be integrated in an existing puncturing equipment. Based on this, when the puncturing equipment is used to perform the puncturing operation, the computer system may issue a warning message if an unexpected situation (such as abdominal adhesion) occurs. Thus, the surgeon can stop the puncturing operation immediately in order not to cause the internal bleeding of the patient resulting from the injury of the surrounding blood vessels and organs. Advantageously, the probability of a successful puncturing operation can be increased, and the probability of the failure and the incidence of a complication can be reduced.
Based on the above, in the puncturing instrument, the puncturing equipment, and the signal processing method of the puncturing equipment, the optical response of the body tissue can be observed in real time. The observed result may be compared with the reference spectrum. In this regard, a warning message may be issued if an abnormality has been found in order not to cause the internal bleeding of the patient resulting from the injury of the surrounding blood vessels and organs. Advantageously, the probability of a successful puncturing operation can be increased, and the probability of the failure and the incidence of a complication can be reduced. Thus, the puncturing instrument, the puncturing equipment, and the signal processing method of the puncturing equipment according to the disclosure are suitable for use in medical care.
Although the disclosure has been described in detail with reference to its presently preferable embodiments, it will be understood by one of ordinary skill in the art that various modifications can be made without departing from the spirit and the scope of the disclosure, as set forth in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
104125815 | Aug 2015 | TW | national |