This disclosure generally relates to waveguides for head-mounted display apparatuses and illumination systems therefor.
Head-worn displays may be arranged to provide fully immersive imagery such as in virtual reality (VR) displays or augmented imagery overlayed over views of the real world such as in augmented reality (AR) displays. If the overlayed imagery is aligned or registered with the real-world image it may be termed Mixed Reality (MR). In VR displays, the optical system is typically opaque to the real world, whereas in AR displays the optical system is partially transmissive to light from the real-world.
The optical systems of AR and VR displays aim to provide images to at least one eye of a user with full colour, high resolution, high luminance and high contrast; and with wide fields of view (angular size of image), large eyebox sizes (the geometry over which the eye can move while having visibility of the full image field of view). Such displays are desirable in thin form factors, low weight and with low manufacturing cost and complexity.
According to a first aspect of the present disclosure, there is provided a near-eye display apparatus comprising: a directional backlight comprising: a waveguide comprising an input end; and an array of light sources disposed at different input positions in a lateral direction across the input end of the waveguide and arranged to input light into the waveguide, the waveguide further comprising first and second, opposed guide surfaces for guiding the light from the light sources along the waveguide, and a reflective end facing the input end for reflecting the light from the light sources back through the waveguide, the first guide surface being arranged to guide light by total internal reflection and the second guide surface having a stepped shape comprising (a) a plurality of facets oriented to extract the light from the light sources, after reflection from the reflective end, out of the waveguide through the first guide surface, and (b) intermediate regions between the facets that are arranged to guide light through the waveguide; a spatial light modulator arranged to modulate the light extracted from the waveguide to form an image; and a magnifying lens having positive optical power, the magnifying lens being arranged to magnify the image formed by the spatial light modulator for the pupil of an eye of a user, and wherein the near-eye display apparatus is arranged to direct the light from the light sources into respective, pupil optical windows distributed across an eyebox in the lateral direction in dependence on the input positions of the light sources. Illumination from the light sources is efficiently directed into the pupil of the eye of the viewer. Power efficiency is advantageously increased. In the case that a battery is provided, then the size of the battery may be reduced. Headset weight may be reduced. Alternatively the equipment may be operated for longer on the original size battery and interval between charges may be increased. The luminous intensity of stray light that is directed to non-imaging surfaces within the near-eye display apparatus is reduced so that image contrast is increased. Thickness of the backlight may be reduced for high luminance output. Heat dissipation may be reduced for high luminance.
The reflective end may be curved. The reflective end may have positive optical power in a lateral direction across the waveguide. The facets of the waveguide may be curved. Advantageously the uniformity of light output across the waveguide may be increased, and uniformity across the eyebox increased. Thickness of the directional backlight may be reduced.
The facets may have negative optical power and may be arranged to direct the light from the light sources to provide respective, virtual illumination optical windows in output directions distributed in the lateral direction in dependence on the input positions of the light sources, and the magnifying lens may be arranged to image the virtual illumination optical windows to form the pupil optical windows. Advantageously efficient illumination of the eyebox may be provided in arrangements wherein the eye relief is greater than the focal length of the magnifying lens.
The near-eye display apparatus further may comprise a Fresnel lens that has negative optical power and may be arranged to direct the light from the light sources to provide respective, virtual illumination optical windows in output directions distributed in the lateral direction in dependence on the input positions of the light sources; and the magnifying lens may be arranged to image the virtual illumination optical windows to form the pupil optical windows. Advantageously efficient illumination of the eyebox may be provided in arrangements wherein the eye relief is greater than the focal length of the magnifying lens. Improved image uniformity and efficiency may be provided in the transverse direction orthogonal to the lateral direction at the eyebox.
The facets may have positive optical power and may be arranged to direct the light from the light sources to provide respective, real illumination optical windows in output directions distributed in the lateral direction in dependence on the input positions of the light sources, and the magnifying lens may be arranged to image the real illumination optical windows to form the pupil optical windows. Advantageously efficient illumination of the eyebox may be provided in arrangements wherein the eye relief is less than the focal length of the magnifying lens.
The near-eye display apparatus may further comprise a Fresnel lens that has positive optical power and may be arranged to direct the light from the light sources to provide respective, real illumination optical windows in output directions distributed in the lateral direction in dependence on the input positions of the light sources; and the magnifying lens may be arranged to image the real illumination optical windows to form the pupil optical windows. Advantageously efficient illumination of the eyebox may be provided in arrangements wherein the eye relief is less than the focal length of the magnifying lens. Improved image uniformity and efficiency may be provided in the transverse direction orthogonal to the lateral direction at the eyebox.
The near-eye display apparatus may further comprise: a pupil detection system arranged to detect the location of the pupil of the eye; and a control system arranged to control the array of light sources to provide illumination of pupil optical windows that illuminate the pupil and not to provide illumination to at least some pupil optical windows that do not illuminate the pupil. Advantageously efficiency of illumination may be increased and stray light reduced so that image contrast is increased.
The directional backlight may further comprise a rear reflector comprising a linear array of reflective facets arranged to reflect light from the light sources, that may be transmitted through the plurality of extraction facets of the waveguide, back through the waveguide to exit through the first guide surface. Advantageously optical efficiency may be increased.
The reflective facets of the rear reflector may be curved. The facets of the waveguide and the reflective facets of the rear reflector may be inclined in the same sense in a common plane orthogonal to said lateral direction. The pupil optical windows provided by light reflected from the rear reflector may be common to the pupil optical windows provided by light output directly from the waveguide. Advantageously improved efficiency and uniformity may be achieved.
The rear reflector may be spaced from the waveguide such that the light from an individual facet of the waveguide may be incident on plural reflective facets of the rear reflector, the rear reflector further comprising intermediate facets extending between the reflective facets of the rear reflector, the intermediate facets being inclined in an opposite sense from the reflective facets of the rear reflector at an angle such that said light from the light sources that may be transmitted through the plurality of facets of the waveguide may be not incident on the intermediate facets. Advantageously Moire artefacts may be reduced and image uniformity increased. Power efficiency may be improved.
The facets of the waveguide may have an inclination that varies across the array of facets. The reflective facets of the rear reflector may have an inclination that varies across the array of reflective facets. Improved uniformity may be achieved in the transverse direction across each pupil optical window. Advantageously image uniformity may be increased.
According to a second aspect of the present disclosure, there is provided a head-worn display apparatus comprising a near-eye display apparatus according to the first aspect that may be arranged to extend across at least one eye of a viewer when the head-worn display apparatus is worn. Advantageously a virtual reality display apparatus may be provided with high uniformity and high efficiency for each eye. Power consumption may be reduced or image brightness increased. High dynamic range (HDR) operation may be achieved. Stray light that reflects from internal parts of the head-worn display apparatus may be reduced, achieving increased image contrast.
Any of the aspects of the present disclosure may be applied in any combination.
Embodiments of the present disclosure may be used in a variety of optical systems. The embodiments may include or work with a variety of projectors, projection systems, optical components, displays, microdisplays, computer systems, processors, self-contained projector systems, visual and/or audio-visual systems and electrical and/or optical devices. Aspects of the present disclosure may be used with practically any apparatus related to optical and electrical devices, optical systems, presentation systems or any apparatus that may contain any type of optical system. Accordingly, embodiments of the present disclosure may be employed in optical systems, devices used in visual and/or optical presentations, visual peripherals and so on and in computing environments and automotive environments.
Before proceeding to the disclosed embodiments in detail, it should be understood that the disclosure is not limited in its application or creation to the details of the particular arrangements shown, because the disclosure is capable of other embodiments. Moreover, aspects of the disclosure may be set forth in different combinations and arrangements to define embodiments unique in their own right. Also, the terminology used herein is for the purpose of description and not of limitation.
These and other advantages and features of the present disclosure will become apparent to those of ordinary skill in the art upon reading this disclosure in its entirety.
Embodiments are illustrated by way of example in the accompanying FIGURES, in which like reference numbers indicate similar parts, and in which:
The structure and operation of various near-eye display apparatuses will now be described. In this description, common elements have common reference numerals. It is noted that the disclosure relating to any element applies to each device in which the same or corresponding element is provided. Accordingly, for brevity such disclosure is not repeated.
It would be desirable to provide a near-eye display apparatus 100 with a thin form factor, large freedom of movement, high resolution, high brightness, high efficiency and wide field of view.
In the present description, a near-eye display apparatus 100 is provided near to an eye 45, to provide light to the pupil 44 of the eye 45 of a viewer 47. In an illustrative embodiment, the eye 45 may be arranged at a nominal viewing distance eR of between 5 mm and 100 mm and preferably between 8 mm and 20 mm from the output surface of the near-eye display apparatus 100. Such displays are distinct from direct view displays wherein the viewing distance is typically greater than 100 mm. The nominal viewing distance eR may be referred to as the eye relief.
The near-eye display apparatus 100 comprises directional backlight 20 and spatial light modulator 48.
In operation, it is desirable that the spatial pixel data provided on the spatial light modulator 48 is directed to the pupil 44 of the eye 45 as angular pixel data. The operation of the magnifying lens 50 will be described further hereinbelow with respect to
The pupil 44 is located in a spatial volume near to the display apparatus 100 commonly referred to as the exit pupil 40, or eyebox. When the pupil 44 is located within the exit pupil 40 at eye relief distance ex, the viewer 47 is provided with a full image without missing parts of the image, that is the image does not appear to be vignetted at the viewer's retina 46.
The shape of the exit pupil 40 is determined at least by the imaging properties and sizes of the magnifying lens 50 and directional backlight 20. The maximum eye relief distance eRmax refers to the maximum distance of the pupil 44 from the display apparatus 100 wherein no image vignetting is present. Increased exit pupil 40 size achieves an increased viewer freedom and an increase in eRmax as will be described further hereinbelow.
The directional backlight 20 comprises an array of light sources 15, a stepped waveguide 1, and a surface relief rear reflector 300. Optionally, the rear reflector 300 may be omitted. Advantageously stray light may be reduced.
In the embodiment of
Stepped waveguide 1 comprises an input end 2. The array of light sources 15 is disposed at different input positions in a lateral direction 195 (x-axis) across the input end 2 of the waveguide 1.
The waveguide 1 further comprises first and second, opposed guide surfaces 6, 8 for guiding light along the waveguide 1. The stepped waveguide 1 may be formed by a moulding process wherein the mould comprises the steps, or may be a structured stepped surface 8 that is applied to a planar tapered waveguide 1 after moulding of the waveguide 1.
A curved mirror 4 faces the input end 2 for reflecting the input light back through the waveguide 1. The curved mirror 4 is an example of the reflective end of the waveguide 1. The curved mirror 4 may be a moulded end of the waveguide 1 and may be coated with a reflective material such as aluminium, silver or a polymer stack such as ESI™ from 3M Corporation. Other examples of reflective end may be Fresnel mirrors as described hereinbelow. The reflective end may be formed as part of the waveguide 1 during moulding, or may be attached to a waveguide 1 after moulding.
The first guide surface 6 is arranged to guide light by total internal reflection and the second guide surface 8 has a stepped shape comprising (a) a plurality of facets 12 oriented to reflect light from the light sources 15, after reflection from the reflective end 4, through the first guide surface 6. The light is guided into illumination optical windows 25 in output directions distributed in the lateral direction 195 to the normal to the first guide surface 8 in dependence on the input positions as indicated by arrows 510. The first guide surface also comprises intermediate regions 10 between the facets 12 that are arranged to guide light through the waveguide 1.
In the present embodiments, the term ‘optical window’ refers to images that are either real images 26 or virtual images 25 of the light sources 15a-n in at least the lateral direction 195. The term ‘optical window’ does not, in the present embodiments, refer to transparent windows, or other physical structures.
The near-eye display apparatus 100 further comprises: a pupil detection system 502 arranged to detect the location of the pupil of the eye. Pupil detection system 502 may comprise, for example, a camera and an infra-red light source that can detect reflections from the eye as it moves. A control system 500 is arranged to control the array of light sources 15a-n to provide illumination of pupil optical windows 26a-n that illuminate the pupil 44 and not to provide illumination to at least some pupil optical windows 26a-n that do not illuminate the pupil 44.
Light source driver 504 is arranged to control the light sources 15 in response to the detected location of the pupil 44.
The present embodiments are arranged to increase the efficiency of illumination of the eyebox 40 and in particular the region around the pupil 44 of the eye 45 by not directing light to regions away from the pupil 44. In operation, increased efficiency of illumination may advantageously achieve various combinations of at least (i) reduced power consumption; (ii) reduced battery size and weight; (iii) reduced heat generation; (iv) increased brightness for increased image realism; (v) reduced stray light to increase image contrast; (vi) increased image uniformity; (vii) low thickness; and (viii) reduced cost.
The structure of the near-eye display apparatus 100 will now be described in further detail.
Full colour spatial light modulator 48A is a transmissive spatial light modulator such as a liquid crystal display comprising red pixels 222R, green pixels 222G and blue pixels 222B arranged in an array in pixel layer 220. Transparent substrates 212A, 216A and polarisers 210A, 218 are arranged on opposing sides respectively of the pixel layer 220. It may be desirable to further increase the contrast ratio of the spatial light modulator 48 arrangement. Optional contrast-increasing spatial light modulator 48B is further provided with pixels 228 provided in layer 220B between transparent substrates 212A, 216A and polarisers 210B, 210A. In operation, the pixels 228 are provided with image information to achieve increased contrast ratio of the output image. Spatial light modulator 48B may be a monochrome LCD, and may have a lower pixel density that the spatial light modulator 48A. Spatial light modulator 48B may have non-rectangular shaped addressable pixels (not illustrated) with at least some edges angled with respect to the pixel edges of spatial light modulator 48A, so that Moiré artefact is produced away from the horizontal and vertical directions to which the eye is most sensitive. The visibility of Moiré artefact between pixel and addressing structures of spatial light modulators 48A and 48B may advantageously be reduced. High dynamic range operation may advantageously be achieved.
In alternative embodiments a small diffusion (not shown) may be introduced between spatial light modulators 48A and spatial light modulator 48B in order to further reduce the visibility of the Moiré artefact. In alternative embodiments the contrast-increasing spatial light modulator 48B may be omitted. Advantageously cost, weight, power consumption and thickness is reduced.
There is a correspondence between the light sources 15a-n and location in the lateral direction 195 of the pupil optical windows 26a-n as will be described further hereinbelow.
Diffusers 5 may be provided to reduce non-uniformities and Moiré in the illumination of the spatial light modulator 48 and the pupil optical windows 26.
In an alternative embodiment (not shown), the rear reflector 300 may be replaced by a light absorber such as black velvet, carbon feather or nano black in order to absorb the light leakage though the stepped surface 8 and prevent stray light from being visible to the eye. Advantageously this may be cheaper than rear reflector 300.
The structure and operation of the waveguide 1 will now be described further.
Considering
The array of light sources 15a-n are disposed at different input positions in a lateral direction 195 across the input end 2 of the waveguide 1 and arranged to input light into the waveguide 1.
The curved mirror 4 (being an example of the reflective end) faces the input end 2 for reflecting the light from the light sources 15a-n back through the waveguide 1 and has positive optical power for light rays 408L, 408R. The reflective end thus has positive optical power in a lateral direction 195 across the waveguide 1.
The centre of curvature C4 of the curved mirror 4 is on the same side of the curved mirror 4 as the light sources 15. Illustrative diverging light rays 408L, 408R from the light source 15a, are reflected from the curved mirror 4 so that light rays 410L, 410R are parallel.
The curved facets 12 are arranged to reflect the light rays 410L, 410R after reflection from the curved mirror 4 and have negative optical power, so that parallel light rays 410L, 410R are output as diverging light rays 402L, 402R. The centre of curvature C12 is on the same side of the curved mirror 4 as the centre of curvature C4. However the optical power is different because the nominal direction of propagation of light rays 410L along the waveguide 1 is reversed. The operation of the curved facets 12 with negative optical power will be described further with reference to
Considering
After reflection, light rays are redirected towards the facets 12 by guiding at the first light guiding surface 6 and the intermediate regions 10.
On the right side of the waveguide 1, some of the light rays 402R are reflected by total internal reflection or Fresnel reflection at the facets 12, and output through the first light guiding surface 6. Other light rays 404R are transmitted by the facets 12 and incident onto the rear reflector 300. As will be described hereinbelow, the prismatic surface of the rear reflector 300 is arranged to direct the light rays 404R to the same illumination optical window 25 as the light rays 402R, that is rays 402R, 404R are parallel.
For the left side of the waveguide 1, light rays 402L, 404L are similarly provided, however the light rays 402L, 404L diverge from the light rays 402R, 404R. Such divergence provides an illumination optical window 25 that is a virtual image, that is the waveguide 1 is arranged between the output side and the illumination optical window 25 as will be described further hereinbelow.
Considering
Arrangements of light source 15 array at the input side will now be described.
The light sources may be LEDs 15 that are arranged with uniform spacing and may have light-emitting areas that have gaps 19 arranged therebetween. Such gaps 19 may be smoothed from the pupil optical windows 26 by means of diffusers 5 of the optical stack. The gaps 19 may be a small fraction, for example less than 50% of the width of the emitting regions. And may be formed from silicon walls for example, with the light sources 15a-n forming an integrated body.
It may be desirable to reduce the visibility of gaps 19 that may be imaged to the pupil optical windows 26.
In
In comparison to the arrangement of
In the alternative embodiment of
The light sources 15Aa-n may be provided at least in part by micro-LEDs, that is light-emitting material such as gallium nitride with a chip size that is less than 300 micrometres, preferably less than 200 micrometres, and more preferably less than 100 micrometres. Advantageously light cones density 26Aa-n with high density in the lateral direction may be achieved.
The light sources 15Ba-n may be provided by larger chip sizes for example greater than 300 micrometres. Advantageously the cost and complexity of the light source packages 16 and control system may be reduced.
In other embodiments the height of the light-emitting area 17 of the light sources 15a-n (in the direction orthogonal to the lateral direction) may vary across the input direction. Light sources 15 with high luminous flux output may be driven with reduced current. Advantageously output efficiency may be increased.
In other embodiments, the width in the lateral direction of the emitting regions 17 of the light sources 15a-n may be different across the input side 2 so that the pitch of pupil optical windows 26 varies with pupil 44 location in the eyebox 40. Advantageously non-uniformities of illumination towards the edge of the eyebox 40 may be reduced.
The width of light sources 15 may be increased in regions of the input side where low resolution of addressability of pupil optical windows 26 is acceptable. Advantageously cost and complexity may be reduced. The width of light sources 15 may be reduced in regions of the input side 2 where high resolution of addressability of pupil optical windows 26 is desirable. Advantageously increased precision of pupil optical windows 26 may be provided.
The light sources 15a-n may be driven with different currents to achieve desirable variation of luminance with eye position in the eyebox. The different currents may be arranged to provide compensation for non-uniform luminance from the magnifying lens with eyebox location. Advantageously image uniformity may be improved.
Light sources 15 may include at least one additional infra-red light source 117 such as an LED array which is operated to produce an infra-red reflection from the eye 45 and co-operates with the pupil detection system 502 as described elsewhere herein.
The structure and operation of the rear-reflector will now be further described.
The rear reflector 300 comprises a linear array of reflective facets 312 arranged to reflect light from the light sources 15a-n, that is transmitted through the plurality of facets 12 of the waveguide 1, back through the waveguide 1 to exit through the first guide surface 6.
The facets 12 of the waveguide 1 and the reflective facets 312 of the rear reflector 300 are inclined in the same sense in a common plane containing the y-z axes orthogonal to said lateral direction 195 that is the x-axis.
The prism angle β may be provided such that the light rays 404 with maximum luminance are parallel to the light rays 402 with maximum luminance as will be described hereinbelow with respect to
The rear reflector 300 may further comprise return facets 310. The rear reflector 300 is spaced from the waveguide 1 such that the light 404 from an individual facet 12 of the waveguide 1 is incident on plural reflective facets 312 of the rear reflector 300, the rear reflector 300 further comprising intermediate facets 310 extending between the reflective facets 312 of the rear reflector 300, the intermediate facets being inclined in an opposite sense from the reflective facets 312 of the rear reflector 300 at an angle such that said light 404 from the light sources 15 that is transmitted through the plurality of facets 12 of the waveguide 1 is not incident on the intermediate facets 310.
The return facets 310 may be arranged to provide polarisation recirculation as described hereinbelow with respect to
The rear reflector 300 may be formed as a prismatic surface further comprising a reflective coating 315, such as aluminum or silver.
FIGURE SC is a schematic graph illustrating variation of luminous intensity 330 with output angle 332 in the transverse direction 197. Features of the embodiment of
Profile 354 provides an illustrative luminous intensity profile for waveguide 1 facet 12 inclination angle α of 55°, rear reflector facet 312 angle β of 53° and diffuser S diffusion angle γ of 6°. Profile 354 has an on-axis gain of approximately 1.5 in comparison to a Lambertian distribution 350. Increasing the diffusion angle γ provides a more uniform peak shape for profile 356. The peak luminous intensity may be substantially maximised for on-axis viewing. In operation, the magnifying lens provides a transverse direction 197(26) across the pupil optical window 26. Advantageously output light is directed efficiently to the pupil optical window 26.
Polarisation recirculation of the rear reflector will now be described.
Light rays 402 propagating in the waveguide of waveguide 1 comprise unpolarized light state 430. Light rays reflected by total internal reflection from light extraction feature 12 remain with unpolarized state 430 and incident on reflective polarizer 208 arranged on the input side of the polariser 210 of the spatial light modulator 48.
Light rays 442 transmitted through reflective polarizer 208 are directed through retarder 206 which may be a half-wave retarder with appropriately oriented optical axis direction 207 arranged to direct the first polarization component 236 on to the transmission axis of clean-up input polarizer 210 of spatial light modulator 48.
Returning to the light rays 444 reflected by reflective polarizer 402 as rejected light, said light rays 444 are transmitted through waveguide 1 and incident on the prismatic reflective film 300. The prismatic reflective film 300 may comprise a linear array of pairs of reflective corner facets 310, 312. The corner facets 310, 312 are inclined in opposite senses in a common plane so that the individual light rays 444 undergo a reflection from a pair of the corner facets 310, 312. The light rays 444 are then transmitted by the reflective polariser 208, retarder 206 and input polariser 210 (with transmission axis 211) of the spatial light modulator 48.
The operation of the waveguide 1 and light reflections from the rear reflector 300 is described further in U.S. Pat. Nos. 9,519,153, 10,054,732, and 10,425,635, all of which are herein incorporated by reference in their entireties.
Advantageously, the total display brightness may be increased or light source power reduced at the same brightness, reducing power consumption and extending battery life of the headset.
Magnifying lens 50 has positive optical power, the magnifying lens 50 being arranged to magnify the image formed by the spatial light modulator 48 for the pupil 44 of an eye 45 of a user 47.
Magnifying lens 50 is arranged to magnify the image on the spatial light modulator 48 to the eye by directing appropriate light rays to the pupil 44. The lens of the viewer's eye 45 relays the angular spatial data to spatial pixel data at the retina 46 of the eye 45 such that an image is provided by the display apparatus 100 to the viewer 47.
In operation, top pixel 620T of the spatial light modulator 48 provides light rays 662T, central pixel 620C provides light rays 662C and bottom pixel 620B provides light rays 662B. The eye of the viewer 45 collects the light rays 662T, 662C, 662B and produces an image on the retina 46 of the eye 45 such that an image is perceived with angular size that is magnified in comparison to the angular size of the spatial light modulator 48.
Further in the present embodiments, light sources 15 are imaged by the directional backlight 20 to illumination optical windows 25 and then by magnifying lens 50 to pupil optical windows 26 as described elsewhere herein. The magnifying lens achieves (a) light rays to achieve a magnified image on the retina 26 and (b) imaging of the illumination optical window 25 to provide efficient illumination of the pupil 44, wherein the directional backlight 20 provides desirable illumination optical windows 25.
The imaging of the light sources 15 to the pupil optical windows 26 will now be further described.
In the embodiments of
The facets 12 have negative optical power and are arranged to direct the light from the light sources 15a-n to provide respective, virtual illumination optical windows 25a-n in output directions distributed in the lateral direction 195 in dependence on the input positions of the light sources 15a-n, and the magnifying lens 50 is arranged to image the virtual illumination optical windows 25a-n to form the pupil optical windows 26a-n.
Considering light source 15a, virtual illumination optical window 25a is provided by the directional backlight 20 and the magnifying lens 50 images the virtual illumination optical window 25a to a real pupil optical window 26 at or near the pupil 44 of the eye 45. The near-eye display apparatus 100 is thus arranged to direct the light from the light sources 15a-n into respective, pupil optical windows 26a-n distributed across an eyebox 40 in the lateral direction 195 in dependence on the input positions of the light sources 15a-n for arrangements wherein the eye relief eR is greater than the focal length f50 of the magnifying lens 50.
In the embodiments of
The facets 12 have positive optical power. Thus the centre of curvature C12 of the facets 12 is on the opposite side of the curved mirror 4 to the centre of curvature C4 and light rays 402L, 404L, 402R, 404R are converging after output from the directional backlight 20.
The facets 4 are arranged to direct the light from the light sources 15a-n to provide respective, real illumination optical windows 25a-n in output directions distributed in the lateral direction 195 in dependence on the input positions of the light sources 15a-n. The real illumination optical windows 25a-n are located at a greater distance from the magnifying lens 50 than the eye relief eR.
The magnifying lens 50 is arranged to image the real illumination optical windows 25a-n to form the pupil optical windows 26a-n.
Considering light source 15a, real illumination optical window 25a is provided by the directional backlight 20 and the magnifying lens 50 images the real illumination optical window 25a to a real pupil optical window 26 at or near the pupil 44 of the eye 45. The near-eye display apparatus 100 is thus arranged to direct the light from the light sources 15a-n into respective, pupil optical windows 26a-n distributed across an eyebox 40 in the lateral direction 195 in dependence on the input positions of the light sources 15a-n for arrangements wherein the eye relief eR is less than the focal length f50 of the magnifying lens 50.
In the embodiment wherein f50 is greater than eR then in the transverse direction 197 orthogonal to the lateral direction at the pupil 44, the magnifying lens 50 provides optical window 26(197) which is behind the eye 45, and the viewer sees an image in the vertical direction with a luminous intensity profile that varies across the image seen on the retina 46.
By way of comparison, in the alternative embodiment of
The inclination angle α of the facets 12 and inclination angle β of the reflective facets 312 each vary with location along the y-axis such that a common luminous intensity is directed towards an illumination optical window 25(197) in the transverse direction 197. The magnifying lens 50 then provides a pupil optical window 26(197) at the pupil 44. The eye 45 secs the same luminance across the display in the transverse direction 197. Advantageously uniformity is increased and efficiency increased.
It may be desirable to reduce the complexity of the facets 12 of the waveguide 1 and the reflective facets 312 of the rear reflector 300.
In the alternative embodiment of
In comparison to
Illustrative embodiments will now be described using conjugate imaging diagrams to illustrate the imaging of one of the light sources of the array of light sources 15.
The conjugate imaging arrangements described herein illustrate the optical imaging of the directional backlight 20 and magnifying lens 50 of the light sources 15a-n to the pupil optical windows 26a-n by unfolding the optical system.
In the alternative embodiment of
The light source 15 has a pitch P15 in the array of light sources and is used to represent the object of the conjugate imaging system. The pupil optical window 26 has a pitch P26 in the lateral direction 195 and represents the image of the conjugate imaging system.
The curved reflective end 4 of the waveguide 1 is represented in the conjugate imaging diagram as a positive lens 4 with focal length f4.
The facets 12 are represented in the conjugate imaging diagram as a negative lens 12 with focal length f12, wherein the facets 12 are curved with a negative power and have the same direction of curvature as the curved reflective end 4 of the waveguide 1, for example as illustrated in
The magnifying lens 50 is represented in the conjugate imaging diagram as a positive lens 50 with focal length f50.
In operation, light rays from the light source 15 are collimated by the curved reflective end 4; that is the light sources are arranged in the focal plane of the curved reflective end 4 with radius R for a waveguide of length L where:
R4˜2·L eqn. 1
The collimated light rays are then directed onto the curved facets 12 that have negative optical power to provide virtual illumination optical window 25 that is arranged to be imaged by the magnifying lens 50 with focal length f50 to the pupil optical window 26.
The pitch P25 of the virtual illumination optical window 25 is given by:
P25=P15·f12/f4 eqn. 3
The focal length f12 arising from the curvature R12 of the curved facets 12 is arranged to provide imaging of the virtual optical window 25 to the pupil optical window 26 and are both given by:
The magnification of the LED of the light source array 15 is given by:
An illustrative embodiment is shown in TABLE 1.
Table 1 illustrates that a high resolution optical window may be provided at the pupil of the eye with an LED array with desirable pitch P26 of pupil optical windows 26. Across a pupil 44 of diameter 4 mm, the light source array 15 may be provided for example with between five and eight pupil optical windows 26 illuminated by respective light sources 15, so that the pupil 44 is overfilled to achieve image uniformity and movement in the eyebox within the response time of the control system 500 to adjust the light sources 15 that are illuminated.
In the embodiments of
In
In the alternative embodiments of
In
In other embodiments, not shown, the imaging of the optical window in the lateral direction 195 may be provided by the facets 12 and the imaging of the optical window in the transverse direction 197 may be provided by a cylindrical Fresnel lens 60. Advantageously uniformity may be increased.
Arrangements of magnifying lens will now be described.
Catadioptric magnifying lens 50 comprises reflective polariser 74 arranged on a plane input surface 52 of the magnifying lens 50. Curved surface 54 comprises a half mirror coating 55 formed on its surface, which may be a deposited layer of reflective material such as aluminium. Quarter waveplate 72 is arranged between the reflective polariser 74 and curved surface 54.
In operation, output light rays 400 from the backlight 20 have a polarisation state 900 provided by the polariser 218 of the spatial light modulator 48. Polarisation state 900 is transmitted by the reflective polariser 74 as polarisation state 902 and converted to circular polarisation state 904. After reflection from the half-silvered mirror 55 at the curved surface 54, the light ray 400 is provided with optical power, and also with opposite-handed circular polarisation state 906. Passing back through the quarter waveplate 72 provides polarisation state 908 that is reflected from reflective polariser 74. The light ray then passes again through the quarter waveplate 72 with polarisation state 910 and some light is transmitted as output light from the half mirror coating with some refractive power. The embodiment of
In the alternative embodiment of
Pupil detection systems 502, 504 may be provided for each eye 45L, 45R of the user 47 and luminance matching achieved between left and right eye pupils 44L, 44R by control of respective light source arrays 15L, 15R. Advantageously image uniformity and comfort may be increased.
In an alternative embodiment only one of the near-eye display apparatuses 100R, 100L may be provided while the other eye sees the external environment. Advantageously the visibility of the external environment is increased and cost and weight reduced.
While various embodiments in accordance with the principles disclosed herein have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of this disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with any claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages.
Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the embodiment(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Technical Field,” the claims should not be limited by the language chosen under this heading to describe the so-called field. Further, a description of a technology in the “Background” is not to be construed as an admission that certain technology is prior art to any embodiment(s) in this disclosure. Neither is the “Summary” to be considered as a characterization of the embodiment(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple embodiments may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the embodiment(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
1128979 | Hess | Feb 1915 | A |
1970311 | Ives | Aug 1934 | A |
2133121 | Stearns | Oct 1938 | A |
2247969 | Stewart | Jul 1941 | A |
2480178 | Zinberg | Aug 1949 | A |
2810905 | Barlow | Oct 1957 | A |
3409351 | Winnek | Nov 1968 | A |
3715154 | Bestenreiner | Feb 1973 | A |
4057323 | Ward | Nov 1977 | A |
4528617 | Blackington | Jul 1985 | A |
4542958 | Young | Sep 1985 | A |
4804253 | Stewart | Feb 1989 | A |
4807978 | Grinberg et al. | Feb 1989 | A |
4829365 | Eichenlaub | May 1989 | A |
4914553 | Hamada et al. | Apr 1990 | A |
5050946 | Hathaway et al. | Sep 1991 | A |
5278608 | Taylor et al. | Jan 1994 | A |
5347644 | Sedlmayr | Sep 1994 | A |
5349419 | Taguchi et al. | Sep 1994 | A |
5459592 | Shibatani et al. | Oct 1995 | A |
5466926 | Sasano et al. | Nov 1995 | A |
5510831 | Mayhew | Apr 1996 | A |
5528720 | Winston et al. | Jun 1996 | A |
5581402 | Taylor | Dec 1996 | A |
5588526 | Fantone et al. | Dec 1996 | A |
5688035 | Kashima et al. | Nov 1997 | A |
5697006 | Taguchi et al. | Dec 1997 | A |
5703667 | Ochiai | Dec 1997 | A |
5727107 | Umemoto et al. | Mar 1998 | A |
5771066 | Barnea | Jun 1998 | A |
5796451 | Kim | Aug 1998 | A |
5808792 | Woodgate et al. | Sep 1998 | A |
5850580 | Taguchi et al. | Dec 1998 | A |
5875055 | Morishima et al. | Feb 1999 | A |
5896225 | Chikazawa | Apr 1999 | A |
5903388 | Sedlmayr | May 1999 | A |
5933276 | Magee | Aug 1999 | A |
5956001 | Sumida et al. | Sep 1999 | A |
5959664 | Woodgate | Sep 1999 | A |
5959702 | Goodman | Sep 1999 | A |
5969850 | Harrold et al. | Oct 1999 | A |
5971559 | Ishikawa et al. | Oct 1999 | A |
6008484 | Woodgate et al. | Dec 1999 | A |
6014164 | Woodgate et al. | Jan 2000 | A |
6023315 | Harrold et al. | Feb 2000 | A |
6044196 | Winston et al. | Mar 2000 | A |
6055013 | Woodgate et al. | Apr 2000 | A |
6061179 | Inoguchi et al. | May 2000 | A |
6061489 | Ezra et al. | May 2000 | A |
6064424 | Berkel et al. | May 2000 | A |
6075557 | Holliman et al. | Jun 2000 | A |
6094216 | Taniguchi et al. | Jul 2000 | A |
6108059 | Yang | Aug 2000 | A |
6118584 | Berkel et al. | Sep 2000 | A |
6128054 | Schwarzenberger | Oct 2000 | A |
6144118 | Cahill et al. | Nov 2000 | A |
6172723 | Inoue et al. | Jan 2001 | B1 |
6199995 | Umemoto et al. | Mar 2001 | B1 |
6219113 | Takahara | Apr 2001 | B1 |
6224214 | Martin et al. | May 2001 | B1 |
6232592 | Sugiyama | May 2001 | B1 |
6256447 | Laine | Jul 2001 | B1 |
6262786 | Perlo et al. | Jul 2001 | B1 |
6295109 | Kubo et al. | Sep 2001 | B1 |
6302541 | Grossmann | Oct 2001 | B1 |
6305813 | Lekson et al. | Oct 2001 | B1 |
6335999 | Winston et al. | Jan 2002 | B1 |
6373637 | Gulick et al. | Apr 2002 | B1 |
6377295 | Woodgate et al. | Apr 2002 | B1 |
6422713 | Fohl et al. | Jul 2002 | B1 |
6456340 | Margulis | Sep 2002 | B1 |
6464365 | Gunn et al. | Oct 2002 | B1 |
6476850 | Erbey | Nov 2002 | B1 |
6481849 | Martin et al. | Nov 2002 | B2 |
6654156 | Crossland et al. | Nov 2003 | B1 |
6663254 | Ohsumi | Dec 2003 | B2 |
6724452 | Takeda et al. | Apr 2004 | B1 |
6731355 | Miyashita | May 2004 | B2 |
6736512 | Balogh | May 2004 | B2 |
6798406 | Jones et al. | Sep 2004 | B1 |
6801243 | Berkel | Oct 2004 | B1 |
6816158 | Lemelson et al. | Nov 2004 | B1 |
6825985 | Brown et al. | Nov 2004 | B2 |
6847354 | Vranish | Jan 2005 | B2 |
6847488 | Travis | Jan 2005 | B2 |
6859240 | Brown et al. | Feb 2005 | B1 |
6867828 | Taira et al. | Mar 2005 | B2 |
6870671 | Travis | Mar 2005 | B2 |
6883919 | Travis | Apr 2005 | B2 |
7052168 | Epstein et al. | May 2006 | B2 |
7058252 | Woodgate et al. | Jun 2006 | B2 |
7073933 | Gotoh et al. | Jul 2006 | B2 |
7091931 | Yoon | Aug 2006 | B2 |
7101048 | Travis | Sep 2006 | B2 |
7136031 | Lee et al. | Nov 2006 | B2 |
7215391 | Kuan et al. | May 2007 | B2 |
7215415 | Maehara et al. | May 2007 | B2 |
7215475 | Woodgate et al. | May 2007 | B2 |
7227567 | Beck et al. | Jun 2007 | B1 |
7239293 | Perlin et al. | Jul 2007 | B2 |
7365908 | Dolgoff | Apr 2008 | B2 |
7375886 | Lipton et al. | May 2008 | B2 |
7410286 | Travis | Aug 2008 | B2 |
7430358 | Qi et al. | Sep 2008 | B2 |
7492346 | Manabe et al. | Feb 2009 | B2 |
7528893 | Schultz et al. | May 2009 | B2 |
7545429 | Travis | Jun 2009 | B2 |
7587117 | Winston et al. | Sep 2009 | B2 |
7614777 | Koganezawa et al. | Nov 2009 | B2 |
7660047 | Travis et al. | Feb 2010 | B1 |
7750981 | Shestak et al. | Jul 2010 | B2 |
7750982 | Nelson et al. | Jul 2010 | B2 |
7771102 | Iwasaki | Aug 2010 | B2 |
7798699 | Laitinen et al. | Sep 2010 | B2 |
7944428 | Travis | May 2011 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7976208 | Travis | Jul 2011 | B2 |
8016475 | Travis | Sep 2011 | B2 |
8179361 | Sugimoto et al. | May 2012 | B2 |
8216405 | Emerton et al. | Jul 2012 | B2 |
8223296 | Lee et al. | Jul 2012 | B2 |
8325295 | Sugita et al. | Dec 2012 | B2 |
8354806 | Travis et al. | Jan 2013 | B2 |
8477261 | Travis et al. | Jul 2013 | B2 |
8502253 | Min | Aug 2013 | B2 |
8534901 | Panagotacos et al. | Sep 2013 | B2 |
8556491 | Lee | Oct 2013 | B2 |
8651725 | Ie et al. | Feb 2014 | B2 |
8684588 | Ajichi et al. | Apr 2014 | B2 |
8714804 | Kim et al. | May 2014 | B2 |
8736967 | Browne et al. | May 2014 | B1 |
8752995 | Park | Jun 2014 | B2 |
8760762 | Kelly et al. | Jun 2014 | B1 |
8926112 | Uchiike et al. | Jan 2015 | B2 |
8942434 | Karakotsios et al. | Jan 2015 | B1 |
9188731 | Woodgate et al. | Nov 2015 | B2 |
9197884 | Lee et al. | Nov 2015 | B2 |
9350980 | Robinson et al. | May 2016 | B2 |
9519153 | Robinson et al. | Dec 2016 | B2 |
10054732 | Robinson et al. | Aug 2018 | B2 |
10191196 | Morozov | Jan 2019 | B2 |
10425635 | Woodgate et al. | Sep 2019 | B2 |
20010001566 | Moseley et al. | May 2001 | A1 |
20010050686 | Allen | Dec 2001 | A1 |
20020018299 | Daniell | Feb 2002 | A1 |
20020113246 | Nagai et al. | Aug 2002 | A1 |
20020113866 | Taniguchi et al. | Aug 2002 | A1 |
20030046839 | Oda et al. | Mar 2003 | A1 |
20030137738 | Ozawa et al. | Jul 2003 | A1 |
20030137821 | Gotoh et al. | Jul 2003 | A1 |
20040008877 | Leppard et al. | Jan 2004 | A1 |
20040015729 | Elms et al. | Jan 2004 | A1 |
20040021809 | Sumiyoshi et al. | Feb 2004 | A1 |
20040042233 | Suzuki et al. | Mar 2004 | A1 |
20040046709 | Yoshino | Mar 2004 | A1 |
20040105264 | Spero | Jun 2004 | A1 |
20040108971 | Waldern et al. | Jun 2004 | A1 |
20040109303 | Olczak | Jun 2004 | A1 |
20040135741 | Tomisawa et al. | Jul 2004 | A1 |
20040170011 | Kim et al. | Sep 2004 | A1 |
20040263968 | Kobayashi et al. | Dec 2004 | A1 |
20040263969 | Lipton et al. | Dec 2004 | A1 |
20050007753 | Hees et al. | Jan 2005 | A1 |
20050094295 | Yamashita et al. | May 2005 | A1 |
20050110980 | Maehara et al. | May 2005 | A1 |
20050135116 | Epstein et al. | Jun 2005 | A1 |
20050174768 | Conner | Aug 2005 | A1 |
20050180167 | Hoelen et al. | Aug 2005 | A1 |
20050190180 | Jin et al. | Sep 2005 | A1 |
20050190345 | Dubin et al. | Sep 2005 | A1 |
20050237488 | Yamasaki et al. | Oct 2005 | A1 |
20050254127 | Evans et al. | Nov 2005 | A1 |
20050264717 | Chien et al. | Dec 2005 | A1 |
20050274956 | Bhat | Dec 2005 | A1 |
20050276071 | Sasagawa et al. | Dec 2005 | A1 |
20050280637 | Ikeda et al. | Dec 2005 | A1 |
20060002678 | Weber et al. | Jan 2006 | A1 |
20060012845 | Edwards | Jan 2006 | A1 |
20060056166 | Yeo et al. | Mar 2006 | A1 |
20060114664 | Sakata et al. | Jun 2006 | A1 |
20060132423 | Travis | Jun 2006 | A1 |
20060139447 | Unkrich | Jun 2006 | A1 |
20060158729 | Vissenberg et al. | Jul 2006 | A1 |
20060176912 | Anikitchev | Aug 2006 | A1 |
20060203200 | Koide | Sep 2006 | A1 |
20060215129 | Alasaarela et al. | Sep 2006 | A1 |
20060221642 | Daiku | Oct 2006 | A1 |
20060227427 | Dolgoff | Oct 2006 | A1 |
20060244918 | Cossairt et al. | Nov 2006 | A1 |
20060250580 | Silverstein et al. | Nov 2006 | A1 |
20060262376 | Mather et al. | Nov 2006 | A1 |
20060269213 | Hwang et al. | Nov 2006 | A1 |
20060284974 | Lipton et al. | Dec 2006 | A1 |
20060291053 | Robinson et al. | Dec 2006 | A1 |
20060291243 | Niioka et al. | Dec 2006 | A1 |
20070008406 | Shestak et al. | Jan 2007 | A1 |
20070013624 | Bourhill | Jan 2007 | A1 |
20070025680 | Winston et al. | Feb 2007 | A1 |
20070035829 | Woodgate et al. | Feb 2007 | A1 |
20070035964 | Olczak | Feb 2007 | A1 |
20070081110 | Lee | Apr 2007 | A1 |
20070085105 | Beeson et al. | Apr 2007 | A1 |
20070109400 | Woodgate et al. | May 2007 | A1 |
20070109401 | Lipton et al. | May 2007 | A1 |
20070115551 | Spilman et al. | May 2007 | A1 |
20070115552 | Robinson et al. | May 2007 | A1 |
20070153160 | Lee et al. | Jul 2007 | A1 |
20070183466 | Son et al. | Aug 2007 | A1 |
20070188667 | Schwerdtner | Aug 2007 | A1 |
20070189701 | Chakmakjian et al. | Aug 2007 | A1 |
20070223251 | Liao | Sep 2007 | A1 |
20070223252 | Lee et al. | Sep 2007 | A1 |
20070279554 | Kowarz et al. | Dec 2007 | A1 |
20070279727 | Gandhi et al. | Dec 2007 | A1 |
20080079662 | Saishu et al. | Apr 2008 | A1 |
20080084519 | Brigham et al. | Apr 2008 | A1 |
20080086289 | Brott | Apr 2008 | A1 |
20080128728 | Nemchuk et al. | Jun 2008 | A1 |
20080225205 | Travis | Sep 2008 | A1 |
20080259012 | Fergason | Oct 2008 | A1 |
20080259643 | Ijzerman et al. | Oct 2008 | A1 |
20080291359 | Miyashita | Nov 2008 | A1 |
20080297431 | Yuuki et al. | Dec 2008 | A1 |
20080297459 | Sugimoto et al. | Dec 2008 | A1 |
20080304282 | Mi et al. | Dec 2008 | A1 |
20080316768 | Travis | Dec 2008 | A1 |
20090016057 | Rinko | Jan 2009 | A1 |
20090040426 | Mather et al. | Feb 2009 | A1 |
20090067156 | Bonnett et al. | Mar 2009 | A1 |
20090109705 | Pakhchyan et al. | Apr 2009 | A1 |
20090128735 | Larson et al. | May 2009 | A1 |
20090135623 | Kunimochi | May 2009 | A1 |
20090140656 | Kohashikawa et al. | Jun 2009 | A1 |
20090160757 | Robinson | Jun 2009 | A1 |
20090167651 | Minaño et al. | Jul 2009 | A1 |
20090168459 | Holman et al. | Jul 2009 | A1 |
20090174700 | Daiku | Jul 2009 | A1 |
20090174840 | Lee et al. | Jul 2009 | A1 |
20090190072 | Nagata et al. | Jul 2009 | A1 |
20090190079 | Saitoh | Jul 2009 | A1 |
20090207629 | Fujiyama et al. | Aug 2009 | A1 |
20090225380 | Schwerdtner et al. | Sep 2009 | A1 |
20090278936 | Pastoor et al. | Nov 2009 | A1 |
20090290203 | Schwerdtner | Nov 2009 | A1 |
20090315915 | Dunn et al. | Dec 2009 | A1 |
20100034987 | Fujii et al. | Feb 2010 | A1 |
20100040280 | McKnight | Feb 2010 | A1 |
20100053771 | Travis et al. | Mar 2010 | A1 |
20100053938 | Kim et al. | Mar 2010 | A1 |
20100091254 | Travis et al. | Apr 2010 | A1 |
20100165598 | Chen et al. | Jul 2010 | A1 |
20100177387 | Travis et al. | Jul 2010 | A1 |
20100182542 | Nakamoto et al. | Jul 2010 | A1 |
20100188438 | Kang | Jul 2010 | A1 |
20100188602 | Feng | Jul 2010 | A1 |
20100214135 | Bathiche et al. | Aug 2010 | A1 |
20100220260 | Sugita et al. | Sep 2010 | A1 |
20100231498 | Large et al. | Sep 2010 | A1 |
20100271838 | Yamaguchi | Oct 2010 | A1 |
20100277575 | Ismael et al. | Nov 2010 | A1 |
20100278480 | Vasylyev | Nov 2010 | A1 |
20100289870 | Leister | Nov 2010 | A1 |
20100295920 | McGowan | Nov 2010 | A1 |
20100295930 | Ezhov | Nov 2010 | A1 |
20100300608 | Emerton et al. | Dec 2010 | A1 |
20100302135 | Larson et al. | Dec 2010 | A1 |
20100309296 | Harrold et al. | Dec 2010 | A1 |
20100328438 | Ohyama et al. | Dec 2010 | A1 |
20110013417 | Saccomanno et al. | Jan 2011 | A1 |
20110019112 | Dolgoff | Jan 2011 | A1 |
20110032483 | Hruska et al. | Feb 2011 | A1 |
20110032724 | Kinoshita | Feb 2011 | A1 |
20110043142 | Travis et al. | Feb 2011 | A1 |
20110043501 | Daniel | Feb 2011 | A1 |
20110044056 | Travis et al. | Feb 2011 | A1 |
20110044579 | Travis et al. | Feb 2011 | A1 |
20110051237 | Hasegawa et al. | Mar 2011 | A1 |
20110187293 | Travis | Aug 2011 | A1 |
20110187635 | Lee et al. | Aug 2011 | A1 |
20110188120 | Tabirian et al. | Aug 2011 | A1 |
20110199459 | Barenbrug et al. | Aug 2011 | A1 |
20110211142 | Kashiwagi et al. | Sep 2011 | A1 |
20110216266 | Travis | Sep 2011 | A1 |
20110221998 | Adachi et al. | Sep 2011 | A1 |
20110228183 | Hamagishi | Sep 2011 | A1 |
20110228562 | Travis et al. | Sep 2011 | A1 |
20110235359 | Liu et al. | Sep 2011 | A1 |
20110242150 | Song et al. | Oct 2011 | A1 |
20110242277 | Do et al. | Oct 2011 | A1 |
20110242298 | Bathiche et al. | Oct 2011 | A1 |
20110255303 | Nichol et al. | Oct 2011 | A1 |
20110267563 | Shimizu | Nov 2011 | A1 |
20110285927 | Schultz et al. | Nov 2011 | A1 |
20110292321 | Travis et al. | Dec 2011 | A1 |
20110310232 | Wilson et al. | Dec 2011 | A1 |
20120002136 | Nagata et al. | Jan 2012 | A1 |
20120002295 | Dobschal et al. | Jan 2012 | A1 |
20120008067 | Mun et al. | Jan 2012 | A1 |
20120013720 | Kadowaki et al. | Jan 2012 | A1 |
20120056971 | Kumar et al. | Mar 2012 | A1 |
20120062991 | Krijn et al. | Mar 2012 | A1 |
20120075285 | Oyagi et al. | Mar 2012 | A1 |
20120081920 | Ie et al. | Apr 2012 | A1 |
20120086776 | Lo | Apr 2012 | A1 |
20120092435 | Wohlert | Apr 2012 | A1 |
20120106193 | Kim et al. | May 2012 | A1 |
20120127573 | Robinson et al. | May 2012 | A1 |
20120154450 | Aho et al. | Jun 2012 | A1 |
20120169838 | Sekine | Jul 2012 | A1 |
20120182482 | Byoun et al. | Jul 2012 | A1 |
20120206050 | Spero | Aug 2012 | A1 |
20120243204 | Robinson | Sep 2012 | A1 |
20120243261 | Yamamoto et al. | Sep 2012 | A1 |
20120293721 | Ueyama | Nov 2012 | A1 |
20120294579 | Chen | Nov 2012 | A1 |
20120299913 | Robinson et al. | Nov 2012 | A1 |
20120314145 | Robinson | Dec 2012 | A1 |
20120327172 | El-Saban et al. | Dec 2012 | A1 |
20130101253 | Popovich et al. | Apr 2013 | A1 |
20130107340 | Wong et al. | May 2013 | A1 |
20130127861 | Gollier | May 2013 | A1 |
20130135588 | Popovich et al. | May 2013 | A1 |
20130156265 | Hennessy | Jun 2013 | A1 |
20130169701 | Whitehead et al. | Jul 2013 | A1 |
20130170004 | Futterer | Jul 2013 | A1 |
20130222384 | Futterer | Aug 2013 | A1 |
20130230136 | Sakaguchi et al. | Sep 2013 | A1 |
20130235561 | Etienne et al. | Sep 2013 | A1 |
20130307831 | Robinson et al. | Nov 2013 | A1 |
20130307946 | Robinson et al. | Nov 2013 | A1 |
20130308339 | Woodgate et al. | Nov 2013 | A1 |
20130321599 | Harrold et al. | Dec 2013 | A1 |
20130328866 | Woodgate et al. | Dec 2013 | A1 |
20130335821 | Robinson et al. | Dec 2013 | A1 |
20140009508 | Woodgate et al. | Jan 2014 | A1 |
20140016354 | Lee et al. | Jan 2014 | A1 |
20140022619 | Woodgate et al. | Jan 2014 | A1 |
20140036361 | Woodgate et al. | Feb 2014 | A1 |
20140041205 | Robinson et al. | Feb 2014 | A1 |
20140043323 | Sumi | Feb 2014 | A1 |
20140098558 | Vasylyev | Apr 2014 | A1 |
20140240344 | Tomono et al. | Aug 2014 | A1 |
20140240828 | Robinson et al. | Aug 2014 | A1 |
20140289835 | Varshavsky et al. | Sep 2014 | A1 |
20140340728 | Taheri | Nov 2014 | A1 |
20150029754 | Ouderkirk et al. | Jan 2015 | A1 |
20150070773 | Wang et al. | Mar 2015 | A1 |
20150085091 | Varekamp | Mar 2015 | A1 |
20150116212 | Freed et al. | Apr 2015 | A1 |
20150268479 | Woodgate et al. | Sep 2015 | A1 |
20150334365 | Tsubaki et al. | Nov 2015 | A1 |
20150339512 | Son et al. | Nov 2015 | A1 |
20160033710 | Kim | Feb 2016 | A1 |
20180113310 | Rolland et al. | Apr 2018 | A1 |
20180284341 | Woodgate et al. | Oct 2018 | A1 |
20180313510 | Albou et al. | Nov 2018 | A1 |
20190056086 | Nambara et al. | Feb 2019 | A1 |
20200049995 | Urey et al. | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
1142869 | Feb 1997 | CN |
1377453 | Oct 2002 | CN |
1454329 | Nov 2003 | CN |
1466005 | Jan 2004 | CN |
1487332 | Apr 2004 | CN |
1588196 | Mar 2005 | CN |
1678943 | Oct 2005 | CN |
1696788 | Nov 2005 | CN |
1769971 | May 2006 | CN |
1823292 | Aug 2006 | CN |
1826553 | Aug 2006 | CN |
1866112 | Nov 2006 | CN |
1900785 | Jan 2007 | CN |
1908753 | Feb 2007 | CN |
2872404 | Feb 2007 | CN |
1307481 | Mar 2007 | CN |
101029975 | Sep 2007 | CN |
101049028 | Oct 2007 | CN |
200983052 | Nov 2007 | CN |
101114080 | Jan 2008 | CN |
101142823 | Mar 2008 | CN |
101266338 | Sep 2008 | CN |
100449353 | Jan 2009 | CN |
101364004 | Feb 2009 | CN |
101598863 | Dec 2009 | CN |
100591141 | Feb 2010 | CN |
101660689 | Mar 2010 | CN |
102147079 | Aug 2011 | CN |
202486493 | Oct 2012 | CN |
0653891 | May 1995 | EP |
0721131 | Jul 1996 | EP |
0830984 | Mar 1998 | EP |
0833183 | Apr 1998 | EP |
0860729 | Aug 1998 | EP |
0939273 | Sep 1999 | EP |
0656555 | Mar 2003 | EP |
1394593 | Mar 2004 | EP |
1736702 | Dec 2006 | EP |
2003394 | Dec 2008 | EP |
2219067 | Aug 2010 | EP |
2451180 | May 2012 | EP |
1634119 | Aug 2012 | EP |
2405542 | Feb 2005 | GB |
H07270792 | Oct 1995 | JP |
H08211334 | Aug 1996 | JP |
H08237691 | Sep 1996 | JP |
H08254617 | Oct 1996 | JP |
H08070475 | Dec 1996 | JP |
H08340556 | Dec 1996 | JP |
H1042315 | Feb 1998 | JP |
H10142556 | May 1998 | JP |
H11242908 | Sep 1999 | JP |
2000048618 | Feb 2000 | JP |
2000069504 | Mar 2000 | JP |
2000131683 | May 2000 | JP |
2000200049 | Jul 2000 | JP |
2001093321 | Apr 2001 | JP |
2002049004 | Feb 2002 | JP |
2003215349 | Jul 2003 | JP |
2003215705 | Jul 2003 | JP |
2004112814 | Apr 2004 | JP |
2004265813 | Sep 2004 | JP |
2004319364 | Nov 2004 | JP |
2005135844 | May 2005 | JP |
2005181914 | Jul 2005 | JP |
2005183030 | Jul 2005 | JP |
2005203182 | Jul 2005 | JP |
2005259361 | Sep 2005 | JP |
2006004877 | Jan 2006 | JP |
2006010935 | Jan 2006 | JP |
2006031941 | Feb 2006 | JP |
2006310269 | Nov 2006 | JP |
2007094035 | Apr 2007 | JP |
3968742 | Aug 2007 | JP |
2007273288 | Oct 2007 | JP |
2008204874 | Sep 2008 | JP |
2010160527 | Jul 2010 | JP |
2011192468 | Sep 2011 | JP |
2012060607 | Mar 2012 | JP |
2014022309 | Feb 2014 | JP |
20030064258 | Jul 2003 | KR |
20090932304 | Dec 2009 | KR |
20110006773 | Jan 2011 | KR |
20110017918 | Feb 2011 | KR |
20110067534 | Jun 2011 | KR |
20120048301 | May 2012 | KR |
20120049890 | May 2012 | KR |
20130002646 | Jan 2013 | KR |
200528780 | Sep 2005 | TW |
1998021620 | May 1998 | WO |
1999011074 | Mar 1999 | WO |
2001061241 | Aug 2001 | WO |
2008038539 | Apr 2008 | WO |
2008045681 | Apr 2008 | WO |
2009098809 | Aug 2009 | WO |
2010021926 | Feb 2010 | WO |
2011020962 | Feb 2011 | WO |
2011022342 | Feb 2011 | WO |
2011068907 | Jun 2011 | WO |
2011149739 | Dec 2011 | WO |
2012158574 | Nov 2012 | WO |
2013137161 | Sep 2013 | WO |
2014130860 | Aug 2014 | WO |
Entry |
---|
JP-2015-512901 1st Office Action dated Mar. 28, 2017. |
JP-2015-512905 1st Office Action (translated) dated Feb. 7, 2017. |
Kalantar, et al. “Backlight Unit With Double Surface Light Emission,” J. Soc. Inf. Display, vol. 12, Issue 4, pp. 379-387 (Dec. 2004). |
Kononenko et al., “Learning to Look Up: Realtime Monocular Gaze Correction Using Machine Learning”, Computer Vision and Pattern Recognition, pp. 4667-4675, 2015. |
KR-20137015775 Office action (translated) dated Oct. 18, 2016. |
Languy et al., “Performance comparison of four kinds of flat nonimaging Fresnel lenses made of polycarbonates and polymethyl methacrylate for concentrated photovoltaics”, Optics Letters, 36, pp. 2743-2745. |
Lipton: “Stereoscopic Composition Lenny Lipton”, Feb. 15, 2009 (Feb. 15, 2009), XP055335930, Retrieved from the Internet: URL:https://lennylipton.wordpress.com/2009/02/15/stereoscopic-composition/ [retrieved on Jan. 17, 2017]. |
Lowe, “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal of Computer Vision 60 (2), pp. 91-110, 2004. |
Lucio et al.: “RGBD Camera Effects”, Aug. 1, 2012 (Aug. 1, 2012), XP055335831, Sibgrapi - Conference on Graphics, Patterns and Images Retrieved from the Internet: URL:https://www.researchgate.net/profile/Leandro Cruz/ publication/233398182 RGBD Camera Effects/links/0912f50a2922010eb2000000.pdf [retrieved on Jan. 17, 2017]. |
Ozuysal et al., “Fast Keypoint recognition in Ten Lines of Code”, Computer Vision and Pattern Recognition, pp. 1-8, 2007. |
PCT/US2007/85475 International preliminary report on patentability dated May 26, 2009. |
PCT/US2011/061511 International Preliminary Report on Patentability dated May 21, 2013. |
PCT/US2011/061511 International search report and written opinion of international searching authority dated Jun. 29, 2012. |
PCT/US2012/037677 International search report and written opinion of international searching authority dated Jun. 29, 2012. |
PCT/US2012/042279 International search report and written opinion of international searching authority dated Feb. 26, 2013. |
PCT/US2012/052189 International search report and written opinion of the international searching authority dated Jan. 29, 2013. |
PCT/US2013/041192 International search report and written opinion of international searching authority mailed Aug. 28, 2013. |
PCT/US2013/041228 International search report and written opinion of international searching authority mailed Aug. 23, 2013. |
PCT/US2013/041235 International search report and written opinion of international searching authority Mailed Aug. 23, 2013. |
PCT/US2013/041548 International search report and written opinion of international searching authority mailed Aug. 27, 2013. |
PCT/US2013/041619 International search report and written opinion of international searching authority mailed Aug. 27, 2013. |
PCT/US2013/041655 International search report and written opinion of international searching authority mailed Aug. 27, 2013. |
PCT/US2013/041683 International search report and written opinion of international searching authority mailed Aug. 27, 2013. |
PCT/US2013/041697 International search report and written opinion of international searching authority mailed Aug. 23, 2013. |
PCT/US2013/041703 International search report and written opinion of international searching authority mailed Aug. 27, 2013. |
PCT/US2013/063125 International search report and written opinion of international searching authority mailed Jan. 20, 2014. |
PCT/US2013/063133 International search report and written opinion of international searching authority mailed Jan. 20, 2014. |
PCT/US2013/077288 International search report and written opinion of international searching authority mailed Apr. 18, 2014. |
PCT/US2014/017779 International search report and written opinion of international searching authority mailed May 28. 2014. |
PCT/US2014/042721 International search report and written opinion of international searching authority mailed Oct. 10, 2014. |
PCT/US2015/054523 International search report and written opinion of international searching authority dated Mar. 18, 2016. |
PCT/US2016/034418 International search report and written opinion of the international searching authority dated Sep. 7, 2016. |
PCT/US2016/056410 International search report and written opinion of the international searching authority dated Jan. 25, 2017. |
PCT/US2016/058695 International search report and written opinion of international searching authority dated Feb. 28, 2017. |
PCT/US2016/061428 International search report and written opinion of international searching authority mailed Jan. 20, 2017. |
PCT/US2017/012203 International search report and written opinion of international searching authority mailed Apr. 18, 2017. |
PCT/US2023/028359 International search report and written opinion of the international searching authority mailed Oct. 20, 2023. |
Robinson et al., U.S. Appl. No. 15/165,960 entitled “Wide Angle Imaging Directional Backlights” filed May 26, 2016. A copy of the application is available to Examiner on the USPTO database and has not been filed herewith. |
Robinson et al., U.S. Appl. No. 15/290,543 entitled “Wide angle imaging directional backlights” filed Oct. 11, 2016. A copy of the application is available to Examiner on the USPTO database and has not been filed herewith. |
Robinson, U.S. Appl. No. 13/300,293 entitled “Directional flat illuminators” filed Nov. 18, 2011.A copy of the application is available to Examiner on the USPTO database and has not been filed herewith. |
RU-2013122560 First office action dated Jan. 22, 2014. |
RU-2013122560 Second office action dated Apr. 10, 2015. |
RU-201401264 Office action dated Jan. 18, 2017. |
Tabiryan et al., “The Promise of Diffractive Waveplates,” Optics and Photonics News, vol. 21, Issue 3, pp. 40-45 (Mar. 2010). |
Travis, et al. “Backlight for view-sequential autostereo 3D”, Microsoft E&DD Applied Sciences, (date unknown), 25 pages. |
Travis, et al. “Collimated light from a waveguide for a display,” Optics Express, vol. 17, No. 22, p. 19714-19 (2009). |
Mola and Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features”, pp. 1-9 CVPR 2001. |
Zach et al., “A Duality Based Approach for Realtime TV-L1 Optical Flow”, Pattern Recognition (Proc. DAGM), 2007, pp. 214-223. |
3M™ ePrivacy Filter software professional version; http://www.cdw.com/shop/products/3M-ePrivacy-Filter-software- professional-version/3239412.aspx?cm_mmc=ShoppingFeeds-_-ChannelIntelligence-_-Software-_-3239412_3MT%20ePrivacy%20Filter%20software%20professional%20version_3MF-EPFPRO&cpncode=37-7582919&srccode=cii_10191459#PO; Copyright 2007-2016. |
AU-2014218711 Examination report No. 1 dated Mar. 20, 2017. |
Beato: “Understanding Comfortable stereography”, Dec. 31, 2011 (Dec. 31, 2011), XP055335952, Retrieved from the Internet: URL:http://64.17.134.112/Affonso Beato/Understanding Comfortable Stereography.html [retrieved-on Jan. 17, 2017]. |
Braverman: “The 3D Toolbox : News”, Aug. 13, 2010 (Aug. 13, 2010), XP055336081, Retrieved from the Internet: URL:http://www.dashwood3d.com/blog/the-3d-toolbox/ [retrieved on Jan. 17, 2017]. |
Cheng et al., “Design and manufacturing AR head-mounted displays: A review and outlook”, Light: Advanced Manufacturing (2021)2:24, Official journal of the JHL 2689-9620, pp. 1-20. |
CN-201180065590.0 Office fourth action dated Jan. 4, 2017. |
CN-201380026045.X Chinese First Office Action of Chinese Patent Office dated Aug. 29, 2016. |
CN-201380026046.4 Chinese 1st Office Action of the State Intellectual Property Office of P.R. China dated Oct. 24, 2016. |
CN-201380026047.9 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Dec. 18, 2015. |
CN-201380026050.0 Chinese 2nd Office Action of the State Intellectual Property Office of P.R. dated Apr. 1, 2017. |
CN-201380026058.7 Chinese 1st Office Action of the State Intellectual Property Office of P.R. China dated Nov. 2, 2016. |
CN-201380026059.1 Chinese 2nd Office Action of the State Intellectual Property Office of P.R. dated Feb. 22, 2017. |
CN-201380026059.1 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Apr. 25, 2016. |
CN-201380049451.8 Chinese Office Action of the State Intellectual Property Office of P.R. dated Apr. 5, 2016. |
CN-201380063047.6 Chinese Office Action of the State Intellectual Property Office of P.R. China dated Oct. 9, 2016. |
CN-201380063055.0 Chinese 1st Office Action of the State Intellectual Property Office of P.R. dated Jun. 23, 2016. |
CN-201380073381.X Chinese Office Action of the State Intellectual Property Office of P.R. China dated Nov. 16, 2016. |
CN-201480023023.2 Office second action dated May 11, 2017. |
Cootes et al., “Active Appearance Models”, IEEE Trans. Pattern Analysis and Machine Intelligence, 23(6):681-685, 2001. |
Cootes et al., “Active Shape Models - Their Training and Application” Computer Vision and Image Understanding 61 (1):38-59 Jan. 1995. |
Dalal et al., “Histogram of Oriented Gradients for Human Detection”, Computer Vision and Pattern Recognition, pp. 886-893, 2005. |
Drucker et al., “Support Vector Regression Machines”, Advances in Neural Information Processing Systems 9, pp. 155-161, NIPS 1996. |
EP-11842021.5 Office Action dated Oct. 2, 2015. |
EP-11842021.5 Office Action dated Sep. 2, 2016. |
EP-13758536.0 European Extended Search Report of European Patent Office dated Feb. 4, 2016. |
EP-13790013.0 European Extended Search Report of European Patent Office dated Jan. 26, 2016. |
EP-13790141.9 European Extended Search Report of European Patent Office dated Feb. 11, 2016. |
EP-13790195.5 European Extended Search Report of European Patent Office dated Mar. 2, 2016. |
EP-13790775.4 European Extended Search Report of European Patent Office dated Oct. 9, 2015. |
EP-13790775.4 Office Action dated Aug. 29, 2016. |
EP-13790809.1 European Extended Search Report of European Patent Office dated Feb. 16, 2016. |
EP-13790942.0 European Extended Search Report of European Patent Office dated May 23, 2016. |
EP-13791332.3 European Extended Search Report of European Patent Office dated Feb. 1, 2016. |
EP-13791437.0 European first office action dated Aug. 30, 2016. |
EP-13822472.0 European Extended Search Report of European Patent Office dated Mar. 2, 2016. |
EP-13843659.7 European Extended Search Report of European Patent Office dated May 10, 2016. |
EP-13865893.5 European Extended Search Report of European Patent Office dated Oct. 6, 2016. |
EP-14754859.8 European Extended Search Report of European Patent Office dated Oct. 14, 2016. |
EP-14813739.1 European Extended Search Report of European Patent Office dated Jan. 25, 2017. |
EP-14853532.1 European Extended Search Report of European Patent Office dated May 23, 2017. |
Ho, “Random Decision Forests”, Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, pp. 278-282, Aug. 14-16, 1995. |
Ian Sexton et al.: “Stereoscopic and autostereoscopic display-systems”, -IEEE Signal Processing Magazine, May 1, 1999 (1999-05-01 ), pp. 85-99, XP055305471, Retrieved from the Internet: RL:http://ieeexplore.IEEE.org/ iel5/79/16655/00768575.pdf [retrieved on Sep. 26, 2019]. |
International search report and written opinion of international searching authority for co-pending PCT application No. PCT/US2013/041619 mailed Aug. 27, 2013. |
JP-2013540083 Notice of reasons for rejection of Jun. 30, 2015. |
JP-2015-512794 1st Office Action (translated) dated Feb. 14, 2017. |
JP-2015-512809 1st Office Action dated Mar. 28, 2017. |
JP-2015-512810 1st Office Action (translated) dated Feb. 7, 2017. |
JP-2015-512879 1st Office Action (translated) dated Apr. 11, 2017. |
JP-2015-512887 1st Office Action (translated) dated Feb. 7, 2017. |
JP-2015-512896 1st Office Action (translated) dated May 9, 2017. |
Jeong et al., Holographically customized optical combiner for eye-box extended near-eye display, Opt. Express 27, 38006-38018 (2019) Dec. 23, 2019. |
PCT/US2023/025706 International search report and written opinion of the international searching authority mailed Oct. 5, 2023. |
PCT/US2023/025722 International search report and written opinion of the international searching authority mailed Oct. 6, 2023. |
PCT/US2023/029866 International search report and written opinion of the international searching authority mailed Nov. 27, 2023. |
EP-23207269.4 European Extended Search Report of European Patent Office dated Dec. 22, 2023. |
KR1020207030206 Notice of Preliminary Rejection dated Jan. 4, 2024. |
Number | Date | Country | |
---|---|---|---|
20240045202 A1 | Feb 2024 | US |
Number | Date | Country | |
---|---|---|---|
63394370 | Aug 2022 | US |