Pure chlorine dioxide generation system with reduced acid usage

Information

  • Patent Grant
  • 12098070
  • Patent Number
    12,098,070
  • Date Filed
    Friday, June 16, 2023
    a year ago
  • Date Issued
    Tuesday, September 24, 2024
    a month ago
Abstract
A method of producing chlorine dioxide is disclosed. The method may include feeding a reaction mixture into a separator. The reaction mixture may follow a helical path through the separator and produce gaseous chlorine dioxide within the separator. Gaseous chlorine dioxide may be withdrawn from the separator and used to disinfect process water.
Description
BACKGROUND
1. Field of the Invention

The present disclosure generally relates to methods of generating chlorine dioxide and treating process water by generating chlorine dioxide onsite.


2. Description of the Related Art

With the decline of gaseous chlorine as a microbiocide, various alternatives have been explored; including bleach, bleach with bromide, bromo-chloro dimethylhydantoin, ozone, and chlorine dioxide (ClO2). Of these, chlorine dioxide has generated a great deal of interest for control of microbiological growth in a number of different industries, including the dairy industry, the beverage industry, the pulp and paper industry, the fruit and vegetable processing industries, various canning plants, the poultry industry, the beef processing industry and miscellaneous other food processing applications. Chlorine dioxide is also seeing increased use in municipal potable water treatment facilities and in industrial waste treatment facilities, because of its selectivity towards specific environmentally-objectionable waste materials, including phenols, sulfides, cyanides, thiosulfates, and mercaptans. In addition, chlorine dioxide is being used in the oil and gas industry for downhole applications as a well stimulation enhancement additive.


Unlike chlorine, chlorine dioxide remains a gas when dissolved in aqueous solutions and does not ionize to form weak acids. This property is at least partly responsible for the biocidal effectiveness of chlorine dioxide over a wide pH range. Moreover, chlorine dioxide is a highly effective microbiocide at concentrations as low as 0.1 parts per million (ppm) over a wide pH range.


The biocidal activity of chlorine dioxide is believed to be due to its ability to penetrate bacterial cell walls and react with essential amino acids within the cell cytoplasm to disrupt cell metabolism. This mechanism is more efficient than other oxidizers that “burn” on contact and is highly effective against legionella, algae and amoebal cysts, giardia cysts, coliforms, salmonella, shigella, and cryptosporidium.


Unfortunately, chlorine dioxide in solution is unstable with an extremely short shelf life and thus, is only available in less than 3000 ppm as liquid product, commercially. For applications where large quantity of chlorine dioxide is needed, it must typically be generated at its point of use such as, for example, by a reaction between a metal chlorate or metal chlorite in aqueous solution and a liquid phase strong acid. However, the use of liquid phase strong acids poses handling issues and safety concerns.


BRIEF SUMMARY

A method of producing chlorine dioxide is disclosed. The method may include feeding a reaction mixture into a separator; directing the reaction mixture in a helical path through the separator; producing gaseous chlorine dioxide within the separator; and withdrawing the gaseous chlorine dioxide from the separator.


In some aspects, the method may include feeding a first solution comprising an acid through a first feed line into a mixing device; feeding a second solution comprising chlorite or chlorate through a second feed line into the mixing device; and mixing the first solution and the second solution in the mixing device to form the reaction mixture. The mixing device may be in fluid communication with the separator.


A method of treating process water is provided. The method may include feeding a first solution comprising an acid through a first feed line into a mixing device; feeding a second solution comprising chlorite or chlorate through a second feed line into the mixing device; mixing the first solution and the second solution in the mixing device to form the reaction mixture, wherein the mixing device is in fluid communication with the separator; producing chlorine dioxide in the separator; withdrawing the chlorine dioxide from the separator; and injecting the chlorine dioxide into the process water.


In some aspects, the method may include reacting the acid with the chlorite or the chlorate to produce chlorine dioxide in the separator.


In some aspects, the acid is hydrochloric acid, phosphoric acid, sulfuric acid, hypochlorous acid, or any combination thereof.


In some aspects, the acid comprises sulfuric acid and the second solution comprises chlorate and hydrogen peroxide.


In some aspects, the acid comprises hydrochloric acid and the second solution comprises chlorite.


In some aspects, the helical path is defined by a tube having a coiled configuration having a coil plane angle of about 1 degree to about 60 degrees.


In some aspects, the first feed line and the second feed line are opposite to and directed against each other.


In some aspects, the separator may be operated at a pressure about equal to or less than atmospheric pressure.


In some aspects, the reaction mixture may have a residence time in the separator of about 0.1 minute to about 1 hour.


In some aspects, the method may include producing the chlorine dioxide at a rate ranging from about 0.001 lb/hour to about 200 lb/hour.


In some aspects, the method may include operating the separator at a temperature ranging from about 2° C. to about 80° C.


In some aspects, the reaction mixture may be fed into a top portion of the separator.


In some aspects, the reaction mixture may be fed into a bottom portion of the separator.


In some aspects, the reaction mixture may be fed into a middle portion of the separator.


In some aspects, the method may include withdrawing liquid from the separator and recycling the liquid to the separator.


In some aspects, the helical path may be defined by a plurality of plates disposed within the separator.


In some aspects, the plurality of plates comprises a plate having perforations.


In some aspects, the reaction may have an average conversion efficiency is at least about 90%.


A method of treating process water is provided. The method may include producing chlorine dioxide as described herein and injecting the gaseous chlorine dioxide into the process water.


The foregoing has outlined rather broadly the features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter that form the subject of the claims of this application. It should be appreciated by those skilled in the art that the conception and the specific embodiments disclosed may be readily utilized as a basis for modifying or designing other embodiments for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent embodiments do not depart from the spirit and scope of the disclosure as set forth in the appended claims.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

A detailed description of the invention is hereafter described with specific reference being made to the drawings in which:



FIG. 1 shows an embodiment of an embodiment of a system for generating chlorine dioxide;



FIG. 2 shows an embodiment of a chlorine dioxide generation system where three reactants are mixed and fed into the separator;



FIG. 3 shows an embodiment of a chlorine dioxide generation system having control valves;



FIG. 4 shows an embodiment of a separator;



FIG. 5A shows an embodiment of a conical-shaped separator;



FIG. 5B shows a cross-sectional top view of the conical-shaped separator;



FIG. 6 shows an embodiment of a separator;



FIG. 7 shows an embodiment of a separator;



FIG. 8 shows the relationship between motive water temperature and average conversion efficiency;



FIG. 9 shows the relationship between the molar ratio of sulfuric acid to chlorate and chlorate conversion;



FIG. 10 shows an embodiment of the mixer and reactant feed lines; and



FIG. 11 shows an embodiment of the coiled tube disposed within the separator.





DETAILED DESCRIPTION

Various embodiments are described below with reference to the drawings in which like elements generally are referred to by like numerals. The relationship and functioning of the various elements of the embodiments may better be understood by reference to the following detailed description. However, embodiments are not limited to those illustrated in the drawings. It should be understood that the drawings are not necessarily to scale, and in certain instances details may have been omitted that are not necessary for an understanding of embodiments disclosed herein, such as—for example—conventional fabrication and assembly.


Referring to the figures, FIG. 1 shows a reactant feed line 100 in fluid communication with a separator 101. The separator 101 may be in fluid communication with a product line 102 that may withdraw gaseous products. An acid may be stored in first storage container 103 that is in fluid communication with the first feed line 104. A chlorate or chlorite may be stored in a second storage container 105 and may be in fluid communication with a second feed line 106. The first feed line 104 and the second feed line 106 may be in fluid communication with a mixer 107. Motive water may also be fed into the mixer. The first and second solutions mix in the mixer 107 and then pass through the reactant feed line 100 into the separator 101. The acid may react with the chlorite or the chlorate to produce chlorine dioxide in the separator 101. As chlorine dioxide is generated, it may be withdrawn from the separator 101 into a product line 102.


In some aspects, the acid is hydrochloric acid, phosphoric acid, sulfuric acid, hypochlorous acid, or any combination thereof. In some aspects, the acid comprises sulfuric acid. The second solution may include a mixture of chlorate and hydrogen peroxide.


In some aspects, the first solution may consist of or comprise sulfuric acid and water, where the sulfuric acid concentration ranges from about 50% by weight to about 98% by weight. The sulfuric acid concentration in the first solution may be about 78%. In some aspects, the second solution may comprise or consist of chlorate, hydrogen peroxide, and water. The second solution may comprise a concentration of chlorate that is in a range of about 25% by weight to about 60% by weight. The concentration of chlorate in the second solution may be about 40% by weight. The concentration of hydrogen peroxide in the second solution may be in the range of about 2% by weight to about 30% by weight. The concentration of hydrogen peroxide in the second solution may be about 8% by weight. In some aspects, the acid may be sulfuric acid and the chlorate may be sodium chlorate.


In other aspects, the acid comprises hydrochloric acid and the second solution comprises chlorite.


The separator 101 may have a top portion 110 and a bottom portion 111. A plurality of plates 112 may be disposed within the separator 101 that define the helical path by which the reactant mixture flows. Liquid may accumulate at the bottom of the separator 101. The level of the liquid 112 in the separator may be controlled and adjusted by one of ordinary skill in the art to maximize production of gaseous chlorine dioxide.


As used herein, “helical path” refers to the trajectory of the reactant mixture as it flows through the separator. The term “helical path” may include any non-linear path through the separator but does not include coincidental helical pathway of liquid in a container that is being mixed, for example in a continuously stirred-tank reactor or a batch reactor with a mechanical stirring device. The helical path may be defined by plates, tubes, or perforations in tubes or plates inside the separator. The helical path may proceed from top of the separator to the bottom or from the bottom to the top of the separator.


Liquid products or unreacted chemicals in the bottom of the separator 101 may be withdrawn into a recycle line 122 or a liquid product withdrawal line 113 that may be split into a line 114 that is mixed with the product line 102 or into line 115 that is fed into waste disposal.


Motive water may be fed through a motive water line 118 into an eductor 116 and mixed with the products in line 102 and fed into a treatment line 117 that may be in fluid communication with a process. For example, the treatment line 117 may carry chlorine dioxide to cooling tower water to disinfect the water. Another motive water line 119 may carry water into an eductor 120 that mixes liquid from line 115 and feed it into line 121 that carries the liquid to waste disposal or for use in a different process.


In some aspects, the first solution in the first feed line 104 and second solution in the second feed line 106 may pass through a heat exchanger 109. The heat exchanger 109 may adjust the temperature of the feed solutions to maximize conversion and minimize adverse reactions when the solutions are mixed. For example, the temperature of the solutions in the first and second feed lines can be adjusted to a temperature between about 2° C. to about 80° C.


In some aspects, a pump 123 may be connected to the recycle line 122 and feed liquid into the heat exchanger 109. A pump 108 may be connected to reactant storage containers to feed the solutions into the separator.


In some aspects, the method may include measuring a temperature of the first and/or the second solutions. The temperature may be measured before entering the heat exchanger. If a third reactant is mixed, the method may include measuring a temperature of the third reactant.



FIG. 2 shows a system configuration where a third storage container 200 may store additional reactants that can be pumped by pump 108 into the third feed line 201 to be fed into the mixer 107. The third solution in third feed line 201 may be mixed with the first and second solutions in the mixer 107.


In some aspects, a portion of the third solution may be diverted through line 202 and mixed with the second solution in the second feed line 106 before entering the heat exchanger 109.


In some aspects, the first solution may be an acid, the second solution may be chlorate, and the third solution may be hydrogen peroxide.



FIG. 3 shows that the lines valves 300 can be placed on certain lines to control flow through various portions of the system. For example, the liquid level 112 in the separator 101 can be controlled using valves on certain liquid product lines. Alternatively, the liquid level 112 may be adjusted by varying the pump rate of pump 123 and outlet height level of line 113.


In some aspects, chlorine dioxide in line 102 may be combined with reactants from line 114, which is controlled by valve 300. In some aspects, the chlorine dioxide in line 102 may be fed to process water via line 117 without mixing with liquid in line 114. The reactants in line 114 may be fed to the process via line 121 for pH control.



FIG. 4 shows an embodiment of the separator wherein the reactant mixture 400 may be fed into the separator 101. The reactant mixture may follow a helical path defined by the plates 402 disposed within the separator 101. Gaseous products 401 may be withdrawn in the product line 102 and liquid products 403 may be withdrawn in the liquid product line 404. In some aspects, the plates may have a plurality of perforations that allow gaseous products to pass through an exit through the product line 102.



FIG. 5A shows an embodiment of the separator wherein the separator 101 has a conical shape that is conducive to producing a helical path 500 of the reactant mixture 400 in the separator. The inner surface of the separator 101 may include fins or plates projecting into the center of the conical shaped separator that facilitate movement of the reactant mixture 400 in a helical path 500. FIG. 5B shows a cross-sectional top view of the conical-shaped separator of FIG. 5A.



FIG. 6 shows an embodiment of a separator wherein the reactant feed line 100 may be a plurality of perforations or holes 600 that allow gaseous products to exit the tube. The reaction mixture may travel through the tube 601 in a helical path downward through the separator 101. The contents of the tube exit at the bottom of the separator 101. Liquid 403 may be removed from the separator through line 404.


In some aspects, the tube 601 may include at least two, three, four, or more contact zones 602. The contact zone may comprise an inner diameter at least about two times larger than an inner diameter of the tube. In some aspects, the contact zone may comprise an inner diameter at least about three, four, or five times larger than an inner diameter of the reactor.


In some aspects, the tube may have a length in a range from about 25 inches to about 300 inches. In some embodiments, the reactor may have a length in a range from about 30 inches to about 90 inches, about 30 inches to about 80 inches, about 30 inches to about 70 inches, about 30 inches to about inches, about 30 inches to about 50 inches, about 40 inches to about 90 inches, about 40 inches to about 80 inches, about 35 inches to about 45 inches, or about 35 inches to about 60 inches. In other aspects, the tube may be about inches in length.


In some aspects, the tube may have an inner diameter in a range from about 0.1 inches to about 4 inches. In some aspects, the tube may have an inner diameter in a range from about 1 inch to about 1.25 inches, or about 0.25 inches to about 1.25 inches. In some aspects, the tube may have an inner diameter of about 0.25 inches, about 2 inches, about 3 inches, or about 4 inches. In other aspects, the tube may have an inner diameter of about 1.25 inches, about 1 inch, about 0.75 inches, about 0.375 inches, or about 0.1875 inches.



FIG. 7 shows an embodiment of the separator. In this embodiment, the reaction mixture 400 may be fed into a bottom portion of the separator 101. In some aspects, the reaction mixture may be fed into a top portion of the separator. In some aspects, the reaction mixture may be fed into a middle portion of the separator.



FIG. 7 also shows that gaseous products 701 may pass through perforations or holes in plates 402 disposed within the separator 101. In some aspects, only the top plate at the top portion of the separator has holes or perforations to allow gas to pass through the plate 402 and into the product line 102.



FIG. 10 shows an embodiment wherein the first feed line 104 and the second feed line 106 are opposite to and directed against each other. As the solutions enter the mixer 107, the solutions can mix more uniformly and be fed into the reactant feed line 100. The first feed line and the second feed line may be opposite to and directed against each other as in a “T” configuration, see, for example, the orientation of components corresponding to reference numerals 104 and 106 in FIG. 10.


In some aspects, the helical path is defined by a tube having a coiled configuration having a coil plane angle of about 1 degree to about 60 degrees. In some aspects, the coil plane angle may be from about 5 to about 30 degrees. The tube having a coiled configuration may include a coil diameter. The coil diameter may be in a range from about 0.1 to about 16.0 inches, about 1 inch to about 16 inches, about 2 inch to about 16 inches, about 2 inch to about 10 inches, or about 2 inches to about 4 inches.



FIG. 11 shows an embodiment where the tube 601 may comprise a coiled configuration. The tube having a coiled configuration may include a coil plane angle 900 ranging from about 5 to about 30 degrees. The tube having a coiled configuration may include a coil diameter 901. The coil diameter 901 may range from about 0.1 inch to about 4.0 inches.


In some aspects, the separator may be operated at a pressure about equal to or less than atmospheric pressure. Atmospheric pressure may range from about 33 kPa to about 107 kPa. In some aspects, the operating pressure is about 106 kPa. In some aspects, the separator is operated under a vacuum.


In some aspects, the method may include withdrawing chlorine dioxide using an eductor. Other means may be used to withdraw chlorine dioxide from the separator and the present disclosure is not limited to use of an eductor.


In some aspects, the method may include operating the separator at a temperature in a range from about 2° C. to about 80° C. In some aspects, the method may include operating the reactor at a temperature of about 60° C.


In some aspects, the temperature of the motive water may be in a range from about 2° C. to about 80° C. The motive water temperature may be in range from about 15° C. to about 70° C., about 30° C. to about 70° C., about 40° C. to about 70° C., about 40° C. to about 60° C., or about 50° C. to about 70° C.


In some aspects, the reaction mixture may have a residence time in the separator of about 0.1 minute to about 1 hour. In some aspects, the reaction mixture may have a residence time in the reactor of at least about 1 minute. In other embodiments, the reaction mixture may reside in the reactor for at least about 3 minutes, at least about 4 minutes, at least about 5 minutes, at least about 6 minutes, at least about 7 minutes, at least about 8 minutes, at least about 9 minutes, or at least about 10 minutes. In some embodiments, the reaction mixture may have a residence time in the reactor of about 3.8 minutes. Residence time may be calculated by dividing total separator liquid volume by total reactant flow rate.


In some aspects, the method may include producing the chlorine dioxide at a rate ranging from about 0.001 lb/hour to about 200 lb/hour. In some aspects, the chlorine dioxide may be produced at a rate in a range from about 0.001 lb/hour to about 100 lb/hour. In some aspects, the chlorine dioxide may be produced at a rate in a range from about 0.02 lb/hour to about 15 lb/hour. In some aspects, the chlorine dioxide may be produced at a rate in a range from about 5 lb/hour to about 15 lb/hour.


In some aspects, the reaction may have an average conversion efficiency of at least about 90%.


In some aspects, the motive water line may comprise at least two channels. The channels may be longitudinal. In some embodiments, the motive water line may be a double containment pipe. The motive water line may have an inner channel and an outer channel through which motive water may flow, and the first and second solutions may be combined within the inner channel. The motive water flow rate in the outer channel may be different than the flow rate of the inner channel. The motive water flow rate may be such that the temperature of the reaction mixture is controlled within a certain range. The reaction mixture temperature may be about 2° C. to about 80° C., about 2° C. to about 70° C., about ° C. to about 70° C., about 40° C. to about 70° C., or about 50° C. to about 70° C. The reaction mixture temperature may be about 60° C.


A method of treating process water is provided. The method may include producing chlorine dioxide as described herein and injecting the gaseous chlorine dioxide into the process water.


In some aspects, the method may include determining a chlorine dioxide demand in the process water using measurements from a sensor, such as a chlorine dioxide sensor, an oxidation and reduction potential, a flow meter, a microbiological measurement, or any combination thereof. In some aspects, the chlorine dioxide may be added to the process water in a cooling tower.


In some aspects, the chlorine dioxide may be added to an aqueous system such as, for example a cooling tower. The present disclosure, however, is not limited to adding chlorine dioxide to process water in cooling towers. The process water may be used in the textile industry, laundry, paper production, mining, or energy services.


In some embodiments, the method may include a process control system including a Programmable Logic Controller (PLC), a chlorine dioxide analyzer, a pressure transmitter (PT) and a flow transmitter (FT), controls the feed pumps for the chemicals to the reactor and for the motive water.


In some embodiments, the method may include a distribution system. The distribution system may include at least two independently controlled dosing points. When the different ClO2 production set points are entered into the controller, the PLC automatically calculates and adjusts the required production of the chlorine dioxide reactor. A distribution system may allow chlorine dioxide solution to be distributed to multiple points directly from the discharge chlorine dioxide reactor, thus avoiding a storage tank system. The distribution system may incorporate a ClO2 solution pump and flowmeters and control valves to manage the distribution among various dosing points.


The flow meters that may be used with the disclosed methods may be any suitable flow meter, such as but not limited to clamp-on or pulse flow meters. Pulse-based flow meters detect the kinetic energy of flowing fluid using optical or magnetic sensors and converting it into electrical energy in the form of digital pulses. The flow rate can be determined by measuring the periods of the pulses.


The pumps used to feed the first and second solutions may be in communication with the PLC. The PLC may also be in communication with any pumps placed on a feed lines.


In some aspects, any of the methods disclosed herein may include sensing a pressure inside the separator. In some aspects, the product feed lines may be equipped with a check valve, flow meter, and feed pump.


In certain embodiments, any of the methods disclosed herein may include calculating a chlorine dioxide dose. The chlorine dioxide dose may be calculated using the flow rates of the, first solution, second solution, motive water, chlorine dioxide solution in the product feed lines, and the chlorine dioxide concentration. For example, the chlorine dioxide concentration in the main line can be calculated using the formula: Main Line Product Rate=(Fp+Fa+Fw−Fproductline)*CClO2 where Fp is the flow rate of hydrogen peroxide and chlorate, Fa is the flow rate of the acid, Fw is the flow rate of the motive water, Fproductline is the sum of flow rates in any product feed lines connected to the main line, and CClO2 is the concentration of chlorine dioxide.


Multiple alarms and failsafe settings may be set using the PLC. For example, pump issues may be detected by monitoring the differential between the flow meter readings and the pump rate calculations. Some failsafes may include pressure relief valves on the separator or product feed lines. Any of the feed lines may have a pressure sensor that communicates readings to the main control device. By way of example, the main control device may include a PLC and an Adam AI/AO (analog input/analog output) module. If the reactor is housed in a cabinet, then the cabinet may have leak detection sensors and a cabinet door lock.


EXAMPLES

Example 1: The effect of reactor temperature on conversion efficiency was measured. The tube diameter inside the separator was about ¼ inches with a ClO2 production rate of about 0.085 lb/hr. Chemicals were fed via pump 103 and 105, mixed in device 107 then entered separator 601. Generated ClO2 was separated from the reactants in the tube and the reactants continued down the path in the tube. FIG. 8 shows that the conversion efficiency increased with increasing temperature of the chemicals in reactions. In this reaction, the calculated residence time was about 14 minutes.


Example 2: The effect on conversion of the mole ratio of acid to chlorate was tested. FIG. 9 shows that as the mole ratio increases, the chlorate conversion rate increased for both 100 s chlorate conversion rate (CVS) % and >120 s CVS rate %.


Example 3: The conversion rate was measure for a separator having a tube with about a ⅜ inch spiral tube within the separator. Table 1 shows the conversion rate for different liquid speeds.









TABLE 1







Effect of residence time and temperature on conversion rate.












Residence
Liquid
Gas

Gas
Conversion


Time
speed
speed
ClO2
Produced
Rate


min
cm/sec
cm/sec
lb/hr
ml/min
%















50
0.04
4.5
0.1
8
>99.0


24
0.09
9.2
0.2
17
>99.0


11
0.19
19.8
0.5
36
91.5









Example 4: In this experiment, the temperature of the reactants was maintained at about 62° C. and the tube had about a ⅜ inch diameter. The residence time was calculated to be about 14 minutes.









TABLE 2







Acid reduction performance at 62° C.

















Conversion


Temp.
Purate
H2SO4
ClO2
H2SO4/Purate
Rate


° C.
mol/min
mol/min
lb/hr
mol/mol
%















62
0.0095
0.0254
0.085
2.68
99.7






2.20
102.4






1.71
95.3






1.34
68.5









Example 5: In this experiment, the temperature was varied to observe the effects on conversion efficiency. The tube had about a ⅜ inch diameter. The residence time was calculated to be about 11.2 minutes.









TABLE 3







Reaction temperature effects on average conversion efficiency.

















Conversion


Temp.
Purate
H2SO4
ClO2
H2SO4/Purate
Rate


° C.
mol/min
mol/min
lb/hr
mol/mol
%















57.2
0.0515
0.1360
0.4593
2.64
91.5


63.4




90.8


63.6




87.1


65.2




4.7


65.9




6.5









Any composition disclosed herein may comprise, consist of, or consist essentially of any of the compounds/components disclosed herein. In accordance with the present disclosure, the phrases “consist essentially of,” “consists essentially of,” “consisting essentially of,” and the like limit the scope of a claim to the specified materials or steps and those materials or steps that do not materially affect the basic and novel characteristic(s) of the claimed invention.


As used herein, the term “about” refers to the cited value being within the errors arising from the standard deviation found in their respective testing measurements, and if those errors cannot be determined, then “about” refers to within 10% of the cited value.


All of the apparatuses and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While this invention may be embodied in many different forms, there are described in detail herein specific preferred embodiments of the invention. The present disclosure is an exemplification of the principles of the invention and is not intended to limit the invention to the particular embodiments illustrated. In addition, unless expressly stated to the contrary, use of the term “a” is intended to include “at least one” or “one or more.” For example, “a device” is intended to include “at least one device” or “one or more devices.”


Any ranges given either in absolute terms or in approximate terms are intended to encompass both, and any definitions used herein are intended to be clarifying and not limiting. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges (including all fractional and whole values) subsumed therein.


Furthermore, the invention encompasses any and all possible combinations of some or all of the various embodiments described herein. It should also be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the invention and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.

Claims
  • 1. A method of producing chlorine dioxide, comprising: mixing a first solution and a second solution in a mixing device to form a reaction mixture;feeding the reaction mixture into a separator;directing the reaction mixture in a helical path through the separator;reacting the first solution with the second solution to produce gaseous chlorine dioxide within the separator; andwithdrawing the gaseous chlorine dioxide from the separator;wherein the helical path is defined by a plurality of plates disposed within the separator, and wherein the helical path is defined by a tube having a coiled configuration having a coil plane angle of about 1 degree to about 60 degrees.
  • 2. The method of claim 1, further comprising: feeding the first solution comprising an acid through a first feed line into the mixing device; andfeeding the second solution comprising chlorite or chlorate through a second feed line into the mixing device;wherein the mixing device is in fluid communication with the separator.
  • 3. The method of claim 2, wherein the acid is hydrochloric acid, phosphoric acid, sulfuric acid, hypochlorous acid, or any combination thereof.
  • 4. The method of claim 2, wherein the acid comprises sulfuric acid and the second solution comprises chlorate and hydrogen peroxide.
  • 5. The method of claim 2, wherein the acid comprises hydrochloric acid and the second solution comprises chlorite.
  • 6. The method of claim 2, wherein the first feed line and the second feed line are opposite to and directed against each other.
  • 7. The method of claim 1, wherein the separator is operated at a pressure about equal to or less than atmospheric pressure.
  • 8. The method of claim 1, wherein the reaction mixture has a residence time in the separator of about 0.1 minute to about 1 hour.
  • 9. The method of claim 1, further comprising producing the chlorine dioxide at a rate ranging from about 0.001 lb/hour to about 200 lb/hour.
  • 10. The method of claim 1, further comprising operating the separator at a temperature ranging from about 2° C. to about 80° C.
  • 11. The method of claim 1, wherein the reaction mixture is fed into a top portion of the separator.
  • 12. The method of claim 1, wherein the reaction mixture is fed into a bottom portion of the separator.
  • 13. The method of claim 1, wherein the reaction mixture is fed into a middle portion of the separator.
  • 14. The method of claim 1, further comprising withdrawing liquid from the separator and recycling the liquid to the separator.
  • 15. The method of claim 1, wherein the plurality of plates comprises a plate having perforations.
  • 16. The method of claim 1, wherein an average conversion efficiency is at least about 90%.
  • 17. A method of producing chlorine dioxide, comprising: mixing a first solution and a second solution in a mixing device to form a reaction mixture;feeding the reaction mixture into a separator;directing the reaction mixture in a helical path through the separator;reacting the first solution with the second solution to produce gaseous chlorine dioxide within the separator; andwithdrawing the gaseous chlorine dioxide from the separator;wherein the helical path is defined by a plurality of plates disposed within the separator, and wherein the plurality of plates comprises a plate having perforations.
US Referenced Citations (132)
Number Name Date Kind
2344346 Evans Mar 1944 A
2642410 Hoppens Jun 1953 A
3445312 Rider May 1969 A
3632564 Albert et al. Jan 1972 A
3697470 Haines et al. Oct 1972 A
3816077 Rosen et al. Jun 1974 A
4079123 Fuller et al. Mar 1978 A
4216195 Jaszka et al. Aug 1980 A
4393035 Fredette Jul 1983 A
4735744 Tsujimoto et al. Apr 1988 A
5254760 Winter et al. Oct 1993 A
5272231 Campbell et al. Dec 1993 A
5296567 Baumann et al. Mar 1994 A
5324497 Westerlund Jun 1994 A
5374697 Muller Dec 1994 A
5396004 Arhancet et al. Mar 1995 A
5710329 Clever Jan 1998 A
5728872 Riemenschneider Mar 1998 A
5856562 Mine et al. Jan 1999 A
5877344 Gande et al. Mar 1999 A
5888356 Keil et al. Mar 1999 A
5955643 Lewis Sep 1999 A
6051135 Lee et al. Apr 2000 A
6210536 Grossi et al. Apr 2001 B1
6287483 DeMassa et al. Sep 2001 B1
6300513 Sakamoto et al. Oct 2001 B2
6300533 Benage et al. Oct 2001 B1
6337426 Winter Jan 2002 B1
6342647 Roof et al. Jan 2002 B1
6344560 Geelan et al. Feb 2002 B1
6348598 Doi et al. Feb 2002 B1
6352619 Fauconet et al. Mar 2002 B1
6403850 Benage et al. Jun 2002 B1
6409887 Pryce et al. Jun 2002 B1
6518374 Aichinger et al. Feb 2003 B1
6518452 Aichinger et al. Feb 2003 B1
6608226 Reid et al. Aug 2003 B1
6642337 Misiak et al. Nov 2003 B1
6660181 Benage et al. Dec 2003 B2
6770219 Tong Aug 2004 B2
6790427 Charles et al. Sep 2004 B2
6806385 Hammon et al. Oct 2004 B1
6864313 Wunderlich et al. Mar 2005 B2
6956130 Riondel et al. Oct 2005 B2
7005087 Tong Feb 2006 B2
7022220 Benage et al. Apr 2006 B2
7041711 Kunita May 2006 B2
7056642 Kano et al. Jun 2006 B2
7119224 Schroeder et al. Oct 2006 B2
7261821 Beardwood Aug 2007 B2
7368594 Yurugi et al. May 2008 B2
7414162 Link et al. Aug 2008 B2
7420013 Riegel et al. Sep 2008 B2
7504074 Martens et al. Mar 2009 B2
7553896 Ma et al. Jun 2009 B2
7621821 Tsai et al. Nov 2009 B2
7682592 Charles et al. Mar 2010 B2
7799198 Nanjundiah et al. Sep 2010 B2
8691994 Tong Apr 2014 B2
8907121 Johnson et al. Dec 2014 B2
9133288 Loyns et al. Sep 2015 B2
9399622 Tong Jul 2016 B2
9534065 Nakaya et al. Jan 2017 B2
9561997 Dafinger et al. Feb 2017 B2
9573874 Fruchey et al. Feb 2017 B2
9611336 Mo et al. Apr 2017 B2
9656891 Martin May 2017 B2
9725649 Subramaniyam Aug 2017 B2
9783480 Aizawa et al. Oct 2017 B2
9884795 Mo et al. Feb 2018 B2
9884951 Tong Feb 2018 B2
9914701 Masere et al. Mar 2018 B2
9932291 Mendoza et al. Apr 2018 B2
9957209 Masere et al. May 2018 B2
10112888 Tong Oct 2018 B2
10221255 Marguerre et al. Mar 2019 B2
10308585 Tong Jun 2019 B2
10532320 Boam et al. Jan 2020 B2
10640449 Atkins et al. May 2020 B2
10696618 Tong Jun 2020 B2
10745345 Khanlari et al. Aug 2020 B2
10781157 Cabon et al. Sep 2020 B2
10869444 Masere et al. Dec 2020 B2
11104626 Masere et al. Aug 2021 B2
11174439 Vachon et al. Nov 2021 B2
11180578 Masere et al. Nov 2021 B2
20010005755 Sakamoto et al. Jun 2001 A1
20010009929 Blankenship et al. Jul 2001 A1
20040031674 Schroder Feb 2004 A1
20040175322 Woodruff et al. Sep 2004 A1
20040236143 Martan et al. Nov 2004 A1
20050010065 Wartini et al. Jan 2005 A1
20050139807 Tong Jun 2005 A1
20060051285 Hawker et al. Mar 2006 A1
20060096930 Beardwood May 2006 A1
20060120946 Simic et al. Jun 2006 A1
20060287548 Hoefer et al. Dec 2006 A1
20070116637 Woodruff et al. May 2007 A1
20070152187 Truchlaeft Jul 2007 A1
20070167650 Ishikawa et al. Jul 2007 A1
20080021241 Carlson, Jr. et al. Jan 2008 A1
20090203938 Croizy et al. Aug 2009 A1
20100168434 Loyns et al. Jul 2010 A1
20100219371 Paul Sep 2010 A1
20110160484 Fruchey et al. Jun 2011 A1
20110290635 Kar et al. Dec 2011 A1
20120203020 Tong Aug 2012 A1
20120244063 Pohjanvesi Sep 2012 A1
20130178652 Fruchey et al. Jul 2013 A1
20130209349 Vilhelmsson Aug 2013 A1
20140097095 Moser Apr 2014 A1
20140228604 Colorado, Jr. et al. Aug 2014 A1
20140302176 Grund et al. Oct 2014 A1
20150152053 Tong Jun 2015 A1
20160083323 Fruchey et al. Mar 2016 A1
20160102189 Tong Apr 2016 A1
20160122643 Fruchey et al. May 2016 A1
20180044180 Burke et al. Feb 2018 A1
20180057740 Cavezzan et al. Mar 2018 A1
20180264431 Leeton Sep 2018 A1
20180265447 Linemann et al. Sep 2018 A1
20180273381 Xiong et al. Sep 2018 A1
20180361319 Boam et al. Dec 2018 A1
20190023641 Chretien et al. Jan 2019 A1
20190185769 Cuoq et al. Jun 2019 A1
20200017610 Masere et al. Jan 2020 A1
20200102408 Masere Apr 2020 A1
20200277249 Dafinger et al. Sep 2020 A1
20200283597 Pelati Sep 2020 A1
20200339880 Masere et al. Oct 2020 A1
20210108141 Masere Apr 2021 A1
20210380523 Bellini et al. Dec 2021 A1
Foreign Referenced Citations (79)
Number Date Country
101304944 Nov 2008 CN
102249842 Nov 2011 CN
103073375 May 2013 CN
105482851 Apr 2016 CN
106103340 Nov 2016 CN
106512879 Mar 2017 CN
106554244 Apr 2017 CN
106588647 Apr 2017 CN
107987888 May 2018 CN
108191640 Jun 2018 CN
112028770 Dec 2020 CN
113024447 Jun 2021 CN
113457571 Oct 2021 CN
294776 Mar 2005 CZ
0325059 Jul 1989 EP
0697386 Feb 1996 EP
0569502 Apr 1996 EP
0791573 Aug 1997 EP
0620206 May 2000 EP
1077206 Feb 2001 EP
0845448 Jan 2002 EP
1694715 Oct 2007 EP
1248757 Nov 2007 EP
2017293 Jan 2009 EP
2257519 Aug 2011 EP
2066613 Jun 2012 EP
2903961 Nov 2016 EP
2670800 Jan 2018 EP
2504308 May 2021 EP
590680 Jul 1947 GB
688206 Mar 1953 GB
2093464 Sep 1982 GB
H1143449 Feb 1999 JP
2000063371 Feb 2000 JP
2000072718 Mar 2000 JP
2001069429 Mar 2001 JP
2001163831 Jun 2001 JP
3187345 Jul 2001 JP
3197947 Aug 2001 JP
3227204 Nov 2001 JP
3235980 Dec 2001 JP
3312639 Aug 2002 JP
3529613 May 2004 JP
2006199736 Aug 2006 JP
2006282541 Oct 2006 JP
4225707 Feb 2009 JP
4270821 Jun 2009 JP
4520092 Aug 2010 JP
4548821 Sep 2010 JP
4548822 Sep 2010 JP
4582641 Nov 2010 JP
5191702 May 2013 JP
5334390 Nov 2013 JP
6032463 Nov 2016 JP
6158044 Jul 2017 JP
6705120 Jun 2020 JP
2020200465 Dec 2020 JP
957153 Sep 1982 SU
1999007664 Feb 1999 WO
1999055797 Nov 1999 WO
2000031005 Jun 2000 WO
2000037412 Jun 2000 WO
2000064947 Nov 2000 WO
2001040404 Jun 2001 WO
2001047844 Jul 2001 WO
2002051784 Jul 2002 WO
2007063031 Jun 2007 WO
2010094982 Aug 2010 WO
2015140549 Sep 2015 WO
2017041204 Mar 2017 WO
2017081611 May 2017 WO
2017091599 Jun 2017 WO
2017187150 Nov 2017 WO
2018164226 Sep 2018 WO
2018221314 Dec 2018 WO
2019142887 Jul 2019 WO
2020038496 Feb 2020 WO
2020183105 Sep 2020 WO
2021022550 Feb 2021 WO
Non-Patent Literature Citations (32)
Entry
Edwards, B.A., “Comparing reducing agents in a pilot scale CIO2 generator: does hydrogen peroxide measure up,?” Pulp & Paper Canada; Westmount vol. 97, Iss. 5, (May 1996): 34-37.
International Search Report and Written Opinion, International Application No. PCT/US2020/026210, Dated Jun. 17, 2020, 12 pgs.
Appelt, M. and Schmidt-Naake, G. “Stable Free-Radical Copolymerization of Styrene with Acrylates Using OH-Tempo,” Macromolecular Chemistry and Physics, 2004, vol. 205(6), pp. 637-644.
Bragd, P.L., Besemer, A.C., van Bekkum, H. “Tempo-derivatives as catalysts in the oxidation of primary alcohol groups in carbohydrates,”Journal of Molecular Catalysis A: Chemical, 2001, vol. 170(1-2), pp. 35-42.
Brinkmann-Rengel, S., N. Niessner. “Controlled Radical Copolymerization of Styrene and Acrylonitrile,” American Cancer Society Symposium Series, chapter 28, vol. 768, Aug. 15, 2000, https://pubs.acs.org/doi/abs/10.1021/bk-2000-0768.ch028.
Edeleva, M.V., Marque, S.R., Bagryanskaya, E.G. “Imidazoline and imidazolidine nitroxides as controlling agents in nitroxide-mediated pseudoliving radical polymerization,” Russian Chemical Reviews, Apr. 2018, vol. 87(4), pp. 328-349.
Edwards, B. A. “Comparing reducing agents in a pilot scale CIO2 generator: does hydrogen peroxide measure up?,” Pulp & Paper Canada, 1996, vol. 97(5), pp. 34-37.
Georgieff, K.K. “Relative Inhibitory Effect of Various Compounds on the Rate of Polymerization of Methyl Methacrylate,” Journal of Applied Polymer Science, 1965, vol. 9(6), pp. 2009-2018.
Goldfein, M.D., Gladyshev, G.P. “Kinetics and Mechanism of the Inhibited Polymerisation of Vinyl Monomers,” Russian Chemical Reviews, 1988, vol. 57(11), p. 1083-1097.
Ichihara, K., Kawamura, I., Sakakibara, K. et al. “Inhibitory regulation mechanism of naphthoquinone and its derivatives in radical polymerization,” Journal of Physical Organic Chemistry, 2019, vol. 32(6), pp. 1-11.
Kuznetsova, Y.L., Mozaleva, P.G., Vavilova, A.S., et al. “Polymerization of methyl methacrylate in the presence of 2,5-di-tert-butyl-p-benzoquinone,” Russian Chemical Bulletin, Apr. 2020, vol. 69(4), pp. 763-767.
Li, R. and F.J.Schork. “Modeling of the Inhibition Mechanism of Acrylic Acid Polymerization,” Industrial & Engineering Chemistry Research, 2006, vol. 45(9), pp. 3001-3008.
Ludin, D.V., Kuznetsova, Y.L., Zamyshlyaeva, O.G., Zaitsev, S.D. “Controlled Radical Copolymerization of Styrene and tert-Butyl Acrylate in the Presence of Tri-n-butylborane-p-Quinone Catalytic System,” Polymer Science, Series B, 2017, vol. 59(1), pp. 7-15.
Ma, Y. Chapter 3: Mechanistic Investigation of Nitroxide-based Polymerization Inhibitors, Mar. 15, 2012, Doctoral Dissertion, University of York, pp. 77-143.
Naz, A., Sattar, R., Siddiq, M. “Polymer membranes for biofouling mitigation: a review,” Polymer-Plastics Technology and Materials, 2019, vol. 58(17), pp. 1829-1854.
Niesbach, A., Daniels, J., Schröter, B., et al. “The inhibition of acrylic acid and acrylate ester polymerisation in a heterogeneously catalysed pilot-scale reactive distillation column,” Chemical Engineering Science, 2013, vol. 88, pp. 95-107.
Okutsu, R., S. Ando, and M. Ueda. “Sulfur-Containing Poly (meth)acrylates with High Refractive Indices and High Abbe's Numbers,” Chemistry of Materials, 2008, vol. 20(12), pp. 4017-4023.
Pavlovskay, M.V., Smirnova, N.N., Markin , et al. “Synthesis of Block Copolymers from Polyvinyl Chloride Prepared in the Presence of Nitroxyl Radicals of the Imidazoline Series,” Russian Journal of Applied Chemistry, 2014, vol. 87(3), pp. 324-330.
Rodriquez, B., Oztruk, D. et al. “Antibiofouling thin-film composite membranes (TFC) by in situ formation of Cu-(m-phenylenediamine) oligomer complex,” Journal of Materials Science, Jan. 23, 2018, vol. 53, pp. 6325-6338.
Shushunova, N.Y., Arsenyev, M.V., Glukhova, T.A., et al. “Polymerization of Butyl Acrylate and Butyl Methacrylate in the Presence of o-Quinone Methacrylate,” Polymer Science Series B, 2015, vol. 57(3), pp. 207-216.
Wang, Y., Meng X., Wu H., et al. “Improving permeability and anti-fouling performance in reverse osmosis application of polyamide thin film nanocomposite membrane modified with functionalized carbon nanospheres,” Separation and Purification Technology, 2021, vol. 270, pp. 1-11.
Weng, S.and J. Zhang. “N-Oxyl-Radical-Catalyzed Intermolecular Aminooxygenation of Styrenes and Inter/intramolecular Aminoalkoxylation of Homoallylic Alcohols,” ChemCatChem, 2016, vol. 8(24), pp. 3720-3724.
Yin, W., Chu, C., Lu, Q. et al. “Iron Chloride/4-Acetamido-Tempo/Sodium Nitrite-Catalyzed Aerobic Oxidation of Primary Alcohols to the Aldehydes,” Advanced Synthesis & Catalysis, 2010, vol. 352, pp. 113-118.
International Search Report and Written Opinion, PCT/US2020/026210, dated Jun. 17, 2020, 12 pages.
International Search Report and Written Opinion, PCT/US2023/065015, dated Jul. 17, 2023, 10 pages.
International Search Report and Written Opinion, PCT/US2023/065018, dated Jul. 7, 2023, 8 pages.
International Search Report and Written Opinion, PCT/US2023/065022, dated Jul. 26, 2023, 8 pages.
International Search Report and Written Opinion, PCT/US2023/065048, dated Jul. 14, 2023, 11 pages.
International Search Report and Written Opinion, PCT/US2023/065050, dated Jul. 7, 2023, 10 pages.
International Search Report and Written Opinion, PCT/IB2023/060631, dated Feb. 14, 2024, 11 pages.
International Search Report and Written Opinion, PCT/US2023/069730, dated Oct. 23, 2023, 12 pages.
International Search Report and Written Opinion, PCT/US2023/069702, dated Oct. 18, 2023, 16 pages.
Related Publications (1)
Number Date Country
20230391619 A1 Dec 2023 US
Provisional Applications (1)
Number Date Country
62827975 Apr 2019 US
Divisions (1)
Number Date Country
Parent 16837680 Apr 2020 US
Child 18336411 US