Many imaging devices, such as printers, facsimile devices, multifunction peripherals (MFPs), etc., dispose images onto a print media, such as paper, using a fluid-ejection device, such as an inkjet print head, that ejects droplets of a marking fluid, such as ink, onto the print media through a set of nozzles. One problem is that the nozzles, especially seldom used nozzles, frequently become clogged or otherwise contaminated with a variety of contaminants, such as dried ink and paper fibers. This adversely impacts the placement and volume of output droplets, as the droplet may be deflected from its intended destination and less than all ink may escape the nozzle. Conventional imaging devices often include a spittoon in which ink drops are periodically disposed (or “spit”) to purge the nozzles.
Some imaging devices employ a separate fluid-ejection device that ejects droplets of a clear fixing liquid (or “fixer”) onto the print media prior to depositing the ink (often referred to as “under-printing”), e.g., to improve color saturation, water-fastness, edge acuity, and durability of inkjet printed images, etc. This is achieved when the fixing liquid reacts with the inkjet ink either on or in the print media. A clear fixing liquid can also be overprinted onto inkjet printed images, e.g., to reduce drying time and smearing, increase image permanence, etc.
Typically, the fluid-ejection device is expected to deposit the clear fixing liquid in a precise pattern corresponding to the printed images. One problem is that fixing liquids can crust nozzles on the fluid-ejection device, internally and externally, and thus degrade nozzle performance, more quickly than ink. Such nozzle degradation can produce an inferior image with inferior image uniformity and permanence. Consequently, fixing liquids have to be purged (or spit) more frequently and in larger quantities than inks, causing spittoons to fill more quickly, leading to increased spittoon maintenance. Moreover, fixing liquids often react with the ink contained in a spittoon, e.g., causing the inks to solidify within the spittoon, leading to spittoon malfunction.
In the following detailed description of the present embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that process, electrical or mechanical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims and equivalents thereof.
For one embodiment imaging device 100, receives image data via interface 102. Imaging device 100 has a controller 110, such as a formatter, for interpreting the image data and rendering the image data into a printable image. The printable image is provided to a print engine 120 to produce a hardcopy image 142. The hardcopy image 142 is produced on a media sheet 140, such as paper, transparent plastic, etc. Portions of media sheet 140 destined receive the hardcopy image 142 thereon are imaging portions of the media sheet 140. For another embodiment, the imaging device 100 is capable of generating its own image data, e.g., a copier via scanning an original hardcopy image.
Controller 110 includes a memory 112, e.g., a computer-usable storage media that can be fixedly or removably attached to imaging device 100. Some examples of computer-usable media include static or dynamic random access memory (SRAM or DRAM), read-only memory (ROM), electrically-erasable programmable ROM (EEPROM or flash memory), magnetic media and optical media, whether permanent or removable. Memory 112 may include more than one type of computer-usable storage media for storage of differing information types. For one embodiment, memory 112 contains computer-readable instructions, e.g., drivers, adapted to cause controller 120 to format the data received by imaging device 100, via interface 102 or by scanning, and computer-readable instructions to cause imaging device 100 to perform various methods, as described below.
Print engine 120 represents the mechanical aspects of the imaging device 100. For one embodiment, print engine 120 includes a source 122 for supplying the print engine 120 with one or more media sheets 140. Examples of the source 122 include media trays or by-pass feeders. Print engine 120 includes an ink delivery system 124 that receives a media sheet 140 from source 122 for printing the hardcopy image 142 thereon. For one embodiment, ink delivery system 124 includes fluid-ejection devices, such as print heads, that are respectively fluidly coupled to marking-fluid reservoirs, such as ink reservoirs. The ink reservoirs may be integral with their respective print heads or may be separated from their respective print heads and fluidly coupled thereto by conduits. The print heads have nozzles for ejecting ink droplets onto print media 140 for creating the hardcopy image 142 thereon.
For other embodiments, print engine 120 has a capping device 132 and a spittoon 134. When the print heads are not in use, they are capped by capping device 132 to prevent the print heads from drying out. Moreover, the print heads can be moved to spittoon 134, e.g., between printing on successive media sheets 140, so that the print heads can eject (or spit) a predetermined number of drops through their nozzles into spittoon 134 to purge the nozzles of unwanted debris, such as dried ink, paper fibers, etc. For some embodiments, the capping device 132 and spittoon 134 are located in the same general area of imaging device 100 and constitute a service station of imaging device 100.
The computer-readable instructions of memory 112 instruct print engine 120 to print hardcopy image 142 within a predefined print region 144 of media sheet 140. The predefined print region 144 is defined by specifying margins adjacent a periphery of media sheet 140. Specifically, a top margin 150 is defined adjacent a leading edge of media sheet 140 as media sheet 140 travels through imaging device 100, a bottom margin 152 defined adjacent a trailing edge of media sheet 140, and opposing side margins 154 and 156 are defined adjacent opposing sides of media sheet 140. For one embodiment, a user specifies the margins, e.g., using a personal computer or other processing device.
For one embodiment, print heads 2101 to 2104 respectively eject substantially opaque black, cyan, magenta, and yellow inks onto print region 144 to produce the hardcopy image 142 thereon. For one embodiment, print head 2105 ejects a clear fixing liquid (or “fixer”) through its nozzles onto print region 144 in an “under-printing” process prior to print heads 2101 to 2104 ejecting their inks onto print region 144. Print heads 2101 to 2104 subsequently eject their inks on the fixing liquid. For another embodiment, the fixing liquid includes a cationic polymer, cationic multivalent metal salts and/or a cationic surfactant that precipitates anionic dyes or anionic pigments in the inks ejected from print heads 2101 to 2104 either on or in print media 140, e.g., to improve color saturation, water-fastness, edge acuity, and durability of the hardcopy image 142. For another embodiment, print head 2105 ejects the clear fixing liquid onto the hardcopy image 142 in an overprinting process, e.g., to reduce drying time and smearing, increase image permanence, etc.
For some embodiments, carriage 220 carries print heads 210 to a spittoon, such as spittoon 134 of imaging device 100 of
To avoid the problems associated with spitting fixing liquid into a spittoon, print head 2105 spits a predetermined number of drops of the fixing liquid through its nozzles onto a non-imaging portion of media sheet 140 to purge the nozzles of any unwanted debris, such as dried fixer, etc. The non-imaging portion of media sheet 140 may include margins 150, 152, 154, and/or 156 and/or portions 160 of print region 144 that are not destined to receive the hardcopy image 142, as best shown in
For one embodiment, the number of drops to be spit onto the non-imaging portion of media sheet 140 and, for some embodiments, into spittoon 134 is based on the de-cap time. This can be accomplished by using a look-up table that is stored in a memory of the imaging device, such as memory 112 of imaging device 100 of
During operation, one or more media sheets 140 are disposed on drum 302, and as drum 302 rotates, it carries the media sheets 140 past a set print heads 310 and a set of print heads 312 of print engine 300, as shown in
During printing, print heads 310 and print heads 312 remain substantially stationary as print drum 302 carries media sheets past them. However, for some embodiments, print heads 310 and print heads 312 can be moved substantially perpendicular to the direction of motion of the pages, e.g., by about 20 pixels.
For one embodiment, print heads 3101 and 3121 are adapted eject clear fixing liquid through their nozzles onto their corresponding halves of the print region 144 of media sheets 140; print heads 3102 and 3122 are adapted eject substantially opaque black and yellow inks through their nozzles onto their corresponding halves of the print region 144; and print heads 3103 and 3123 are adapted eject substantially opaque cyan and magenta inks through their nozzles onto their corresponding halves of the print region 144. For another embodiment, print heads 3101 and 3121 eject the fixing liquid onto their respective halves of print region 144 prior to print heads 3102 and 3122 and print heads 3103 and 3123 ejecting their inks onto their respective halves of print region 144. Print heads 3102 and 3122 and print heads 3103 and 3123 then eject their inks on the fixing liquid.
For one embodiment, print heads 3101 and 3121 each spit a predetermined number of drops of the fixing liquid through their nozzles onto the non-imaging portion of their respective half of media sheet 140 to purge their nozzles prior to ejecting fixing liquid in print region 144. For some embodiments, when printing on a succession of media sheets 140, the fixing liquid is spit onto margin 150 of each of the media sheets 140 prior to ejecting fixing liquid within the print region 144 of each of the respective media sheets 140. For various embodiments, a look-up table can be used to determine the number of drops of fixer that need to be spit onto the non-imaging portion of media sheet 140, as described above. Alternatively, the number of drops may correspond to a default number of drops, as described above.
For one embodiment, a longitudinal slot 320 passes radially through a wall 322 of print drum 302 and opens into a spittoon 330, as shown in
For another embodiment, print heads 310 can span the entire width W of the media sheets 140 and print heads 312 can be eliminated.
Although specific embodiments have been illustrated and described herein it is manifestly intended that this invention be limited only by the following claims and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4833491 | Rezanka | May 1989 | A |
5659342 | Lund et al. | Aug 1997 | A |
6296342 | Oikawa | Oct 2001 | B1 |
6619784 | Bauer | Sep 2003 | B2 |
6932455 | Monclus et al. | Aug 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20050270327 A1 | Dec 2005 | US |