Not Applicable.
Not Applicable.
Not Applicable.
Technical Field
The subject matter generally relates to systems and techniques in the field of oil and gas operations. When a well site is completed, pressure control equipment may be placed near the surface of the earth. The pressure control equipment may control the pressure in the wellbore while drilling, completing and producing the wellbore. The pressure control equipment may include blowout preventers (BOP), rotating control devices (RCDs), and the like. The RCD is a drill-through device with a rotating seal that contacts and seals against the drill string (drill pipe with tool joints, casing, drill collars, Kelly, etc.) for the purposes of controlling the pressure or fluid flow to the surface.
RCDs and other pressure control equipment are used in underbalanced drilling (UBD) and managed pressure drilling (MPD), which are relatively new and improved drilling techniques, and work particularly well in certain offshore drilling environments. Both technologies are enabled by drilling with a closed and pressurizable circulating fluid system as compared to a drilling system that is open-to-atmosphere at the surface. Managed pressure drilling is an adaptive drilling process used to more precisely control the annular pressure profile throughout the wellbore. MPD addresses the drill-ability of a prospect, typically by being able to adjust the equivalent mud weight with the intent of staying within a “drilling window” to a deeper depth and reducing drilling non-productive time in the process. The drilling window changes with depth and is typically described as the equivalent mud weight required to drill between the formation pressure and the pressure at which an underground blowout or loss of circulation would occur. The equivalent weight of the mud and cuttings in the annulus is controlled with fewer interruptions to drilling progress while being kept above the formation pressure at all times. An influx of formation fluids is not invited to flow to the surface while drilling. Underbalanced drilling (UBD) is drilling with the hydrostatic head of the drilling fluid intentionally designed to be lower than the pressure of the formations being drilled, typically to improve the well's productivity upon completion by avoiding invasive mud and cuttings damage while drilling. An influx of formation fluids is therefore invited to flow to the surface while drilling. The hydrostatic head of the fluid may naturally be less than the formation pressure, or it can be induced.
Due to the nature of oilfield drilling, sealing elements within the RCD often become worn and need to be replaced. When doing so, the bearing is removed from the RCD body, and a new bearing is reinstalled into the RCD body. After reinstallation, one existing problem is that the hydraulic fluid circuit needs to be cleansed of contaminants in the nature of wellbore fluid and debris before lubrication and drilling operations recommence. There exists a need for an improved contaminant removal system and method to remove contaminants from the RCD
US Pub. No. 2006/0144622 proposes a system and method for cooling a RCD while regulating the pressure on its upper radial seal. Gas, such as air, and liquid, such as oil, are alternatively proposed for use in a heat exchanger in the RCD. A hydraulic control system is proposed to provide fluid to energize a bladder of an active seal to seal around a drilling string and to lubricate the bearings in the RCD.
U.S. Pat. Nos. 6,554,016 and 6,749,172 propose a rotary blowout preventer with a first and a second fluid lubricating, cooling, and filtering circuit separated by a seal. Adjustable orifices are proposed connected to the outlet of the first and second fluid circuits to control pressures within the circuits.
The above discussed U.S. Pat. Nos. 6,554,016 and 6,749,172, and Pub. No. US 2006/0144622 are incorporated herein by reference for all purposes in their entirety. All of the above referenced patents and patent publications have been assigned to the assignee of the current invention.
The disclosure relates to purging a RCD including a bearing of contaminants with a fluid circuit, the fluid circuit having at least one housing adjacent to the RCD, a first plurality of valves within the bearing, a second plurality of valves within the housing, at least one inlet port located on the RCD, each inlet port being connected to the housing, at least one outlet port located on the RCD, each outlet port being connected to the housing, and a purge outlet in fluid communication with the fluid circuit.
As used herein, the terms “line” and “circuit” may be interpreted to mean any structural form used in the transport of fluid including flexible conduits such as hosing or tubing, drilled channels, ports, orifices, voids, outlets, vents and the like.
As used herein the term “RCD” or “RCDs” and the phrases “pressure control equipment”, “pressure control apparatus” or “pressure control device(s)” shall refer to well related pressure control equipment/apparatus/device(s) including, but not limited to, rotating-control-device(s), active rotating control devices, blowout preventers (BOPs), and the like.
The embodiments may be better understood, and numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings. These drawings are used to illustrate only typical embodiments of this invention, and are not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale or in schematic in the interest of clarity and conciseness.
The description that follows includes exemplary apparatus, methods, techniques, and instruction sequences that embody techniques of the inventive subject matter. However, it is understood that the described embodiments may be practiced without these specific details.
The flow of the fluid through purge system 100 may be controlled by a four-port directional control valve 112 connected to supply line 104 and bleed line 106. The bleed line 106 is connected to filter 114 and the return line 108 is connected to filter 116. The size and type of filters 114 and 116 may be adjusted as desired so as to prolong the usable lifetime of said filters. The hydraulic lines of purge system 100 are connected to valves 118a-h housed within manifold valve blocks or housing(s) 120a-b. While the embodiment in
The purge system 100 as described utilizes or integrates the existing lubrication circuit and pump in the RCD body 122, without the need for expensive or time consuming modifications to the existing hydraulic lubrication circuitry. Such existing RCD lubricating circuits contemplated include U.S. Pat. Nos. 6,554,016 and 6,749,172,and Pub. No. US 2006/0144622.
Further, in one embodiment at least one sensor, flow meter or detection device 300, for example, an electrical, mechanical, or hydraulic sensor, may be positioned in the purge line 110. It is contemplated that the sensor or sensors could be mechanical, electrical, or hydraulic and may be used additionally for measuring temperature, pressure, density, flow rate, particulate matter, and/or fluid levels. In one working example, an operator may wish to quantify the flow of the purge fluid 105 via a flow metering or detection device 300 (e.g. to determine when five gallons of purge fluid 105 have flowed through the meter).
In a working example, the bearing(s) 124 may run in the working environment for a period of from about two days to about three weeks prior to removal and insertion of the same and/or other bearing(s) 124. Preferably but not limited to absolutely, the purge system 100 will be performed when the bearing assembly(ies) 124 are inserted before lubrication begins (by way of example only, purged once using five gallons of purge fluid 105).
While the embodiments are described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the inventive subject matter is not limited to them. Many variations, modifications, additions and improvements are possible. For example, while the embodiments described are in reference to RCDs with lubrication circuits, it will be understood that the inventive system, method, and apparatus are equally applicable to cooling circuits in RCDs, to dual lubricating and cooling circuits in RCDs, to other equipment with fluid circuitry such as seal activation circuits in BOPs (see e.g. U.S. Pat. Nos. 6,554,016 and 6,749,172, which are incorporated herein by reference) and latch mechanism control circuits (see e.g. U.S. Pub. Nos. 2006/0144622 and 2012/0013133, which are incorporated herein by reference), amongst others, including non-rotating control devices which contain hydraulic feeds. Further by way of example, the techniques used herein may be applied to equipment needing lubrication and/or purging, as used in mining, food, or construction industries.
Plural instances may be provided for components, operations or structures described herein as a single instance. In general, structures and functionality presented as separate components in the exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the inventive subject matter.
The present application claims the benefit of U.S. provisional application no. 61/792,940 filed Mar. 15, 2013 the disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61792940 | Mar 2013 | US |