The present invention relates generally to equipment utilized and operations performed in conjunction with subterranean wells and, in an embodiment described herein, more particularly provides for purging of fiber optic conduits in subterranean wells.
It is very important for optical fibers to be well protected when they are used in harsh, hostile environments. For example, in high temperature environments, such as in steam injection wells or other high temperature well environments, there are a variety of possibly damaging effects to guard against.
One effect of high temperature environments on optical fibers is accelerated hydrogen darkening. In some cases, an optical fiber can become unusable due to hydrogen darkening within a few days of its installation.
Therefore, it will be appreciated that improvements are needed in the art of protecting optical fibers in hostile environments.
In carrying out the principles of the present invention, a downhole optical sensing system and associated method are provided which solve at least one problem in the art. One example is described below in which an optical fiber is installed within coaxial conduits for convenient purging of hydrogen from about the optical fiber. Another example is described below in which a purging medium is circulated downhole and returned from downhole via the coaxial conduits.
In one aspect, a downhole optical sensing system is provided. The system includes at least one optical line and at least two tubular conduits. One conduit is positioned within the other conduit. The optical line is positioned within at least one of the conduits. A purging medium is flowed in one direction through one conduit, and is flowed in an opposite direction between the conduits.
In another aspect, a method of purging a downhole optical sensing system is provided. The method includes the steps of: installing at least two conduits and an optical line in a well as part of the sensing system, one conduit being positioned within the other conduit, and the optical line being positioned within at least one of the conduits; and flowing a purging medium through the conduits in the well, so that the purging medium flows in one direction through one conduit and in an opposite direction between the conduits.
These and other features, advantages, benefits and objects will become apparent to one of ordinary skill in the art upon careful consideration of the detailed description of representative embodiments of the invention hereinbelow and the accompanying drawings, in which similar elements are indicated in the various figures using the same reference numbers.
It is to be understood that the various embodiments of the present invention described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of the present invention. The embodiments are described merely as examples of useful applications of the principles of the invention, which is not limited to any specific details of these embodiments.
In the following description of the representative embodiments of the invention, directional terms, such as “above”, “below”, “upper”, “lower”, etc., are used for convenience in referring to the accompanying drawings. In general, “above”, “upper”, “upward” and similar terms refer to a direction toward the earth's surface along a wellbore, and “below”, “lower”, “downward” and similar terms refer to a direction away from the earth's surface along the wellbore.
Representatively illustrated in
As depicted in
As another alternative, the conduit assembly 16 and/or sensor 18 could be installed in the wellbore 12 whether or not the tubing string 14 is also installed in the wellbore. Therefore, it should be clearly understood that the principles of the invention are not limited in any way to the details of the system 10 illustrated in the drawings or described herein.
Referring additionally now to
Multiple optical waveguides or lines 24, 26, 28 are contained within the conduits 20, 22. Although three lines 24, 26, 28 are depicted in
In addition, any number of conduits may be used. Although the conduit 20 is described for convenience herein as an “inner” conduit, another conduit could be contained within the conduit 20, and although the conduit 22 is described for convenience herein as an “outer” conduit, another conduit could be external to the conduit 22. The conduits 20, 22 may be made of any suitable material, such as stainless steel, polymers, composites, etc.
The optical lines 24, 26 are preferably used for distributed temperature sensing (DTS), a technique well known to those skilled in the art, in which backscattered light is analyzed to determine the temperature distribution along optical lines or fibers. In this manner, the lines 24, 26 themselves comprise temperature sensors in the optical sensing system 10.
The optical line 28 is preferably operatively connected to the sensor 18 (for example, via a fusion splice 30). The sensor 18 could be a sensor designed to detect a property at a single location, such as a pressure sensor. The sensor 18 could be an optical sensor (such as the pressure sensor described in U.S. Pat. No. 7,159,468), or it could be another type of sensor.
The splice 30 is preferably contained within a chamber 32. The chamber 32 is preferably connected between the sensor 18 and a lower end of the conduit assembly 16, for example, using pressure isolating fittings 34 at either end of a tubular housing 36. However, other arrangements and configurations may be used in keeping with the principles of the invention.
In the example of
An acceptable turnaround for use in the system 10 is manufactured by AFL Telecommunications LLC of Duncan, S.C. USA. Fusion splices (such as the fusion splice 30) may be used to connect the lines 24, 26 to the turnaround 38.
In one beneficial feature of the system 10, the chamber 32 is in communication with the interior of the inner conduit 20, and in communication with the space 40 between the conduits 20, 22. In this manner, a continuous flow passage is formed from the remote location (such as the earth's surface, sea floor, etc.) to the downhole location at the chamber 32, and back to the remote location.
This configuration permits a purging medium 42 (see
Referring additionally now to
The purging medium 42 is flowed via a conduit 46 into an interior chamber 48 of the device 44. The chamber 48 is in communication with the space 40 between the conduits 20, 22. Thus, the purging medium 42 flows downhole through the space 40 between the conduits 20, 22, into the chamber 32 at the lower end of the conduit assembly 16, and then back uphole to the remote location via the interior of the inner conduit 20. In this manner, hydrogen is purged from about the lines 24, 26, 28 in the conduit assembly 16.
Referring additionally now to
The purging medium 42 is flowed via the conduit 46 into an interior chamber 52 of the device 50. The chamber 52 is in communication with the interior of the conduit 20. Thus, the purging medium 42 flows downhole through the interior of the inner conduit 20, into the chamber 32 at the lower end of the conduit assembly 16, and then back uphole to the remote location via the space 40 between the conduits 20, 22. In this manner, hydrogen is purged from about the lines 24, 26, 28 in the conduit assembly 16.
It may now be fully appreciated that the above description of representative examples of the system 10 and associated methods provide important advancements in the art of protecting optical lines from damage in harsh, hostile environments. In particular, the system 10 and methods described above enable convenient, efficient and inexpensive purging of conduits 20, 22 in order to protect the lines 24, 26, 28 from hydrogen darkening. Other uses may be made of the system 10 and methods in keeping with the principles of the invention.
Described above is a downhole optical sensing system 10 which includes at least one optical line 24, 26, 28 and at least two tubular conduits 20, 22. One conduit 20 is positioned within the other conduit 22. The optical line 24, 26, 28 is positioned within at least one of the conduits 20, 22. A purging medium 42 is flowed in one direction through one conduit 20, and flowed in an opposite direction between the conduits 20, 22.
The optical line 28 may be operatively connected to a downhole sensor 18. The optical lines 24, 26 may comprise a downhole sensor. The optical lines 24, 26, 28 may be positioned within the inner conduit 20.
The purging medium 42 may comprise a gas. The purging medium 42 may comprise a hydrogen scavenging medium.
The purging medium 42 may be flowed downhole in a first direction and return uphole in a second direction. The purging medium 42 may be flowed downhole in the second direction and return uphole in the first direction.
The system 10 may also include a downhole chamber 32 in fluid communication with an interior of the inner conduit 20 and an annular space 40 between the conduits 20, 22. The system 10 can include a 180-degree turnaround in the optical lines 24, 26 within the downhole chamber 32.
Also described above is a method of purging a downhole optical sensing system 10. The method includes the steps of: installing at least two conduits 20, 22 and at least one optical line 24, 26, 28 in a well as part of the sensing system 10, one conduit 20 being positioned within the other conduit 22, and the optical line 24, 26, 28 being positioned within at least one of the conduits; and flowing a purging medium 42 through the conduits in the well, so that the purging medium flows in one direction through one conduit 20 and in an opposite direction between the conduits 20, 22.
The method may include operatively connecting the optical line 28 to a downhole sensor 18. The method may include utilizing the optical line 24, 26 as a downhole sensor.
The method may include flowing the purging medium 42 downhole in one direction and returning the purging medium from downhole in the opposite direction. The method may include flowing the purging medium 42 downhole in the second direction and returning the purging medium from downhole in the first direction.
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the invention, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of the present invention. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
PCT/US07/89000 | Dec 2007 | WO | international |
This application is a Continuation of U.S. patent application Ser. No. 12/337,689 filed Dec. 18, 2008 (now issued U.S. Pat. No. 8,090,227), which claims the benefit under 35 USC § 119 of the filing date of International Application No. PCT/US07/89000, filed Dec. 28, 2007. The entire disclosures of these prior applications are incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
3111551 | D'Ascoli | Nov 1963 | A |
4748969 | Wardle | Jun 1988 | A |
4927232 | Griffiths | May 1990 | A |
4938060 | Sizer et al. | Jul 1990 | A |
4941349 | Walkow et al. | Jul 1990 | A |
5208465 | Jacobson | May 1993 | A |
5275038 | Sizer et al. | Jan 1994 | A |
5503014 | Griffith | Apr 1996 | A |
5804702 | Hovde et al. | Sep 1998 | A |
5892176 | Findlay et al. | Apr 1999 | A |
5894104 | Hedburg | Apr 1999 | A |
6201917 | Campion et al. | Mar 2001 | B1 |
6237421 | Li | May 2001 | B1 |
6343173 | Hordvik et al. | Jan 2002 | B2 |
6496625 | Falkowich et al. | Dec 2002 | B1 |
6497290 | Misselbrook et al. | Dec 2002 | B1 |
6690866 | Bonja et al. | Feb 2004 | B2 |
6807324 | Pruett | Oct 2004 | B2 |
6907170 | Maida, Jr. | Jun 2005 | B1 |
6957574 | Ogle | Oct 2005 | B2 |
7017417 | Daigle | Mar 2006 | B2 |
7024081 | Dowd et al. | Apr 2006 | B2 |
7082239 | Kuczma et al. | Jul 2006 | B2 |
7104141 | Zerwekh et al. | Sep 2006 | B2 |
7134491 | Kohli et al. | Nov 2006 | B2 |
7140435 | Defretin et al. | Nov 2006 | B2 |
7160368 | Wakelin | Jan 2007 | B1 |
7163055 | Coon et al. | Jan 2007 | B2 |
7218820 | Maida, Jr. | May 2007 | B2 |
7284903 | Hartog | Oct 2007 | B2 |
7496258 | Varkey | Feb 2009 | B1 |
7617873 | Lovell et al. | Nov 2009 | B2 |
7646953 | Dowd et al. | Jan 2010 | B2 |
8090227 | Skinner | Jan 2012 | B2 |
8213756 | Herbst | Jul 2012 | B2 |
8646968 | MacDougall | Feb 2014 | B2 |
20040043501 | Means et al. | Mar 2004 | A1 |
20040145969 | Bai et al. | Jul 2004 | A1 |
20040213529 | Dowd et al. | Oct 2004 | A1 |
20040258371 | Kuczma et al. | Dec 2004 | A1 |
20050051757 | Shepodd et al. | Mar 2005 | A1 |
20050236161 | Gay | Oct 2005 | A1 |
20050263281 | Lovell et al. | Dec 2005 | A1 |
20060010973 | Brown | Jan 2006 | A1 |
20060018611 | Maida, Jr. | Jan 2006 | A1 |
20060153508 | Bowker | Jul 2006 | A1 |
20060239330 | Yamate | Oct 2006 | A1 |
20060260739 | Varkey | Nov 2006 | A1 |
20060272809 | Tubel et al. | Dec 2006 | A1 |
20060280412 | Varkey | Dec 2006 | A1 |
20070122104 | Chalifoux | May 2007 | A1 |
20070133961 | Fairbanks | Jun 2007 | A1 |
20070221377 | Vinegar | Sep 2007 | A1 |
20070227741 | Lovell | Oct 2007 | A1 |
20080273852 | Parker | Nov 2008 | A1 |
20090166042 | Skinner | Jul 2009 | A1 |
20090202192 | Taverner | Aug 2009 | A1 |
20100008632 | Herbst | Jan 2010 | A1 |
20110171370 | Holzmueller et al. | Jul 2011 | A1 |
20120076464 | Dowd et al. | Mar 2012 | A1 |
20130192640 | Skinner et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2007066146 | Jun 2007 | WO |
2008051945 | May 2008 | WO |
Entry |
---|
Canadian Office Action issued for CA Patent Application No. 2,709,698, 3 pages. |
International Search Report and Written Opinion dated Apr. 30, 2008, for International Patent Application Serial No. PCT/US07/89000, 7 pages. |
AFL Telecommunications, Minibend Product Brochure, Aug. 29, 2007, 1 page. |
AFL Telecommunications, Stainless Steel Fiber Optic Tubes Product Brochure, Apr. 1, 2005, 1 page. |
International Preliminary Report on Patentability dated Jul. 8, 2010, for International Patent Apptication Serial No. PCT/US07/069000, 6 pages. |
Office Action dated Apr. 29, 2011 for U.S. Appl. No. 12/337,689, 13 pages. |
Supplementary European Search Report dated May 3, 2012 for EPC Patent Application No. 07870010.1, 6 pages. |
International Search Report and Written Opinion dated Apr. 30, 2013 for PCT Patent Application No. PCT/US2013/021070, 9 pages. |
Office Action dated Feb. 21, 2014 for U.S. Appl. No. 13/359,159, 38 pages. |
“European Application Serial No. 07870010.1, Summons to Attend Oral Proceedings dated Jan. 14, 2016”, 4 pgs. |
Number | Date | Country | |
---|---|---|---|
20120118578 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12337689 | Dec 2008 | US |
Child | 13342652 | US |