Exemplary embodiments herein generally relate to a push button mechanism for opening and closing a storage compartment or closure, such as a glovebox, in a vehicle.
A variety of opening and closing mechanisms for a vehicle storage compartment or glovebox are known. In one known arrangement, the opening and closing mechanism is located in a cutout of the glovebox door, located on an outer surface of the door, or mounted on an instrument panel or dashboard or other like vehicle structure. Sometimes an electric lock is included. A typical known mechanism includes a latch mounted to either the glovebox door or the dashboard, a push button mounted to the other one of the door or the dashboard, a rack bar connected to the push button and extending inward, a pinion engaged with the rack bar, and a link having a rack gear engaged with the pinion. The link is movable to lock and unlock the latch. Because the known design typically includes the latch, which is unlocked through the rack and pinion mechanism, the mechanism has complicated structures and, in certain instances, is not effective.
In accordance with one aspect, an opening and closing mechanism for a lid of a storage receptacle provided on a vehicle comprises a push button, a button pin and a lid linkage. The push button includes a first slider having an inclined face at a rear end thereof. The button pin includes a second slider having a first inclined face cooperating with the inclined face of the first slider. The first inclined face is spaced from a rear end of the second slider. The second slider is biased to contact the first slider. The lid linkage has a first end selectively engaged by the rear end of the second slider and a second end for selectively locking the lid in a closed state. The lid linkage is biased toward the second slider. Engagement of the push button with the button pin moves the second slider, which, in turn, allows the lid linkage to move toward the second slider to unlock the storage receptacle lid.
In accordance with another aspect, a vehicle assembly comprises a supporting structure, a storage receptacle mounted to the supporting structure, and an opening and closing mechanism operably associated with the storage receptacle. The storage receptacle includes a first wall and a second wall spaced from the first wall. The first and second walls at least partially define the storage compartment. Each of the first wall and the second wall includes an opening. A lid is movably mounted to one of the supporting structure and the receptacle for selectively providing access to the storage compartment. The lid includes a first sidewall and a second sidewall spaced from the first sidewall. Each of the first sidewall and the second sidewall has a lock opening which is aligned with one of the openings provided in the first and second walls when the lid is in a closed state.
The mechanism includes a push button, a first locking member and a second locking member. The push button is moveable supported on one of the structure and the storage receptacle and includes an engagement member having an inclined face at a rear end thereof which projects away from the storage receptacle. The first locking member is movably supported on the structure. The first locking member includes a first inclined face corresponding in shape to the inclined face of the engagement member and a second inclined face at a rear end thereof. The first locking member is normally urged toward the first wall of the storage receptacle. In the closed state of the lid, the second end projects through the opening provided in the first wall and the lock opening provided in the first sidewall for locking the lid in the closed state. The second locking member is provided in the storage receptacle lid and is movably supported on the lid. The second locking member is normally urged inwardly away from the second wall of the storage receptacle. The second locking member has a first end and a second end, the first end being engaged by the rear end of the first locking member in the lid closed state. The engagement by the first locking member moves the second end through the lock opening provided in the second sidewall and the opening provided in the second wall for locking the lid in the closed state.
In accordance with yet another aspect, a vehicle assembly comprises a dashboard, a glovebox mounted to the dashboard, and an opening and closing mechanism operably associated with the glovebox. The glovebox includes a first wall and a second wall spaced from the first wall. The first and second walls at least partially define a storage compartment. Each of the first wall and the second wall includes an opening. A lid is movably mounted to the glovebox for selectively providing access to the storage compartment. The lid includes a first sidewall and a second sidewall spaced from the first sidewall. Each of the first sidewall and the second sidewall has a lock opening which is aligned with one of the openings provided in the first and second walls when the lid is in a closed state.
The mechanism includes a push button, a spring-loaded button pin and a lid linkage. The push button is moveably supported on the dashboard and has an inclined face at its rear end. The spring-loaded button pin is positioned on the dashboard and has a first inclined face corresponding in shape to the inclined face of the push button. In the lid closed state, the button pin selectively engages the opening provided in the first wall and the lock opening provided in the first sidewall. The lid linkage is moveably supported on the lid. In the lid closed state, the button pin displaces the lid linkage toward the second wall and the lid linkage selectively engages the lock opening provided in the second sidewall and the opening provided in the second wall. A first spring normally biases the button pin toward the first wall. A second spring normally biases the lid linkage away from the second wall. The second spring is intervened between a lid structure and a portion of the lid linkage. Displacement of the push button engages the inclined face of the push button with the corresponding first inclined face of the button pin. The button pin is movable in a transverse direction relative to the movement of the push button away from the glovebox. Movement of the button pin allows the lid linkage to be biased in the same direction as the button pin away from the second wall.
It should, of course, be understood that the description and drawings herein are merely illustrative and that various modifications and changes can be made in the structures disclosed without departing from the present disclosure. It will also be appreciated that the various identified components of the exemplary opening and closing mechanism for a storage receptacle provided on a structure of a vehicle disclosed herein are merely terms of art that may vary from one manufacturer to another and should not be deemed to limit the present disclosure.
Referring now to the drawings, wherein like numerals refer to like parts throughout the several views,
With continued reference to
A biasing member is provided for biasing the push button 160 outwardly relative to the offset section 170. As shown, the biasing member is a spring 210 which circumscribes the first slider 190. In the depicted exemplary embodiment, an end portion of the spring is provided in a cutout or recess 216 located in the rear wall 184 and is intervened between the rear wall 184 and the offset section 170. Although, alternative manners for mounting the spring to the push button 160 are contemplated. As indicated above, the spring 210 biases the push button 160 away from the offset section 170 of the dashboard 102. To maintain engagement of the push button 160 with the dashboard 102, a pin 224 extends through a bore 226 located in the rear end portion 194 of the first slider 190. As the push button 160 is urged away from the offset section 170 via the spring 210, the pin 224 engages an inner surface 230 of the offset section 170 which faces the button pin 162. It should be appreciated that alternative manners for securing the push button 160 to the dashboard 102 are contemplated. For example, a separate housing can be mounted to the offset section 170 and the push button can be moveably mounted to the housing via the spring 210.
As illustrated in
As best depicted in
The second slider 240 is normally biased or urged toward the first wall 120 of the storage receptacle 104 via a biasing member to selectively lock the storage receptacle lid 106 in the closed state. In the illustrated embodiment, the biasing member is a spring 280 intervened between the wall 270 of the dashboard 102 and an end portion 282 of the second slider 240. According to one aspect, the spring 280 has a first end portion connected to a projection 290 provided on the wall 270 and a second end portion connected to a projection 292 provided on the end portion 282; although, alternative manner for connecting the spring 280 are contemplated. With this configuration, in the closed state of the lid, the spring-loaded button pin 162 selectively engages the dashboard 102 and the lid 106 of the glovebox 104. Specifically, the rear end portion 246 of the second slider 240 projects at least partially through the first opening 130 provided on the first wall 120 of the storage receptacle 124 and the first lock opening 150 provided on the first sidewall 144 of the lid 106.
With reference again to
The lid linkage 164 is provided in the storage receptacle lid 106 and has a longitudinal axis substantially parallel to the longitudinal axis of the second slider 240. As depicted, the lid linkage 164 is dimensioned to span between the first and second sidewalls 140,142 of the lid 106 and includes a first end portion 310 and a second end portion 312. The second end portion 312 of the lid linkage is adapted to selectively lock the storage receptacle lid 106 in its closed state and includes an inclined face 314 which projects toward the receptacle sidewall 142. The lid linkage 164 is movably supported on the lid 106. According to one aspect, the lid can include a guide 320 configured to slidably support the lid linkage. The guide 320 includes a first arm structure 322 and a second arm structure 324 that is spaced from the first arm structure. The first arm structure can be located near the lid first sidewall 140 and the second arm structure can be located near the lid second sidewall 142. Each arm structure 322,324 extends substantially perpendicularly from one of a rear wall 326 and a front wall 328 of the lid. As shown, the first and second arm structures 322,324 are generally L-shaped and include a respective first member 330,332 and a respective second member 334,336. Each first member 330,332 is fixedly secured to the wall 326. Each second member 334,336 includes an opening dimensioned to slidingly receive the lid linkage 164. It should be appreciated that other shapes for the arm structures 322,324 and alternative manners for slidably supporting the lid linkage 164 on the lid 106 are contemplated.
The lid linkage 164 is normally biased or urged away from the second wall 122 toward the second slider 240 via a biasing member (
With this configuration, and as depicted in
As is evident from the foregoing, the opening and closing mechanism 110 for the lid 106 of the glovebox 104 includes the push button 160, the spring-loaded button pin 162, and the lid linkage 164. The button pin 160 is positioned on the dashboard 102 and, in the lid closed position, selectively engages the opening 130 and first lock opening 150. As shown in
As shown in
Once is lid 106 is opened, the push button 160 is released and the spring 210 moves the push button back to its initial position. The spring 280 moves the button pin 162 back toward the glovebox causing the second inclined face 244 of the rear end portion 246 to project at least partially through the opening 130. Closing the lid moves the first sidewall 140 into contact with the rear end portion 246. The button pin 162 is at least partially displaced away from the first wall 120. In the closed state of the lid, the button pin 162 is aligned with the lid linkage 164. As indicated above, the button pin 162 then displaces the lid linkage back toward the second wall 122 and into engagement with the opening 132. Therefore, by using the spring-loaded button pin 162 to engage one side of the glovebox 104 and lid 106 and the sliding linkage to engage the other side of the glovebox and lid, the number of parts for the mechanism 110 as compared to known mechanisms is reduced while maintaining performance.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4547006 | Castanier | Oct 1985 | A |
5626374 | Kim | May 1997 | A |
6120069 | Taranto | Sep 2000 | A |
7156440 | Katagiri | Jan 2007 | B2 |
7380855 | Ishiguro et al. | Jun 2008 | B2 |
7451628 | Kim | Nov 2008 | B1 |
7475929 | Yamada | Jan 2009 | B2 |
7766409 | Ohnuki | Aug 2010 | B2 |
20090152887 | Schaupensteiner et al. | Jun 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20120261937 A1 | Oct 2012 | US |