FIELD OF THE INVENTION
This invention relates generally to quick connect/disconnect, multi-pin electrical connectors, and is particularly directed to a push lock electrical connector incorporating metal threads, a high strength, secure seal, and an anti-vibration capability.
BACKGROUND OF THE INVENTION
Inline electrical connectors tend to be of two basic types: the screw-type connector or the bayonet-type connector. The screw-type connector incorporates mating threads on the plug and socket portions of the connector and requires rotation of one or the other to connect the sets of electrical cables together in a sealed manner. Connection and disconnection are labor-intensive and require the application of a predetermined fastening torque to achieve an environmental seal or overcoming of this torque in disconnecting the pair of connector members. The fastening torque may undergo unintended loosening when the connector is subject to vibration forces resulting in loss of the connector seal and interruption of the pin and socket connections. Connection and disconnection of the two threaded connector members is also relatively slow and time consuming. The bayonet-type connection, on the other hand, is easily and quickly formed or disconnected. However, the coupled members in a bayonet connection are more easily separated and the connection broken than in a threaded connector. In addition, the bayonet connection is less adapted for the formation of high strength, tight seals than the threaded connection. Finally, the threaded and bayonet approaches are mutually exclusive, as one cannot be connected to the other which, in some cases, is inefficient and wasteful.
Recent efforts in this area have given rise to the use of segmented thread arrangements on each of the two connecting members which can be joined by pushing one connecting member onto the other in an axial direction, followed by rotation of one or both of the connecting members to place their respective thread arrangements in mutual engagement. Thus, this approach includes pushing the two connector members together as in the bayonet approach, followed by relative rotation between the two connector members to provide their threaded engagement. This combined approach does not afford all of the advantages of both approaches taken individually. For example, rotation of one or both of the connecting members is required for connection, while the integrity and strength of the connection is limited by the partial thread arrays that must be on both connecting members. In addition, the connector's seal is limited because of the hand torque requirement to achieve the environmental seal. One approach in this area utilizes plastic segmented threads that wear after a few couplings and uncouplings of the pair of connector members or lose their ability to “spring back” because the elastic limit of the plastic has been reached. The present invention addresses and overcomes these limitations by providing a push-type connection resulting in full thread engagement between the two connecting members that use a standard thread.
OBJECTS AND SUMMARY OF THE INVENTION
Accordingly, it is an object of the present invention to provide a push-type electrical connector with a threaded connection coupling the two connector members.
It is another object of the present invention to provide a tightly sealed, closed compartment for the plural conductive elements in an inline electrical connector.
Yet another object of the present invention is to provide a vibration-resistant connection between the male and female connecting members of a push-type electrical connector.
A further object is to provide quick and easy push-type engagement between the male and female connecting members of an inline, multi-pin electrical connector, while securely maintaining the two connecting members coupled together by means of a threaded type connecting arrangement.
A still further object of the present invention is to provide a sealed compartment for the contact elements of an electrical connector where the strength of the seal can be easily achieved regardless of the torque used to mate the connector members.
This invention is directed to an inline electrical connector adapted for quick, locked connection by merely pushing the male and female connecting members together in establishing a threaded, sealed connection between the two connecting members. The push lock electrical connector further includes an anti-vibration feature to prevent relative rotational movement between the male and female connecting members to ensure that electrical continuity is maintained. The push lock electrical connector also incorporates metal threads rather than plastic threads to increase reliability and connector operating lifetime. The push lock connector is fully compatible with traditional threaded electrical connectors such as of the M12 threaded type.
BRIEF DESCRIPTION OF THE DRAWINGS
The appended claims set forth those novel features which characterize the invention. However, the invention itself, as well as further objects and advantages thereof, will best be understood by reference to the following detailed description of a preferred embodiment taken in conjunction with the accompanying drawings, where like reference characters identify like elements throughout the various figures, in which:
FIG. 1 is a longitudinal sectional view of the push lock electrical connector of the present invention mated, or engaged, with a traditional M12 threaded type electrical connector;
FIG. 2 is a sectional view of the push lock electrical connector taken along site line B-B in FIG. 1;
FIG. 3 is a sectional view of the push lock electrical connector taken along site line A-A in FIG. 1;
FIG. 4 is a side elevation view of the male connecting member of the push lock electrical connector;
FIGS. 5 and 6 are perspective views of the end portion of the male connecting member of the push lock electrical connector;
FIGS. 7 and 8 are respectively end-on and side elevation views of the metal cylinder with resilient tabs incorporated in the inventive push lock electrical connector;
FIG. 9 is a plan view of the metal cylinder with resilient tabs incorporated in the inventive push lock electrical connector prior to being formed into a cylindrical shape;
FIGS. 10 and 11 are respectively perspective and transverse sectional views of the male insulator incorporated in the push lock electrical connector of the present invention, where the sectional view of FIG. 11 is taken along site line c-c in FIG. 10;
FIG. 12 is a perspective view of metal cylinder with anti-vibration resilient tabs incorporated in the inventive push lock electrical connector;
FIG. 13 is a transverse sectional view of the combination of the outer metal cylinder with resilient tabs taken along site line D-D in FIG. 12 and the inner male insulator taken along site line C-C in FIG. 10, which combination provides anti-vibration protection in the push lock electrical connector of the present invention;
FIG. 14 is a longitudinal sectional view of a second embodiment of the inventive push lock electrical connector mated to a traditional M12 threaded type electrical connector;
FIG. 15 is a lateral plan view of a portion of the male push-type electrical connector illustrated in FIG. 14;
FIG. 16 is a perspective view of the male connector portion of the push lock electrical connector illustrated in FIG. 14;
FIG. 17 is a perspective view of the metal cylinder employed in the embodiment of the invention shown in FIG. 14;
FIG. 18 is a lateral plan view of the metal cylinder illustrated in FIG. 17;
FIG. 19 is an end-on view of the metal cylinder illustrated in FIG. 17;
FIG. 20 is another perspective view of the metal cylinder employed in the male electrical connector of FIG. 14;
FIG. 21 is a perspective view of the male outer coupling sleeve used with the metal cylinder illustrated in FIGS. 17-20;
FIG. 22 is a longitudinal sectional view of the combination of the metal cylinder and male outer coupling sleeve incorporated in the male electrical connector of FIG. 14;
FIGS. 23 and 24 are respectively longitudinal sectional and end-on views of the tapered ring used in the electrical connector of FIG. 14; and
FIG. 25 is a longitudinal sectional view of another embodiment of the male insulator insert used in the electrical connector of FIG. 14, where the male insulator insert is provided with a molded seal on an inner surface thereof.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
With reference to the above described figures, the push lock electrical connector 10 of the present invention will now be described in detail. Push lock electrical connector 10 includes a male connecting member 12 and a female connecting member 14, with the male connecting member including plural spaced male pins 24a-24d and the female connecting member 14 including plural spaced sockets 26a-26d, each adapted for receiving a respective male pin in a tight-fitting manner as shown in FIG. 1. Male connecting member 12 further includes a male overmold 16 coupled on an end thereof to a male insulator insert 21. Plural electrical conductors, or wires, (not shown for simplicity) are disposed in the first male overmold 16, with each of the wires connected to a respective one of the male pins 24a-24d. Each of the male pins 24a-24d is inserted through a respective slot within the male insulator 21 and extends into an open recess in the outer end of the male insulator. Coaxially aligned with and disposed between adjacent portions of an outer male coupling sleeve 20 and the inner male insulator insert 21 is a metal cylinder 28.
Female connecting member 14 includes a female overmold 18 attached on an end portion thereof to a female insulator insert 23. Disposed about and engaging an outer surface of the female insulator insert 23 is a female outer coupling sleeve 22 having threads 32 located on an inner surface thereof. Plural spaced female sockets 26a-26d are attached to an end of the female overmold 18 and are disposed in and extend through respective slots within the female insulator insert 23. Electrical leads, or wires, which are not shown in the figure for simplicity, are each connected to a respective one of the female sockets 26a-26d. Each of the female sockets 26a-26d is adapted to receive in tight-fitting engagement a respective one of the male pins 24a-24d to establish electrical continuity between the plural leads in the male connecting member 12 and the plural leads in the female connecting member 14. An O-ring 34 is disposed between and in contact with female insulator 23 and an end portion of the male insulator 21 to establish a sealed environment for the male pins and female sockets. Male and female insulator inserts 21 and 22 are preferably comprised of plastic, or another material having high dielectric properties.
In one illustrated embodiment, metal cylinder 28 is shown as having four resilient tabs 30a-30d disposed in a spaced manner about its outer periphery, although the present invention is not limited to this number of resilient tabs on the metal cylinder. Each of the four resilient tabs 30a-30d is formed by stamping or otherwise deforming the lateral wall of the metal cylinder 28, with each of the resilient tabs extending outwardly in a direction away from the open end portion of male connecting member 12. The orientation and the resilience of each of the four tabs 30a-30d allows the male connecting member 12 to be inserted, or “pushed”, into the female connecting member 14, whereupon the distal ends of each of the four resilient tabs 30a-30d engage the inner threads 32 of the female outer coupling sleeve 22 as shown in FIG. 1. With the distal ends of each of the four resilient tabs 30a-30d engaging a portion of the inner threads 32 of the female outer coupling sleeve 22, the male and female connecting members 12, 14 are securely coupled together. The resilience of the tabs 30a-30d allows their respective distal ends to be displaced radially inwardly upon contacting the crest portions of the threads, with the resilience of the tabs then urging the distal end of each of the tabs radially outward so as to engage an immediately adjacent thread portion during insertion of the male connecting member 12 into the female connecting member 14. Male connecting member 12 is fully inserted in female connecting member 14 when the distal end portion of male insulator 21 engages O-ring 34 to form the above-described seal between the two connecting members for sealing the space in which the male pins 24a-24d and the female sockets 26a-26d are disposed. Once inserted into the female connecting member 14 and into engagement with threads 32, it may be necessary to rotate the male connecting member 12 containing the resilient tabs 30a-30d a partial turn either clockwise or counterclockwise to ensure that the distal ends of the tabs engage inner portions of the threads and not an outer edge of the threads to ensure secure engagement between the resilient tabs and the threads.
Disposed on the inner surface of male insulator 21 are the aforementioned first and second seals 36a and 36b as shown in FIGS. 1, 5 and 6. Seals 36a and 36b also provide a seal for the space within the push lock electrical connector 10 in which the connected male pins 24a-24d and female sockets 26a-26d are located. In fact, the first and second seals 36a, 36b eliminate the need for O-ring 34 in providing a sealed environment for the connected male pins 24a-24d and female sockets 26a-26d. While the aforementioned seal is described as formed by first and second seals 36a, 36b disposed on an inner surface of male insulator 21, the aforementioned seals can also be positioned on the outer surface of the female insulator 23 so as to engage an inner surface of male insulator 21 in forming a seal. Similarly, while two seals 36a, 36b are disclosed, the invention is not limited to two seals. For example, a higher number of seals could be provided between the male insulator 21 and female insulator 23 to increase the strength of the seal. Conversely, a single seal could be used where the application calls for a seal of reduced strength.
While the illustrated and described embodiment of the invention includes a metal cylinder 28 with resilient tabs 30a-30d disposed in the male connecting member 12 for engaging threads 32 in the female outer coupling sleeve 22, the metal cylinder could alternatively be positioned within the female connecting member 14 for engaging inner threads provided for on the male insulator 21. The present invention also contemplates the use of a pair of metal cylinders each having a respective set of resilient tabs, with one metal cylinder disposed within the male connecting member 12 and the other metal cylinder disposed within the female connecting member 14. The metal cylinder disposed within the male connecting member 12 would securely engage an inner portion of the female connecting member 14, while the metal cylinder in the female connecting member would securely engage an inner portion of the male connecting member. On the two metal cylinders could be disposed in mutual engagement to provide a secure, sealed coupling between the male and female connecting members 12, 14. In this latter embodiment, neither the male connecting member 12 nor the female connecting member 14 would necessarily include inner threads.
Referring to FIG. 9, there is shown a plan view of metal cylinder 28 in a flat configuration which is the form of the metal cylinder as originally manufactured. Metal cylinder 28 is then subjected to a rolling process to provide its cylindrical shape. Formed within metal cylinder 28 are the aforementioned four resilient tabs 30a-30d. Because the resilient tabs 30a-30d each form a portion of a thread and are adapted for engaging a threaded surface characterized with a given pitch, or slope, the pitch of the array of the four resilient tabs is given by the ratio A/B. Similarly, the pitch of each of the individual resilient tabs is given by the ratio a/b as shown in the encircled portion of FIG. 9. In the present case, the pitch of the array of the four resilient tabs and the pitch of the individual resilient tabs are equal, or A/B =a/b.
Referring to FIG. 10, there is shown a perspective view of male insulator insert 21. FIG. 11 illustrates a sectional view of the male insulator insert 21 taken along site line C-C in FIG. 10. Along site line C-C, the male insulator insert 21 has an undulating outer surface 42 having a series of alternating upraised portions, or peaks, 42a and sunken portions, or valleys, 42b.
FIG. 12 is a perspective view of metal cylinder 28 illustrating a pair of resilient tabs 30a and 30c disposed in a spaced manner about the outer periphery of the metal cylinder. Also formed in the lateral surface of metal cylinder 28 are first and second inwardly extending arms 45a and 45b. Arms 45a and 45b may be formed in metal cylinder 28 by conventional means such as by stamping similar to the manner in which the resilient tabs 30a-30d are formed in the lateral wall of the metal cylinder. The distal ends of the inwardly extending resilient arms 45a and 45b are adapted to engage respective sunken portions 42b disposed on opposed sides of an adjacent upraised portion 42a in the outer surface 42 of the male insulator 21 as shown in FIG. 13. In this manner, the first and second inwardly extending arms 45a and 45b prevent relative rotation between the outer metal cylinder 28 and the inner male insulator 21 caused by vibration, and thus provide an anti-rotation function in preventing a change in the relative positions of these two connector components caused by environmental vibrations or physical shock experienced by the mated connector components.
As shown in FIGS. 2, 3 and 10, male insulator 21 includes an inwardly extending rib 40 on its inner periphery adapted for insertion in a generally U-shaped recessed portion 23a within female insulator 23. With inner rib 40 disposed within recessed portion 23a of female insulator 23, the four male pins 24a-24d are respectively aligned with the four female sockets 26a-26d during assembly of the connector to ensure proper electrical connections are made within the mated male and female connecting members 12, 14.
Referring to FIG. 14, there is illustrated a longitudinal sectional view of another embodiment of a push-lock electrical connector 50 in accordance with the principles of the present invention. Connector elements common to the first embodiment of the present invention shown in FIG. 1 and the second embodiment shown in FIG. 14 are provided with the same element identifying number. Components of the push lock electrical connector 50 shown in FIG. 14 which are different than corresponding components in the push lock electrical connector 10 shown in FIG. 1 are provided with different element identifying numbers. For example, metal cylinder 52 in the push lock electrical connector 50 embodiment shown in FIG. 14 differs from the corresponding metal cylinder 28 in the embodiment shown in FIG. 1. The male insulator insert 64 in the push lock electrical connector 50 embodiment shown in FIG. 14 also differs from the male insulator insert 21 in the embodiment shown in FIG. 1 as described in the following paragraphs.
Referring to FIGS. 15-19, there is shown a second embodiment of the metal cylinder 52 in accordance with the present invention. Metal cylinder 52 includes four generally linearly slots 54a-54d disposed in a spaced manner about its lateral, cylindrical surface. The space between each pair of adjacent slots defines a respective resilient arm of the metal cylinder 52. Thus, adjacent slots 54a and 54b define a first resilient arm 56a, while adjacent slots 54b and 54c define a second resilient arm 56b. Similarly, adjacent slots 54c and 54d define a third resilient arm 56c, while adjacent slots 54d and 54a define a fourth resilient arm 56d. Disposed adjacent a respective distal end of each of the four resilient arms 56a-56d is a respective linear projection on its outer surface. Thus, a first linear projection 58a is disposed on the outer surface and adjacent to the distal end of the fourth resilient arm 56d, while a second linear projection 58b is disposed on the outer surface of the first resilient arm 56a adjacent its distal end. Similarly, disposed on the outer surface of the second resilient arm 56b on its outer surface and adjacent to its distal end is a third linear projection 58c, while a fourth linear projection 58d is disposed on the outer surface of the third resilient arm 56c adjacent its distal end. The four linear projections 58a-58d are each disposed on a respective outer surface of the first through fourth resilient arms 56a-56d at an inclined angle relative to a plane orthogonal to the longitudinal axis X-X′ as shown in FIG. 18. Inclined angle a equals the inclined angle of the threads 32 disposed on the inner surface of female outer coupling sleeve 22. The four linear projections 58a-58d are in common alignment about the outer periphery of a metal cylinder 52 and are disposed at the aforementioned inclined angle α. Engagement of two opposed linear projections 58a and 58c with the inner threads 32 of female outer coupling sleeve 22 is shown in the sectional view of FIG. 14. The perspective view of FIG. 16 of male insulator insert 64 shows first and second molded seals 36a and 36b disposed on the inner surface of the male insulator sleeve so as to engage an outer concentric surface of female insulator insert 23 as in the previously described embodiment.
As shown in FIGS. 17, 18, 20 and 22, metal cylinder 52 includes a pair of end tabs 60a and 60b which are disposed on respective opposed end portions of the metal cylinder and extend outwardly along the length of the cylinder. Also shown in FIG. 21 is a perspective view of the male outer coupling sleeve 62 incorporated in the second embodiment of the push lock electrical connector 50 shown in FIG. 14. Male outer coupling sleeve 62 includes a cylindrical aperture, or slot, 66 extending therethrough. Disposed on opposed end portions of cylindrical aperture 66 are first and second opposed slots 68a and 68b. With metal cylinder 52 inserted in the cylindrical aperture 66 of male outer coupling sleeve 62, each of the opposed slots 68a, 68b within the male outer coupling sleeve is adapted to receive a respective one of the opposed end tabs 60a, 60b on the end of the metal cylinder. Each of the end tabs 60a, 60b is adapted for outward displacement so as to be positioned within and engage a respective one of the opposed slots 68a and 68b for securely connecting these two components together. In some cases, conventional means such as weldments may also be used to securely connect these two components. Thus, metal cylinder 52 and male outer coupling sleeve 62 are securely coupled together so that manual engagement and rotational or linear displacement of the male outer coupling sleeve results in a corresponding rotational or linear displacement of the inner metal cylinder attached thereto.
Referring again to FIG. 14, there is shown a tapered ring 72 disposed about and securely attached to the outer surface of male insulator insert 64 adjacent to one end of the male insulator insert. That end of the male insulator insert 64 includes an enlarged circular flange 64a disposed about the cylindrical opening at the end of the male insulator insert. A longitudinal sectional view of the tapered ring 72 is shown in FIG. 23, while an axial, or end-on, view of the tapered ring is shown in FIG. 24. Tapered ring 72 includes a circular aperture 72a extending through the ring and an outer tapered surface 72b, and it is attached to the outer surface of male insulator insert 64 by conventional means such as weldments. Similarly, it is recognized that tapered ring 72 does not need to be a separate part, but could be integrated into male insulator insert 64 by conventional manufacturing methods like molding or die-casting.
As shown in FIG. 14, metal cylinder 52 is disposed in cylindrical spaces formed between an outer surface of male insulator insert 64 and respective inner surfaces of male outer coupling sleeve 20 and female outer sleeve coupling 22. As described above, metal cylinder 52 is fixedly attached to the inner cylindrical surface of male outer coupling sleeve 20. In assembling push lock electrical connector 50, metal cylinder 52 is inserted into the cylindrical spaces disposed about male insulator insert 64 as described above. When male connecting member 12 is fully inserted into female connecting member 14 and male outer coupling sleeve 20 is displaced leftward in the direction of arrow 80 shown in FIG. 14, the distal, or leading, end of metal cylinder 52 engages the tapered surface 72b of circular ring 72 and is urged radially outward toward threads 32 disposed on the inner surface of female outer coupling sleeve 22. Disposed on the outer surface of metal cylinder 52 adjacent its distal end are the aforementioned linear projections 58a-58d, where only two of these projections 58a and 58c are shown in the sectional view of FIG. 14. With the distal end of metal cylinder 52 deflected radially outward by tapered ring 72, the metal cylinder's outer projections 58a-58d are displaced radially outward and into engagement with the inner threads 32 of female outer coupling sleeve 22, as shown for the case of linear projections 58a and 58c in FIG. 14. In this manner, all of the linear projections 58a-58d disposed on the outer lateral surface of metal cylinder 52 are inserted into the inner threads 32 of female outer coupling sleeve 22. Disposed about male insulator insert 64 and in end-abutting contact with male overmold 16 and male outer coupling sleeve 20 is a short coiled spring 82 which urges male outer coupling sleeve leftward in the direction of arrow 80 so as to maintain the distal end of metal cylinder 52 in contact with tapered ring 72 so that the metal cylinder's distal end remains outwardly biased so as to maintain the metal cylinder's linear projections 58a-58d in secure engagement with the inner threads 52 of female outer coupling sleeve 22. With metal cylinder's linear projections 58a-58d engaging the female outer coupling sleeve's inner threads 32, the combination of male coupling sleeve 20 and metal cylinder 52 may be threadably tightened on the electrical connector to compress O-ring seal 34, as desired. Coiled spring 82 facilitates engagement of the metal cylinder's plural outer projections 58a-58d with the female outer coupling sleeve's inner threads, but is not essentially for proper operation of the inventive push lock electrical connector 10.
Referring to FIG. 25, there is shown a longitudinal sectional view of another embodiment of a male insulator insert 76, wherein the open, cylindrical end of the male insulator insert is provided with an enlarged end flange 76a and a tapered portion 76b which are formed integrally with the male insulator insert. Thus, tapered portion 76b of the male insulator insert 76 shown in FIG. 25 replaces the tapered ring 72 described above and illustrated in FIGS. 14, 23 and 24. Disposed on the inner surface of the open end portion of the male insulator insert 76 is a molded flexible seal 78 which adheres to the inner surface of the male insulator insert and includes spaced upraised ring-like portions 78a and 78b which form seals between the male insulator insert 76 and the female insulator insert which is shown as element 23 in FIG. 14. Molded flexible seal 78 is placed on, adheres to, and conforms with the contours of the inner surface of the open end portion of male insulator insert 76.
Having thus disclosed in detail several embodiments of the invention, persons skilled in the art will be able to modify certain of the structures shown and to substitute equivalent elements for those disclosed while continuing to practice the principles of the invention. For example, while the above discussed embodiments of the present invention are described as having four (4) resilient arms each have a respective outwardly directed thread-engaging member, the present invention is not limited to this specific arrangement and may have more or less of these structural members as the application and composition of these components may dictate. In addition, while cylindrical member is described as disposed radially within the threads of the other connector member, the cylindrical resilient member may also be disposed radial outside of the other connector member and urged radially inward to engage the threads of the other connector member. It is, therefore, intended that all such modifications and substitutions be covered as they are embraced within the spirit and scope of the present invention as described in the claims.