Push-on cable connector with a coupler and retention and release mechanism

Information

  • Patent Grant
  • 9071019
  • Patent Number
    9,071,019
  • Date Filed
    Wednesday, October 26, 2011
    13 years ago
  • Date Issued
    Tuesday, June 30, 2015
    9 years ago
Abstract
A cable connector comprising a coupler and a retainer having a base with an internal channel and a latching assembly is disclosed. The coupler has a first end, a second end, and a bore extending therethrough. The latching assembly comprises a beam having a first end and a second end. The latching assembly pivotably connects to the base and has a plurality of teeth extending radially inwardly through a latch slot towards the bore of the coupler. A spring clip radially inwardly biases the coupler. The coupler has at least one compression slot that responds to the radially inwardly bias of the coupler, compressing the coupler radially inwardly and, thereby, providing a resiliently friction fit function to the coupler.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The field of the disclosure relates to electrical cable connectors. More particularly, the disclosure relates to a push-on coaxial cable connector with a compression type coupler and a retention and release mechanism that automatically and securely latches the connector to an equipment port when pushed-on the equipment port and remains latched until intentionally released by manipulating the mechanism.


2. Technical Background


Coaxial cable connectors, such as type F connectors, are used to attach coaxial cable to another object or appliance, e.g., a television set, DVD player, modem or other electronic communication device having a terminal adapted to engage the connector. The terminal of the appliance includes an inner conductor and a surrounding outer conductor.


Coaxial cable includes a center conductor for transmitting a signal. The center conductor is surrounded by a dielectric material, and the dielectric material is surrounded by an outer conductor; this outer conductor may be in the form of a conductive foil and/or braided sheath. The outer conductor is typically maintained at ground potential to shield the signal transmitted by the center conductor from stray noise, and to maintain a continuous desired impedance over the signal path. The outer conductor is usually surrounded by a plastic cable jacket that electrically insulates, and mechanically protects, the outer conductor. Prior to installing a coaxial connector onto an end of the coaxial cable, the end of the coaxial cable is typically prepared by stripping off the end portion of the jacket to expose the end portion of the outer conductor. Similarly, it is common to strip off a portion of the dielectric to expose the end portion of the center conductor.


Coaxial cable connectors of the type known in the trade as “F connectors” often include a tubular post designed to slide over the dielectric material, and under the outer conductor of the coaxial cable, at the prepared end of the coaxial cable. If the outer conductor of the cable includes a braided sheath, then the exposed braided sheath is usually folded back over the cable jacket. The cable jacket and folded-back outer conductor extend generally around the outside of the tubular post and are typically received in an outer body of the connector; this outer body of the connector is usually fixedly secured to the tubular post. A coupler is typically rotatably secured around the tubular post and includes an internally-threaded region for engaging external threads formed on the outer conductor of the appliance terminal.


When connecting the end of a coaxial cable to a terminal of a television set, equipment box, or other appliance, it is important to achieve a reliable electrical connection between the outer conductor of the coaxial cable and the outer conductor of the appliance terminal. Typically, this goal is achieved by ensuring the coupler of the connector is fully tightened over the connection port of the appliance. When fully tightened, the head of the tubular post of the connector directly engages the edge of the outer conductor of the appliance port, thereby making a direct electrical ground connection between the outer conductor of the appliance port and the tubular post; in turn, the tubular post is engaged with the outer conductor of the coaxial cable.


With the increased use of self-install kits provided to home owners by some CATV system operators has come a rise in customer complaints due to poor picture quality and/or poor data performance in computer/internet systems. Additionally, CATV system operators have found upstream data problems induced by entrance of unwanted RF signals into their systems. Complaints of this nature result in CATV system operators having to send a technician to address the issue. Often times it is reported by the technician that the cause of the problem is due to a loose F connector fitting, sometimes as a result of inadequate installation of the self-install kit by the home owner. An improperly installed or loose connector may result in poor signal transfer because there are discontinuities along the electrical path between the devices, resulting in ingress of undesired radio frequency (“RF”) signals where RF energy from an external source or sources may enter the connector/cable arrangement causing a signal to noise ratio problem resulting in an unacceptable picture or data performance. Many of the current state of the art F connectors rely on intimate contact between the F male connector interface and the F female connector interface. If, for some reason, the connector interfaces are allowed to pull apart from each other, such as in the case of a loose F male coupler, an interface “gap” may result. If not otherwise protected this gap can be a point of RF ingress as previously described.


As mentioned above, the coupler is rotatably secured about the head of the tubular post. The head of the tubular post usually includes an enlarged shoulder, and the coupler typically includes an inwardly-directed flange for extending over and around the shoulder of the tubular post. In order not to interfere with free rotation of the coupler, manufacturers of such F-style connectors routinely make the outer diameter of the shoulder (at the head of the tubular post) of smaller dimension than the inner diameter of the central bore of the coupler. Likewise, manufacturers routinely make the inner diameter of the inwardly-directed flange of the coupler of larger dimension than the outer diameter of the non-shoulder portion of the tubular post, again to avoid interference with rotation of the coupler relative to the tubular post. In a loose connection system, wherein the coupler of the coaxial connector is not drawn tightly to the appliance port connector, an alternate ground path may fortuitously result from contact between the coupler and the tubular post, particularly if the coupler is not centered over, and axially aligned with, the tubular post. However, this alternate ground path is not stable, and can be disrupted as a result of vibrations, movement of the appliance, movement of the cable, or the like.


Alternatively, there are some cases in which such an alternate ground path is provided by fortuitous contact between the coupler and the outer body of the coaxial connector, provided that the outer body is formed from conductive material. This alternate ground path is similarly unstable, and may be interrupted by relative movement between the appliance and the cable, or by vibrations. Moreover, this alternate ground path does not exist at all if the outer body of the coaxial connector is constructed of non-conductive material. Such unstable ground paths can give rise to intermittent failures that are costly and time-consuming to diagnose.


One method used to ensure reliable electrical and mechanical communication between the coupler and the post of the coaxial connector has been to utilize an o-ring as a means to force the coupler proximate the post by means of axially compressing the o-ring. While this method works well to address the electrical concerns noted above it can result in situations where the coupler is more difficult to rotate as compared to other type F connectors in the marketplace.


Alternatively, Male Type F connectors are available with spring fingers which form an interference fit when pushed over the outer threaded portion of a female Type F receptacle. Type F connectors comprising spring fingers may be of dubious reliability because interface retention at the junction relies upon the interference fit between the spring fingers and the threaded outer portion of the port. The amount of retention is typically a compromise between ease of insertion and retention. Typically this type of solution is found in an adaptor that does not attach directly to a coaxial cable, but, rather, adapts a cable connector interface to a push-on interface simply moving the problem of a loose coupler down the line. The push on interface itself does, however, address one basic problem; that of a loose threaded coupler at the immediate junction. By eliminating the threaded coupler issues of improper installation, intermittent connection and RF ingress are at least partially addressed albeit the challenge of connector retention remains.


Additionally, there appears to be no means in the art offered to directly attach a self-retaining yet easily disengaged push-on interface directly to a coaxial cable in the field.


SUMMARY OF THE DETAILED DESCRIPTION

Embodiments disclosed in the detailed description include a push-on cable connector having a retention mechanism. According to one embodiment a cable connector having a coupler and a retainer is provided. The coupler has a first end and a second end. The first end is adapted to receive an end of a cable. A retainer attaches to the coupler. The retainer has a pivotable latching assembly. When a force is applied to the latching assembly, the latching assembly pivots in a direction moving from a first position. When the force is removed from the latching assembly, the latching assembly pivots in an opposite direction moving toward the first position. The first position may be a latched position or an un-latched position. The coupler is radially inward biased allowing the coupler to provide a resilient friction fit function. The coupler is adapted to receive a component, for example, such as an equipment port of an appliance. In this manner, when the equipment port is received by the coupler, the coupler compresses around the equipment port so that the equipment port is resiliently friction fitted to the connector. The latching assembly is adapted to automatically engage the equipment port, when it is received by the connector. The latch assembly is adapted to releasably retain the equipment port to the retainer. The latch assembly may be adapted to engage a thread of the equipment port.


According to another embodiment a cable connector having a coupler with a first end, a second end, and a bore extending therethrough, and a retainer is provided. The second end is radially inwardly biased. The retainer has a base with an internal channel and a latching assembly pivotably connected to the shaft. The first end of the body positions within the channel of the base. The latching assembly has a plurality of teeth extending radially inwardly towards the bore of the coupler proximate the coupler. The latching assembly is configured to automatically latch the retainer to a component, such as, for example, an equipment port of an appliance using at least one of the plurality of teeth. The latching assembly is configured to unlatch the retainer from the component by applying a force to the latching assembly.


The latch assembly comprises a beam having a first end and a second end. The plurality of teeth extends from the second end of the beam. The latch assembly pivotably connects to the base at a location on the beam between the first end and the second end of the beam. The first end of the beam has a grip portion adapted for receiving force applied to the beam to pivot the beam and, thereby, unlatch the retainer. The coupler also has a tubular post attached. The tubular post extends from the first end through the channel and is adapted to receive an end of a cable. A spring clip attaches at least partially around the coupler and may be one of the ways for providing the radially inwardly bias to the coupler. The coupler is adapted to receive the equipment port such that the equipment port is resiliently friction fitted to the connector. The latch assembly is adapted to engage a thread of the equipment port with at least one of a plurality of teeth engages a thread of the equipment port.


In another embodiment, a cable connector comprising a coupler and a retainer having a base with an internal channel and a latching assembly is provided. The coupler has a first end, a second end, and a bore extending therethrough. The second end is radially inwardly biased. The first end of the coupler positions within the channel of the base. The latching assembly comprises a beam having a first end and a second end. The latch assembly pivotably connects to the base at a location on the beam between the first end and the second end of the beam. The latching assembly has a plurality of teeth extending radially inwardly from the second end of the beam towards the bore of the coupler proximate to the coupler. The beam may be a plurality of beams. The coupler has an annular groove. A spring clip positions in the annular groove at least partially around the coupler and provides the radially inwardly bias to the coupler. The coupler has at least one latch slot, wherein the at least one of the plurality of teeth extends radially inwardly through the at least one latch slot into the bore. The coupler has at least one compression slot, wherein the at least one compression slot responds to the radially inwardly bias of the coupler, compressing the coupler radially inwardly and, thereby, providing a resiliently friction fit function to the coupler. The base has one or more strain relief slots formed therein. The at least one of the plurality of teeth may extend past the second end of the body.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a perspective cross sectional view of an exemplary embodiment of a push-on cable connector with a coupler and a retention and release mechanism;



FIG. 2 is an exploded perspective view of the connector of FIG. 1 with the coupler and the retainer shown in a separated orientation;



FIG. 3 is a front schematic view of the connector of FIG. 1;



FIG. 4 is a top schematic view of the connector of FIG. 1;



FIG. 5 is a cross-sectional view of the connector of FIG. 1 with a cable installed therein;



FIGS. 6A, 6B and 6C are partial cross-sectional views of the connector with strain relief and with a cable installed therein and in different states of connection to an equipment port;



FIG. 7 is a cross-sectional view of an exemplary embodiment of a connector;



FIG. 8 is a front schematic view of the connector of FIG. 7;



FIG. 9 is a cross-sectional view of an exemplary embodiment of a connector with a latching assembly having teeth that extend past the connector and a coupler with a spring clip;



FIG. 10 is a cross-sectional view of an exemplary embodiment of a connector with latching assembly having teeth that extend past the connector and a coupler without a spring clip;



FIG. 11 is a cross-sectional view of an exemplary embodiment of post-less connector with a coupler and a retainer; and



FIGS. 12A-12E are cross-sectional views of exemplary embodiments of connectors with couplers and retainers.





DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.



FIG. 1 is a perspective cross sectional view of an exemplary embodiment of a push-on cable connector with a coupler and a retention and release mechanism. The cable connector is intended to be used to connect a cable, for example, without limitation, a coaxial cable, to a component, for example, without limitation, an equipment port of an appliance. In this regard, the connector 10 has a coupler 12 and a retainer 14. The coupler 12 has a first end 16 and a second end 18. The first end 16 is adapted to receive an end of the cable, while the second end 18 is adapted to receive the component, including the equipment port. A bore 20 extends through the coupler 12 from the first end 16 through the second end 18. The bore 20 may be used for the passage of portions of the cable, to secure the cable (not shown in FIG. 1) to the connector 10, provide for the passage of the conductor of the cable, and establish the electrical connectivity, mechanical connection, grounding continuity and RF protection of the cable with the connector and, thereby, with the equipment port. The attachment of a cable to the connector is discussed in more detail with reference to FIG. 5, below. The coupler 12 may be made from metallic material such as brass and plated with a conductive corrosion resistant material, such as tin. The retainer 14 may be made from a resilient polymer material such as acetyl.



FIG. 2 illustrates an exploded perspective view of the connector 10 with the coupler 12 and the retainer 14 shown in a separated orientation. Reference will be made to FIG. 2 in addition to FIG. 1 to describe the assembly of the coupler 12 and the retainer 14. In this embodiment, the retainer 14 has a base 22 with a first end 36, a second end 51, and an internal channel 24 and a latching assembly 26. The channel 24 of the base 22 has a diameter “D1” that is larger than the outer diameter “D2” of the first end 16 of the coupler 12. This allows the first end 16 of the coupler 12 to mount within the channel 24. In this regard, once the cable is attached to the coupler 12, as will be described below with reference to FIG. 5, the coupler 12 and the retainer 14 may be assembled by inserting the first end 16 of the coupler 12 into the channel 24 from the end of the base 22 that would be proximal to the component to which the cable is being connected, for example the equipment port of an appliance. An annular shoulder 28 having a forward facing surface 29 and a rearward facing surface 30 is formed in the first end 16 of the coupler 12. A tubular post 31 extends from the annular shoulder 28. The first end 16 inserts into the channel 24 until the rearward facing surface 30 of the annular shoulder 28 contacts a forward facing annular surface 32 extending radially inwardly from the inside surface 34 of the channel 24. In this manner, the coupler 12 and the retainer 14 are releasably lock together. An annular barb 38 protrudes from the outside surface 40 of the tubular post 31. The annular barb 38 acts to dig into the material of the retainer 14 when the coupler 12 and the retainer 14 are assembled providing additional means to secure the coupler 12 and the retainer 14 together. Additionally or alternatively, the retainer 14 may have a notch 42 cut into the inside surface 34 of the channel 24. The annular barb 38 may insert into the notch 42 when the coupler 12 and the retainer 14 are assembled.



FIG. 3 and FIG. 4 illustrate front schematic and top schematic views, respectively, of connector 10. Reference will be made to FIGS. 3 and 4, in addition to FIG. 1 to further describe the coupler 12. The second end 18 of the coupler 12 is adapted to receive a component, such as, for example, an equipment port of an appliance to which the cable is being connected by the connector 10. The second end 18 is radially inwardly biased allowing the second end 18 to radially compress around a component received by, or inserted into, the coupler 12. In this way, the coupler 12 provides a resilient friction fit function to the component. Referring again to FIG. 1, the second end 18 of the coupler 12 has an annular groove 44 cut circumferentially into the outer surface 46 of the coupler 12. A spring clip 48 fits into the annular groove 44 such that the spring clip 48 extends at least partially around the outer surface 46 of the coupler 12 and provides a radially, inwardly bias to the second end 18 of the coupler 12. Additionally, the coupler 12 may have least one compression slot 50 resulting in one or more coupler sections 52. The coupler sections 62 respond to the radially inwardly bias of the coupler 12, moving or forced toward the longitudinal axis “L” of the bore 20, allowing the second end 18 of the coupler 12 to compress radially inwardly. In this manner, the coupler 12 provides a friction fit function to a component, such as, for example, an equipment port of an appliance, received by the second end 18 of the coupler 12. In other words, by the connector 10 being pushed onto the equipment port, the equipment port is resiliently friction fit to the coupler 22, and, thereby, to the connector 10, without the need for rotating any portion of the connector 10. Further, since the equipment port and the connector 10 are resiliently friction fit to each other, the connector 10 can be released or removed from the equipment port by just pulling the connector 10 from the equipment port, without having to rotate any portion of the connector 10.


Continuing with reference to FIGS. 1, 3 and 4, the latching assembly 26 comprises a beam 54 having a first end 56, a second end 58, and a flexible portion 60 therebetween. The latching assembly 26 pivotably connects to the base 22 at the flexible portion 60 of the beam 54. The connection of the beam 54 to the base 22 at the flexible portion 60, allows the beam 54 to pivot when a force is applied to one of the first end 56 and second end 58. As can be seen best with reference to FIG. 1, an initial orientation of beam 54 is angled downwardly with respect to the second end 58 such that the second end 58 is closer to the bore 20 than the first end 56. The coupler 12 has at least one latch slot 62. Teeth 64 extend radially inwardly from the second end 58 of the beam 54 toward the bore 20, or a point internal to the bore 20 through the latch slot 62. While in FIGS. 1 and 3 the latching assembly 26 is shown as having two beams 54, any number of beams 54, including one, may be included or used. Additionally, there may be one latch slot 62 for each beam 54.


The latching assembly 26 may be biased to a first position. In this embodiment, the first position is the initial orientation with the second end 58 of the beam 54 angled downwardly, although the latching assembly 26 may be biased in other initial orientations. However, when a force is applied to the latching assembly 26, the latching assembly 26 pivots in a direction moving from the first position. When the force is removed from the latching assembly 26, the latching assembly pivots in an opposite direction moving back toward the first position. The first position may be a latched position or an un-latched position. In this manner, the latching assembly 26 is adapted to automatically engage an equipment port inserted into the second end 18 of the coupler 12, and to releasably retain the retainer 14, and thereby, the connector 10 to the equipment port.



FIG. 5 is a cross-sectional view of the connector 10 with a cable 70 installed therein. The first end 16 of the coupler 12 is adapted to receive an end 72 of the cable 70. In FIG. 5, the cable 70 is shown as a coaxial cable. The cable 70 has center conductor 74. The center conductor 74 is surrounded by a dielectric material 76, and the dielectric material 76 is surrounded by an outer conductor 78 that may be in the form of a conductive foil and/or braided sheath. The outer conductor 78 is usually surrounded by a plastic cable jacket 80 that electrically insulates, and mechanically protects, the outer conductor 78. A prepared end of the coaxial cable 70 is inserted through the first end 34 of the channel 24 and onto the tubular post 31. A compression tool (not shown) may be used to feed the cable 70 into the coupler 12 of the connector 10 such that a raised area 82 extending from the tubular post 31 of the coupler 12 inserts between the dielectric material 76 and the outer conductor 78 of the cable 70, making contact with the outer conductor 78. The center conductor 74 extends through the bore 20 of the coupler 12 to and through the second end 18. The compression tool may also be used to advance the retainer 14 over the first end 16 of the coupler 12. As the retainer 14 advances over the first end 16 of the coupler 12, the inside surface 34 of the channel 24 squeezes against the cable jacket 78. In this manner, the cable 70 is retained in the connector 10. Additionally, the raised area 82 positioned between the dielectric material 76 and the outer conductor 78 acts to maximize the retention strength of the cable jacket 80 within the connector 10. As the retainer 14 moves toward the second end 18 of the connector 10, the retainer 14 causes the cable jacket 80 to be pinched between the inside surface 34 of the channel 24 and the raised area 82 increasing the pull-out force required to dislodge cable 70 from the connector 10. Since the outer conductor 78 is in contact with the first end 16 of the coupler 12 an electrically conductive path is established from the outer conductor 78 through the coupler 12 and, thereby, to the equipment port (not shown in FIG. 5).



FIGS. 6A, 6B and 6C are partial cross-sectional views of the connector 10′ with a cable 70 installed therein and in relation to an equipment port 84. Additionally, the base 22 of the retainer 14 has a first end 56 formed as a series of strain relief slots 66 to provide strain relief for the cable 70. FIG. 6A illustrates the connector 10′ as partially connected to the equipment port 84. The center conductor 74 of the cable 70 engages with the equipment port 84 as the second end 18 of the coupler 12 receives threaded portion 86 of the equipment port 84. At this point, there is electrical and mechanical communication between the connector 10′ and the equipment port 84. Additionally, the compression slots 50 allow the coupler sections 52 to flex radially outwardly as the coupler 12 receives the equipment port 84. Even though the coupler sections 52 flex radially outwardly, the coupler 12 continues to exert a radially inward bias as urged on by the spring clip 48. Also, the inherent resiliency of the material of the coupler 12 promotes the radially inward bias.



FIG. 6B illustrates the connector 10′ in a position advanced axially toward the equipment port 84. As the connector 10′ advances, the second end 18 of the coupler 12 receives the equipment port 84 such that the threaded portion 86 is friction fitted within the bore 20 due to the radially inward bias of the coupler 12. Additionally, as the threaded portion 86 contacts the teeth 64 extending from the second end 58 of the beam 54, the threaded portion 86 forces the teeth 64 to move causing the beam 54 to pivot about the flexible portion 60 from a first position. In this manner, the teeth 64 are allowed to advance over the threaded portion 86 until the equipment port 84 stops advancing, for example, when the equipment port 84 contacts the forward facing surface 29 of the annular shoulder 28. At that point, the beam 54 pivots back toward the first position allowing the teeth 64 to engage one or more of the threads 88 of the threaded portion 86, latching the retainer 14, and, thereby, the connector 10, to the equipment port 84. Thus, in addition to the friction fit of the coupler 12 on to the threaded portion 86 of the equipment port 84, the latching assembly 26 latches the connector 10′ to the equipment port 84 causing an increasing resistance to disengagement of the connector 10′ from the equipment port 84. The connector 10′ may remain latched to the connector port 84 until intentionally unlatched. Moreover, in this manner, the coupler 12 and the retainer 14 provide that at any point of engagement between connector 10′ and equipment port 84 a reliable ground path and RF shield is established, ensuring proper electrical function.



FIG. 6C illustrates the connector 10′ partially uninstalled from the equipment port 84. A grip portion 65 is located on the first end 56 of the beam 54. An unlatching force “A” may be applied to the grip portion 65 of the first end 56 of the beam 54. Unlatching force “A” may pivot the beam 54 thereby disengaging the teeth 64 from the threads 88 of the equipment port 84. Once the teeth 64 are disengaged from the threads 88, a pull-out force “B” applied to the retainer 14 will overcome the compression providing the friction fit of the coupler 12 to the equipment port 84, thereby, axially moving away or withdrawing the connector 10′ from the equipment port 84. In this manner, the connector 10′ may be released and/or detached from the equipment port 84.



FIG. 7 is a cross-sectional view of another exemplary embodiment of a connector 110. FIG. 8 is a front schematic view of connector 110. Connector 110 is similar to connector 10 except that connector 110 does not have a spring clip 40. Instead, the second end 151 of the base 122 of the retainer 114 has outer fingers 153 that extend over the second end 118 of the coupling 112. The outer fingers 153 have an inner diameter “D3” sized such that the inside surface 113 of the outer fingers 153 provides a radially inwardly bias on the coupling 112 resulting in the friction fit function for retaining the equipment port 84 in the coupler 112. In other words, because of the size of the inner diameter “D3”, the natural resiliency of the material of the coupler 112 is sufficient to provide an effective radially inwardly biasing such that a spring clip 48 is not needed. The latching assembly 26 functions in the same manner as described above for connector 10.



FIG. 9 and FIG. 10 are cross-sectional views of exemplary embodiments of connectors 210, 310 with latching assemblies 226, 326 having teeth 264, 364 that extend past the second end 218, 318 of the connector 210, 310. FIG. 9 illustrates a connector 210 with a spring clip 248, while FIG. 10 illustrates a connector 310 without a spring clip. The latching assemblies 226, 326 have beams 254, 354 with a flexible portions 260, 360 that allow the beams 254, 354 to pivot in the same manner as described with respect to connector 10. However, the beams 254, 354 have second ends 258, 358 that extend farther from the flexible portions 260, 360 resulting in the teeth 264, 364 being out from the coupler 212, 312. Therefore, the teeth 264, 364 will contact the equipment port 84 before the couplers 212, 312. In this way, connectors 210, 310 can also accommodate equipment ports 84 having longer threaded portions 86.



FIG. 11 is a cross-sectional view of a post-less connector 410. The first end 416 of the coupler 412 is not a tubular post, but is a collar 402. Therefore, instead of a tubular post inserting between the dielectric material 76 and the outer conductor 78 of a cable 70 inserted into the connector 410, the prepared end 72 of the cable 70 extends through a body 404 to the collar 402. A shell 406 slides over the body 404 and compresses the body against the outer conductor 78 and the cable jacket 80. In this manner, the cable 70 is retained in the connector 410. The base 422 of the retainer 414 positions between opposite faces 407, 408 of the collar 402 and the body 404, respectively. As the shell 406 is slid over the body 404, the body 404 moves toward the collar 402 thereby squeezing the base 422 between the opposite faces 407, 408. In this manner, the retainer 414 is releasably attached to the coupler 412, and, thereby, the connector 410. The coupler 412 receives the equipment port 84 or other component and the retainer latches and unlatches the equipment port 84 in the same manner as described above.



FIGS. 12A-12E illustrate other embodiments of connectors 510, 610, 710, 810 and 910 which include couplers 512, 612, 712, 812 and 912 and retainers 514, 614, 714, 814 and 914. The couplers 512, 612, 712, 812 and 912 have tubular posts 531, 631, 731, 831 and 931 that extend from annular shoulder 528, 628, 728, 828 and 928. The connectors 510, 610, 710, 810 and 910 have bodies 504, 604, 704, 804 and 904. The retainers 514, 614, 714, 814 and 914 attach to the connectors 510, 610, 710, 810 and 910 by the bases being captured between opposing faces of the annular shoulders 528, 628, 728, 828 and 928 and the bodies 504, 604, 704, 804 and 904 in a similar manner as described above with respect to FIG. 11. Additionally, the couplers 512, 612, 712, 812 and 912 and retainers 514, 614, 714, 814 and 914 engage and latch to an equipment port in the same manner as described above with respect to other embodiments.


Many modifications and other embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims.


It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims
  • 1. A cable connector, comprising: a coupler comprising first and second ends and at least one latch slot, wherein the coupler is radially inwardly biased;a retainer attached to the coupler, the retainer having a pivotable latching assembly a beam having first and second ends and a plurality of comprising teeth adapted to engage a thread of an equipment port and extending radially inwardly towards a bore of the coupler, wherein the second end of the beam and at least one of the plurality of teeth extend radially inwardly through the at least one latch slot in the second end of the coupler into the bore of the coupler and the latching assembly is biased in a latched position such that, when a force is applied to a grip portion of the latching assembly, the latching assembly pivots in a direction moving from the latched position, and when the force is removed from the latching assembly, the latching assembly pivots in an opposite direction moving toward the latched position.
  • 2. The cable connector of claim 1, wherein, in the latched position, the latching assembly is adapted to automatically engage an equipment port and releasably retain the equipment port when the equipment port is received by the connector.
  • 3. The cable connector of claim 1, wherein: the latching assembly of the retainer is pivotably connected to a base of the retainer at a location on the beam between the first end and the second end of the beam;and in the latched position, an end of the latching assembly beam and at least one of the latching assembly teeth extend radially inwardly through the at least one latch slot in the second end of the coupler into the bore of the coupler such that, when a force is applied to a grip portion of the latching assembly, the latching assembly pivots in a direction moving from the latched position.
  • 4. The cable connector of claim 1, wherein the radially inward bias of the coupler allows the coupler to provide a resilient friction fit function.
  • 5. The cable connector of claim 1, wherein the coupler is adapted to receive an equipment port such that the coupler is resiliently friction fitted to the equipment port.
  • 6. The cable connector of claim 1, wherein the latching assembly is adapted to automatically engage an equipment port received by the cable connector.
  • 7. The cable connector of claim 6, wherein the latching assembly is adapted to releasably retain the equipment port to the retainer.
  • 8. The cable connector of claim 7, wherein the latching assembly is adapted to engage a thread of the equipment port.
  • 9. The cable connector of claim 1, wherein the coupler has a first end and a second end.
  • 10. The cable connector of claim 9, and wherein the first end is adapted to receive an end of a cable.
  • 11. A cable connector, comprising: a coupler having a first end, a second end comprising at least one latch slot, and a bore extending therethrough, wherein the second end is radially inwardly biased;a retainer having a base with an internal channel, and a latching assembly pivotably connected to the base, wherein the latching assembly of the retainer comprises a beam having first and second ends, the first end of the coupler is positioned within the internal channel of the base,the latching assembly comprises a plurality of teeth extending radially inwardly from the second end of the beam through the latch slot in the second end of the coupler towards the bore of the coupler proximate to the second end of the coupler; andthe latching assembly is biased in a latched position such that, when a force is applied to a grip portion of the latching assembly, the latching assembly pivots in a direction moving from the latched position and the latching assembly is adapted to automatically engage an equipment port and releasably retain the equipment port when the equipment port is received by the connector.
  • 12. The cable connector of claim 11, wherein the latching assembly is configured to automatically latch the retainer using at least one of the plurality of teeth.
  • 13. The cable connector of claim 11, wherein the latching assembly is configured to unlatch the retainer by applying a force to the latching assembly.
  • 14. The cable connector of claim 11, wherein the latching assembly pivotably connects to the base at a location on the beam between the first end and the second end.
  • 15. The cable connector of claim 14, wherein the first end of the beam has a grip portion adapted for receiving force applied to the beam for pivoting the beam and unlatching the retainer.
  • 16. The cable connector of claim 11, wherein the first end of the coupler comprises a tubular post, wherein the tubular post extends in the channel and, wherein the tubular post is adapted to receive an end of a cable.
  • 17. The cable connector of claim 11, further comprising a spring clip, wherein the spring slip attaches at least partially around the coupler and provides the radially inwardly bias to the coupler.
  • 18. The cable connector of claim 11, wherein the first end of the coupler is adapted to receive an equipment port such that the equipment port is resiliently friction fitted to the cable connector.
  • 19. The cable assembly of claim 11, wherein the latching assembly is adapted to engage a thread of the equipment port.
  • 20. The cable assembly of claim 19, wherein the at least one of a plurality of teeth engages a thread of the equipment port.
  • 21. A cable connector comprising a coupler and a retainer, wherein: the retainer comprises a base and a latching assembly;the base of the retainer comprises an internal channel;the coupler comprises a first end, a second end, and a bore extending therethrough;the first end of the coupler is positioned within the internal channel of the retainer;the second end of the coupler is radially inwardly biased;the latching assembly of the retainer comprises a beam having a first end and a second end and is pivotably connected to the base at a location on the beam between the first end and the second end of the beam;the latching assembly comprises a plurality of teeth extending radially inwardly from the second end of the beam towards the bore of the coupler proximate to the second end of the coupler;the second end of the coupler comprises at least one latch slot;the second end of the beam and at least one of the plurality of teeth extend radially inwardly through the at least one latch slot in the second end of the coupler into the bore of the coupler.
  • 22. The cable connector of claim 21, wherein the beam comprises a plurality of beams.
  • 23. The cable connector of claim 21, wherein the coupler has an annular groove, and wherein a spring clip positions in the annular groove at least partially around the coupler and provides the radially inwardly bias to the coupler.
  • 24. The cable connector of claim 21, wherein the coupler has at least one compression slot, wherein the at least one compression slot responds to the radially inwardly bias of the coupler providing a resiliently friction fit function to the coupler.
  • 25. The cable connector of claim 21, wherein at least one of the plurality of teeth extends past the second end of the body.
  • 26. The cable connector of claim 21, wherein the base of the retainer comprises one or more strain relief slots to provide strain relief to a cable installed in the cable connector.
  • 27. The cable connector of claim 21, wherein the latching assembly is biased in a latched position where the second end of the beam and at least one of the plurality of teeth extend radially inwardly through the at least one latch slot in the second end of the coupler into the bore of the coupler such that, when a force is applied to a grip portion of the latching assembly, the latching assembly pivots in a direction moving from the latched position.
  • 28. The cable connector of claim 27, wherein, in the latched position, the latching assembly is adapted to automatically engage an equipment port and releasably retain the equipment port when the equipment port is received by the connector.
RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 61/407,232 filed on Oct. 27, 2010 the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (928)
Number Name Date Kind
331169 Thomas Nov 1885 A
346958 Stone Aug 1886 A
459951 Warner Sep 1891 A
589216 McKee Aug 1897 A
1371742 Dringman Mar 1921 A
1488175 Strandell Mar 1924 A
1667485 MacDonald Apr 1928 A
1766869 Austin Jun 1930 A
1801999 Bowman Apr 1931 A
1885761 Peirce, Jr. Nov 1932 A
1959302 Paige May 1934 A
2013526 Schmitt Sep 1935 A
2059920 Weatherhead, Jr. Nov 1936 A
2102495 England Dec 1937 A
2258528 Wurzburger Oct 1941 A
2258737 Browne Oct 1941 A
2325549 Ryzowitz Jul 1943 A
2480963 Quinn Sep 1949 A
2544654 Brown Mar 1951 A
2549647 Turenne Apr 1951 A
2694187 Nash Nov 1954 A
2705652 Kaiser Apr 1955 A
2754487 Carr et al. Jul 1956 A
2755331 Melcher Jul 1956 A
2757351 Klostermann Jul 1956 A
2762025 Melcher Sep 1956 A
2785384 Wickesser Mar 1957 A
2805399 Leeper Sep 1957 A
2816949 Curtiss Dec 1957 A
2870420 Malek Jan 1959 A
2878039 Hoegee et al. Mar 1959 A
2881406 Arson Apr 1959 A
2963536 Kokalas Dec 1960 A
3001169 Blonder Sep 1961 A
3015794 Kishbaugh Jan 1962 A
3051925 Felts Aug 1962 A
3091748 Takes et al. May 1963 A
3094364 Lingg Jun 1963 A
3103548 Concelman Sep 1963 A
3184706 Atkins May 1965 A
3194292 Borowsky Jul 1965 A
3196382 Morello, Jr. Jul 1965 A
3206540 Cohen Sep 1965 A
3245027 Ziegler, Jr. Apr 1966 A
3275913 Blanchard et al. Sep 1966 A
3278890 Cooney Oct 1966 A
3281756 O'Keefe et al. Oct 1966 A
3281757 Bonhomme Oct 1966 A
3290069 Davis Dec 1966 A
3292136 Somerset Dec 1966 A
3320575 Brown et al. May 1967 A
3321732 Forney, Jr. May 1967 A
3336563 Hyslop Aug 1967 A
3348186 Rosen Oct 1967 A
3350667 Shreve Oct 1967 A
3350677 Daum Oct 1967 A
3355698 Keller Nov 1967 A
3372364 O'Keefe et al. Mar 1968 A
3373243 Janowiak et al. Mar 1968 A
3390374 Forney, Jr. Jun 1968 A
3406373 Forney, Jr. Oct 1968 A
3430184 Acord Feb 1969 A
3448430 Kelly Jun 1969 A
3453376 Ziegler, Jr. et al. Jul 1969 A
3465281 Florer Sep 1969 A
3475545 Stark et al. Oct 1969 A
3494400 McCoy et al. Feb 1970 A
3498647 Schroder Mar 1970 A
3499671 Osborne Mar 1970 A
3501737 Harris et al. Mar 1970 A
3517373 Jamon Jun 1970 A
3526871 Hobart Sep 1970 A
3533051 Ziegler, Jr. Oct 1970 A
3537065 Winston Oct 1970 A
3544705 Winston Dec 1970 A
3551882 O'Keefe Dec 1970 A
3564487 Upstone et al. Feb 1971 A
3587033 Brorein et al. Jun 1971 A
3601776 Curl Aug 1971 A
3603912 Kelly Sep 1971 A
3614711 Anderson et al. Oct 1971 A
3622952 Hilbert Nov 1971 A
3629792 Dorrell Dec 1971 A
3633150 Schwartz Jan 1972 A
3646502 Hutter et al. Feb 1972 A
3663926 Brandt May 1972 A
3665371 Cripps May 1972 A
3668612 Nepovim Jun 1972 A
3669472 Nadsady Jun 1972 A
3671922 Zerlin et al. Jun 1972 A
3671926 Nepovim Jun 1972 A
3678444 Stevens et al. Jul 1972 A
3678445 Brancaleone Jul 1972 A
3680034 Chow et al. Jul 1972 A
3681739 Kornick Aug 1972 A
3683320 Woods et al. Aug 1972 A
3686623 Nijman Aug 1972 A
3694792 Wallo Sep 1972 A
3694793 Concelman Sep 1972 A
3697930 Shirey Oct 1972 A
3706958 Blanchenot Dec 1972 A
3708186 Takagi et al. Jan 1973 A
3710005 French Jan 1973 A
3739076 Schwartz Jun 1973 A
3744007 Horak Jul 1973 A
3744011 Blanchenot Jul 1973 A
3761870 Drezin et al. Sep 1973 A
3778535 Forney, Jr. Dec 1973 A
3781762 Quackenbush Dec 1973 A
3781898 Holloway Dec 1973 A
3783178 Philibert et al. Jan 1974 A
3787796 Barr Jan 1974 A
3793610 Brishka Feb 1974 A
3798589 Deardurff Mar 1974 A
3808580 Johnson Apr 1974 A
3810076 Hutter May 1974 A
3835443 Arnold et al. Sep 1974 A
3836700 Niemeyer Sep 1974 A
3845453 Hemmer Oct 1974 A
3846738 Nepovim Nov 1974 A
3854003 Duret Dec 1974 A
3854789 Kaplan Dec 1974 A
3858156 Zarro Dec 1974 A
3879102 Horak Apr 1975 A
3886301 Cronin et al. May 1975 A
3907335 Burge et al. Sep 1975 A
3907399 Spinner Sep 1975 A
3910673 Stokes Oct 1975 A
3915539 Collins Oct 1975 A
3936132 Hutter Feb 1976 A
3937547 Lee-Kemp Feb 1976 A
3953097 Graham Apr 1976 A
3960428 Naus et al. Jun 1976 A
3963320 Spinner Jun 1976 A
3963321 Burger et al. Jun 1976 A
3970355 Pitschi Jul 1976 A
3972013 Shapiro Jul 1976 A
3976352 Spinner Aug 1976 A
3980805 Lipari Sep 1976 A
3985418 Spinner Oct 1976 A
3986736 Takagi et al. Oct 1976 A
4017139 Nelson Apr 1977 A
4022966 Gajajiva May 1977 A
4030742 Eidelberg et al. Jun 1977 A
4030798 Paoli Jun 1977 A
4032177 Anderson Jun 1977 A
4045706 Daffner et al. Aug 1977 A
4046451 Juds et al. Sep 1977 A
4053200 Pugner Oct 1977 A
4056043 Sriramamurty et al. Nov 1977 A
4059330 Shirey Nov 1977 A
4079343 Nijman Mar 1978 A
4082404 Flatt Apr 1978 A
4090028 Vontobel May 1978 A
4093335 Schwartz et al. Jun 1978 A
4100943 Terada et al. Jul 1978 A
4106839 Cooper Aug 1978 A
4109126 Halbeck Aug 1978 A
4125308 Schilling Nov 1978 A
4126372 Hashimoto et al. Nov 1978 A
4131332 Hogendobler et al. Dec 1978 A
4136897 Haluch Jan 1979 A
4150250 Lundeberg Apr 1979 A
4153320 Townshend May 1979 A
4156554 Aujla May 1979 A
4165911 Laudig Aug 1979 A
4168921 Blanchard Sep 1979 A
4173385 Fenn et al. Nov 1979 A
4174875 Wilson et al. Nov 1979 A
4187481 Boutros Feb 1980 A
4193655 Herrmann, Jr. Mar 1980 A
4194338 Trafton Mar 1980 A
4206963 English et al. Jun 1980 A
4225162 Dola Sep 1980 A
4227765 Neumann et al. Oct 1980 A
4229714 Yu Oct 1980 A
4250348 Kitagawa Feb 1981 A
4273405 Law Jun 1981 A
4280749 Hemmer Jul 1981 A
4285564 Spinner Aug 1981 A
4290663 Fowler et al. Sep 1981 A
4296986 Herrmann, Jr. Oct 1981 A
4307926 Smith Dec 1981 A
4309050 Legris Jan 1982 A
4310211 Bunnell et al. Jan 1982 A
4322121 Riches et al. Mar 1982 A
4326769 Dorsey et al. Apr 1982 A
4334730 Colwell et al. Jun 1982 A
4339166 Dayton Jul 1982 A
4346958 Blanchard Aug 1982 A
4354721 Luzzi Oct 1982 A
4358174 Dreyer Nov 1982 A
4373767 Cairns Feb 1983 A
4389081 Gallusser et al. Jun 1983 A
4400050 Hayward Aug 1983 A
4407529 Holman Oct 1983 A
4408821 Forney, Jr. Oct 1983 A
4408822 Nikitas Oct 1983 A
4412717 Monroe Nov 1983 A
4421377 Spinner Dec 1983 A
4426127 Kubota Jan 1984 A
4444453 Kirby et al. Apr 1984 A
4452503 Forney, Jr. Jun 1984 A
4456323 Pitcher et al. Jun 1984 A
4462653 Flederbach et al. Jul 1984 A
4464000 Werth et al. Aug 1984 A
4464001 Collins Aug 1984 A
4469386 Ackerman Sep 1984 A
4470657 Deacon Sep 1984 A
4477132 Moser et al. Oct 1984 A
4484792 Tengler et al. Nov 1984 A
4484796 Sato et al. Nov 1984 A
4490576 Bolante et al. Dec 1984 A
4506943 Drogo Mar 1985 A
4515427 Smit May 1985 A
4525017 Schildkraut et al. Jun 1985 A
4531790 Selvin Jul 1985 A
4531805 Werth Jul 1985 A
4533191 Blackwood Aug 1985 A
4540231 Forney, Jr. Sep 1985 A
RE31995 Ball Oct 1985 E
4545633 McGeary Oct 1985 A
4545637 Bosshard et al. Oct 1985 A
4575274 Hayward Mar 1986 A
4580862 Johnson Apr 1986 A
4580865 Fryberger Apr 1986 A
4583811 McMills Apr 1986 A
4585289 Bocher Apr 1986 A
4588246 Schildkraut et al. May 1986 A
4593964 Forney, Jr. et al. Jun 1986 A
4596434 Saba et al. Jun 1986 A
4596435 Bickford Jun 1986 A
4597621 Burns Jul 1986 A
4598959 Selvin Jul 1986 A
4598961 Cohen Jul 1986 A
4600263 DeChamp et al. Jul 1986 A
4613199 McGeary Sep 1986 A
4614390 Baker Sep 1986 A
4616900 Cairns Oct 1986 A
4632487 Wargula Dec 1986 A
4634213 Larsson et al. Jan 1987 A
4640572 Conlon Feb 1987 A
4645281 Burger Feb 1987 A
4647135 Reinhardt Mar 1987 A
4650228 McMills et al. Mar 1987 A
4655159 McMills Apr 1987 A
4655534 Stursa Apr 1987 A
4660921 Hauver Apr 1987 A
4666190 Yamabe et al. May 1987 A
4668043 Saba et al. May 1987 A
4673236 Musolff et al. Jun 1987 A
4674818 McMills et al. Jun 1987 A
4676577 Szegda Jun 1987 A
4682832 Punako et al. Jul 1987 A
4684201 Hutter Aug 1987 A
4688876 Morelli Aug 1987 A
4688878 Cohen et al. Aug 1987 A
4690482 Chamberland et al. Sep 1987 A
4691976 Cowen Sep 1987 A
4703987 Gullusser et al. Nov 1987 A
4703988 Raux et al. Nov 1987 A
4713021 Kobler Dec 1987 A
4717355 Mattis Jan 1988 A
4720155 Schildkraut et al. Jan 1988 A
4728301 Hemmer et al. Mar 1988 A
4734050 Negre et al. Mar 1988 A
4734666 Ohya et al. Mar 1988 A
4737123 Paler et al. Apr 1988 A
4738009 Down et al. Apr 1988 A
4738628 Rees Apr 1988 A
4739126 Gutter et al. Apr 1988 A
4746305 Nomura May 1988 A
4747656 Miyahara et al. May 1988 A
4747786 Hayashi et al. May 1988 A
4749821 Linton et al. Jun 1988 A
4755152 Elliot et al. Jul 1988 A
4757297 Frawley Jul 1988 A
4759729 Kemppainen et al. Jul 1988 A
4761146 Sohoel Aug 1988 A
4772222 Laudig et al. Sep 1988 A
4789355 Lee Dec 1988 A
4789759 Jones Dec 1988 A
4795360 Newman et al. Jan 1989 A
4797120 Ulery Jan 1989 A
4806116 Ackerman Feb 1989 A
4807891 Neher Feb 1989 A
4808128 Werth Feb 1989 A
4810017 Knak et al. Mar 1989 A
4813886 Roos et al. Mar 1989 A
4820185 Moulin Apr 1989 A
4834675 Samchisen May 1989 A
4834676 Tackett May 1989 A
4835342 Guginsky May 1989 A
4836580 Farrell Jun 1989 A
4836801 Ramirez Jun 1989 A
4838813 Pauza et al. Jun 1989 A
4846731 Alwine Jul 1989 A
4854893 Morris Aug 1989 A
4857014 Alf et al. Aug 1989 A
4867489 Patel Sep 1989 A
4867706 Tang Sep 1989 A
4869679 Szegda Sep 1989 A
4874331 Iverson Oct 1989 A
4881912 Thommen et al. Nov 1989 A
4892275 Szegda Jan 1990 A
4902246 Samchisen Feb 1990 A
4906207 Banning et al. Mar 1990 A
4915651 Bout Apr 1990 A
4921447 Capp et al. May 1990 A
4923412 Morris May 1990 A
4925403 Zorzy May 1990 A
4927385 Cheng May 1990 A
4929188 Lionetto et al. May 1990 A
4934960 Capp et al. Jun 1990 A
4938718 Guendel Jul 1990 A
4941846 Guimond et al. Jul 1990 A
4952174 Sucht et al. Aug 1990 A
4957456 Olson et al. Sep 1990 A
4973265 Heeren Nov 1990 A
4979911 Spencer Dec 1990 A
4990104 Schieferly Feb 1991 A
4990105 Karlovich Feb 1991 A
4990106 Szegda Feb 1991 A
4992061 Brush, Jr. et al. Feb 1991 A
5002503 Campbell et al. Mar 1991 A
5007861 Stirling Apr 1991 A
5011422 Yeh Apr 1991 A
5011432 Sucht et al. Apr 1991 A
5018822 Freismuth et al. May 1991 A
5021010 Wright Jun 1991 A
5024606 Ming-Hwa Jun 1991 A
5030126 Hanlon Jul 1991 A
5037328 Karlovich Aug 1991 A
5046964 Welsh et al. Sep 1991 A
5052947 Brodie et al. Oct 1991 A
5055060 Down et al. Oct 1991 A
5059139 Spinner Oct 1991 A
5059747 Bawa et al. Oct 1991 A
5062804 Jamet et al. Nov 1991 A
5066248 Gaver, Jr. et al. Nov 1991 A
5067912 Bickford et al. Nov 1991 A
5073129 Szegda Dec 1991 A
5080600 Baker et al. Jan 1992 A
5083943 Tarrant Jan 1992 A
5120260 Jackson Jun 1992 A
5127853 McMills et al. Jul 1992 A
5131862 Gershfeld Jul 1992 A
5137470 Doles Aug 1992 A
5137471 Verespej et al. Aug 1992 A
5141448 Mattingly et al. Aug 1992 A
5141451 Down Aug 1992 A
5149274 Gallusser et al. Sep 1992 A
5154636 Vaccaro et al. Oct 1992 A
5161993 Leibfried, Jr. Nov 1992 A
5166477 Perin, Jr. et al. Nov 1992 A
5167545 O'Brien et al. Dec 1992 A
5169323 Kawai et al. Dec 1992 A
5181161 Hirose et al. Jan 1993 A
5183417 Bools Feb 1993 A
5186501 Mano Feb 1993 A
5186655 Glenday et al. Feb 1993 A
5195905 Pesci Mar 1993 A
5195906 Szegda Mar 1993 A
5205547 Mattingly Apr 1993 A
5205761 Nilsson Apr 1993 A
5207602 McMills et al. May 1993 A
5215477 Weber et al. Jun 1993 A
5217391 Fisher, Jr. Jun 1993 A
5217392 Hosler, Sr. Jun 1993 A
5217393 Del Negro et al. Jun 1993 A
5221216 Gabany et al. Jun 1993 A
5227587 Paterek Jul 1993 A
5247424 Harris et al. Sep 1993 A
5269701 Leibfried, Jr. Dec 1993 A
5281762 Long et al. Jan 1994 A
5283853 Szegda Feb 1994 A
5284449 Vaccaro Feb 1994 A
5294864 Do Mar 1994 A
5295864 Birch et al. Mar 1994 A
5316348 Franklin May 1994 A
5316494 Flanagan et al. May 1994 A
5318459 Shields Jun 1994 A
5321205 Bawa et al. Jun 1994 A
5334032 Myers et al. Aug 1994 A
5334051 Devine et al. Aug 1994 A
5338225 Jacobsen et al. Aug 1994 A
5342218 McMills et al. Aug 1994 A
5354217 Gabel et al. Oct 1994 A
5362250 McMills et al. Nov 1994 A
5362251 Bielak Nov 1994 A
5371819 Szegda Dec 1994 A
5371821 Szegda Dec 1994 A
5371827 Szegda Dec 1994 A
5380211 Kawagauchi et al. Jan 1995 A
5389005 Kodama Feb 1995 A
5393244 Szegda Feb 1995 A
5397252 Wang Mar 1995 A
5413504 Kloecker et al. May 1995 A
5431583 Szegda Jul 1995 A
5435745 Booth Jul 1995 A
5435751 Papenheim et al. Jul 1995 A
5435760 Miklos Jul 1995 A
5439386 Ellis et al. Aug 1995 A
5444810 Szegda Aug 1995 A
5455548 Grandchamp et al. Oct 1995 A
5456611 Henry et al. Oct 1995 A
5456614 Szegda Oct 1995 A
5466173 Down Nov 1995 A
5470257 Szegda Nov 1995 A
5474478 Ballog Dec 1995 A
5488268 Bauer et al. Jan 1996 A
5490033 Cronin Feb 1996 A
5490801 Fisher, Jr. et al. Feb 1996 A
5494454 Johnsen Feb 1996 A
5499934 Jacobsen et al. Mar 1996 A
5501616 Holliday Mar 1996 A
5516303 Yohn et al. May 1996 A
5525076 Down Jun 1996 A
5542861 Anhalt et al. Aug 1996 A
5548088 Gray et al. Aug 1996 A
5550521 Bernaud et al. Aug 1996 A
5564938 Shenkal et al. Oct 1996 A
5571028 Szegda Nov 1996 A
5586910 Del Negro et al. Dec 1996 A
5595499 Zander et al. Jan 1997 A
5598132 Stabile Jan 1997 A
5607320 Wright Mar 1997 A
5607325 Toma Mar 1997 A
5620339 Gray et al. Apr 1997 A
5632637 Diener May 1997 A
5632651 Szegda May 1997 A
5644104 Porter et al. Jul 1997 A
5649723 Larsson Jul 1997 A
5651698 Locati et al. Jul 1997 A
5651699 Holliday Jul 1997 A
5653605 Woehl et al. Aug 1997 A
5667405 Holliday Sep 1997 A
5681172 Moldenhauer Oct 1997 A
5683263 Hsu Nov 1997 A
5702263 Baumann et al. Dec 1997 A
5722856 Fuchs et al. Mar 1998 A
5735704 Anthony Apr 1998 A
5746617 Porter, Jr. et al. May 1998 A
5746619 Harting et al. May 1998 A
5769652 Wider Jun 1998 A
5774344 Casebolt Jun 1998 A
5775927 Wider Jul 1998 A
5788289 Cronley Aug 1998 A
5817978 Hermant et al. Oct 1998 A
5863220 Holliday Jan 1999 A
5877452 McConnell Mar 1999 A
5879191 Burris Mar 1999 A
5882226 Bell et al. Mar 1999 A
5897795 Lu et al. Apr 1999 A
5906511 Bozzer et al. May 1999 A
5917153 Geroldinger Jun 1999 A
5921793 Phillips Jul 1999 A
5938465 Fox, Sr. Aug 1999 A
5944548 Saito Aug 1999 A
5951327 Marik Sep 1999 A
5954708 Lopez et al. Sep 1999 A
5957716 Buckley et al. Sep 1999 A
5967852 Follingstad et al. Oct 1999 A
5975591 Guest Nov 1999 A
5975949 Holliday et al. Nov 1999 A
5975951 Burris et al. Nov 1999 A
5977841 Lee et al. Nov 1999 A
5997350 Burris et al. Dec 1999 A
6010349 Porter, Jr. Jan 2000 A
6019635 Nelson Feb 2000 A
6022237 Esh Feb 2000 A
6032358 Wild Mar 2000 A
6036540 Beloritsky Mar 2000 A
6042422 Youtsey Mar 2000 A
6048229 Lazaro, Jr. Apr 2000 A
6053743 Mitchell et al. Apr 2000 A
6053769 Kubota et al. Apr 2000 A
6053777 Boyle Apr 2000 A
6062607 Barthlomew May 2000 A
6080015 Andreescu Jun 2000 A
6083053 Anderson, Jr. et al. Jul 2000 A
6089903 Stafford Gray et al. Jul 2000 A
6089912 Tallis et al. Jul 2000 A
6089913 Holliday Jul 2000 A
6093043 Gray et al. Jul 2000 A
6095828 Burland Aug 2000 A
6095841 Felps Aug 2000 A
6123550 Burkert et al. Sep 2000 A
6123567 McCarthy Sep 2000 A
6132234 Waidner et al. Oct 2000 A
6146197 Holliday et al. Nov 2000 A
6152752 Fukuda Nov 2000 A
6152753 Johnson et al. Nov 2000 A
6153830 Montena Nov 2000 A
6162995 Bachle et al. Dec 2000 A
6164977 Lester Dec 2000 A
6174206 Yentile et al. Jan 2001 B1
6183298 Henningsen Feb 2001 B1
6199913 Wang Mar 2001 B1
6199920 Neustadtl Mar 2001 B1
6210216 Tso-Chin et al. Apr 2001 B1
6210219 Zhu et al. Apr 2001 B1
6210222 Langham et al. Apr 2001 B1
6217383 Holland et al. Apr 2001 B1
6238240 Yu May 2001 B1
6239359 Lilienthal, II et al. May 2001 B1
6241553 Hsia Jun 2001 B1
6250974 Kerek Jun 2001 B1
6257923 Stone et al. Jul 2001 B1
6261126 Stirling Jul 2001 B1
6267612 Areykiewicz et al. Jul 2001 B1
6271464 Cunningham Aug 2001 B1
6331123 Rodrigues Dec 2001 B1
6332815 Bruce Dec 2001 B1
6358077 Young Mar 2002 B1
6361348 Hall et al. Mar 2002 B1
6361364 Holland et al. Mar 2002 B1
6375509 Mountford Apr 2002 B2
6394840 Gassauer et al. May 2002 B1
6396367 Rosenberger May 2002 B1
D458904 Montena Jun 2002 S
6406330 Bruce Jun 2002 B2
6409534 Weisz-Margulescu Jun 2002 B1
D460739 Fox Jul 2002 S
D460740 Montena Jul 2002 S
D460946 Montena Jul 2002 S
D460947 Montena Jul 2002 S
D460948 Montena Jul 2002 S
6422884 Babasick et al. Jul 2002 B1
6422900 Hogan Jul 2002 B1
6425782 Holland Jul 2002 B1
D461166 Montena Aug 2002 S
D461167 Montena Aug 2002 S
D461778 Fox Aug 2002 S
D462058 Montena Aug 2002 S
D462060 Fox Aug 2002 S
6439899 Muzslay et al. Aug 2002 B1
D462327 Montena Sep 2002 S
6450829 Weisz-Margulescu Sep 2002 B1
6454463 Halbach Sep 2002 B1
6464526 Seufert et al. Oct 2002 B1
6467816 Huang Oct 2002 B1
6468100 Meyer et al. Oct 2002 B1
6491546 Perry Dec 2002 B1
D468696 Montena Jan 2003 S
6506083 Bickford et al. Jan 2003 B1
6520800 Michelbach et al. Feb 2003 B1
6530807 Rodrigues et al. Mar 2003 B2
6540531 Syed et al. Apr 2003 B2
6558194 Montena May 2003 B2
6572419 Feye-Homann Jun 2003 B2
6576833 Covaro et al. Jun 2003 B2
6619876 Vaitkus et al. Sep 2003 B2
6634906 Yeh Oct 2003 B1
6663397 Lin et al. Dec 2003 B1
6676446 Montena Jan 2004 B2
6683253 Lee Jan 2004 B1
6692285 Islam Feb 2004 B2
6692286 De Cet Feb 2004 B1
6695636 Hall et al. Feb 2004 B2
6705875 Berghorn et al. Mar 2004 B2
6705884 McCarthy Mar 2004 B1
6709280 Gretz Mar 2004 B1
6712631 Youtsey Mar 2004 B1
6716041 Ferderer et al. Apr 2004 B2
6716062 Palinkas et al. Apr 2004 B1
6733336 Montena et al. May 2004 B1
6733337 Kodaira May 2004 B2
6752633 Aizawa et al. Jun 2004 B2
6761571 Hida Jul 2004 B2
6767248 Hung Jul 2004 B1
6769926 Montena Aug 2004 B1
6780029 Gretz Aug 2004 B1
6780042 Badescu et al. Aug 2004 B1
6780052 Montena et al. Aug 2004 B2
6780068 Bartholoma et al. Aug 2004 B2
6786767 Fuks et al. Sep 2004 B1
6790081 Burris et al. Sep 2004 B2
6793528 Lin et al. Sep 2004 B2
6802738 Henningsen Oct 2004 B1
6805584 Chen Oct 2004 B1
6806531 Chen Oct 2004 B1
6808415 Montena Oct 2004 B1
6817272 Holland Nov 2004 B2
6817896 Derenthal Nov 2004 B2
6827608 Hall et al. Dec 2004 B2
6848115 Sugiura et al. Jan 2005 B2
6848939 Stirling Feb 2005 B2
6848940 Montena Feb 2005 B2
6848941 Wlos et al. Feb 2005 B2
6884113 Montena Apr 2005 B1
6884115 Malloy Apr 2005 B2
6887102 Burris et al. May 2005 B1
6929265 Holland et al. Aug 2005 B2
6929508 Holland Aug 2005 B1
6935866 Kerekes et al. Aug 2005 B2
6939169 Islam et al. Sep 2005 B2
6942516 Shimoyama et al. Sep 2005 B2
6942520 Barlian et al. Sep 2005 B2
6945805 Bollinger Sep 2005 B1
6948976 Goodwin et al. Sep 2005 B2
6953371 Baker et al. Oct 2005 B2
6955563 Croan Oct 2005 B1
6971912 Montena et al. Dec 2005 B2
7008263 Holland Mar 2006 B2
7018216 Clark et al. Mar 2006 B1
7018235 Burris et al. Mar 2006 B1
7029326 Montena Apr 2006 B2
7063565 Ward Jun 2006 B2
7070447 Montena Jul 2006 B1
7077697 Kooiman Jul 2006 B2
7086897 Montena Aug 2006 B2
7090525 Morana Aug 2006 B1
7094114 Kurimoto Aug 2006 B2
7097499 Purdy Aug 2006 B1
7102868 Montena Sep 2006 B2
7112078 Czikora Sep 2006 B2
7112093 Holland Sep 2006 B1
7114990 Bence et al. Oct 2006 B2
7118285 Fenwick et al. Oct 2006 B2
7118382 Kerekes et al. Oct 2006 B2
7118416 Montena et al. Oct 2006 B2
7125283 Lin Oct 2006 B1
7128604 Hall Oct 2006 B2
7131867 Foster et al. Nov 2006 B1
7131868 Montena Nov 2006 B2
7140645 Cronley Nov 2006 B2
7144271 Burris et al. Dec 2006 B1
7147509 Burris et al. Dec 2006 B1
7156696 Montena Jan 2007 B1
7161785 Chawgo Jan 2007 B2
7165974 Kooiman Jan 2007 B2
7173121 Fang Feb 2007 B2
7179121 Burris et al. Feb 2007 B1
7182639 Burris Feb 2007 B2
7189114 Burris et al. Mar 2007 B1
7192308 Rodrigues et al. Mar 2007 B2
7229303 Vermoesen et al. Jun 2007 B2
7238047 Saetele et al. Jul 2007 B2
7252536 Lazaro, Jr. et al. Aug 2007 B2
7252546 Holland Aug 2007 B1
7255598 Montena et al. Aug 2007 B2
7261594 Kodama et al. Aug 2007 B2
7264502 Holland Sep 2007 B2
7278882 Li Oct 2007 B1
7288002 Rodrigues et al. Oct 2007 B2
7291033 Hu Nov 2007 B2
7299550 Montena Nov 2007 B2
7318609 Naito et al. Jan 2008 B2
7322846 Camelio Jan 2008 B2
7322851 Brookmire Jan 2008 B2
7329139 Benham Feb 2008 B2
7335058 Burris et al. Feb 2008 B1
7347129 Youtsey Mar 2008 B1
7347726 Wlos Mar 2008 B2
7347727 Wlos et al. Mar 2008 B2
7347729 Thomas et al. Mar 2008 B2
7351088 Qu Apr 2008 B1
7357641 Kerekes et al. Apr 2008 B2
7364462 Holland Apr 2008 B2
7371112 Burris et al. May 2008 B2
7375533 Gale May 2008 B2
7387524 Cheng Jun 2008 B2
7393245 Palinkas et al. Jul 2008 B2
7396249 Kauffman Jul 2008 B2
7404737 Youtsey Jul 2008 B1
7416415 Hart et al. Aug 2008 B2
7438327 Auray et al. Oct 2008 B2
7452239 Montena Nov 2008 B2
7455550 Sykes Nov 2008 B1
7458850 Burris et al. Dec 2008 B1
7462068 Amidon Dec 2008 B2
7467980 Chiu Dec 2008 B2
7476127 Wei Jan 2009 B1
7478475 Hall Jan 2009 B2
7479033 Sykes et al. Jan 2009 B1
7479035 Bence et al. Jan 2009 B2
7484988 Ma et al. Feb 2009 B2
7484997 Hofling Feb 2009 B2
7488210 Burris et al. Feb 2009 B1
7494355 Hughes et al. Feb 2009 B2
7497729 Wei Mar 2009 B1
7500868 Holland et al. Mar 2009 B2
7500873 Hart Mar 2009 B1
7507116 Laerke et al. Mar 2009 B2
7507117 Amidon Mar 2009 B2
7513788 Camelio Apr 2009 B2
7544094 Paglia et al. Jun 2009 B1
7563133 Stein Jul 2009 B2
7566236 Malloy et al. Jul 2009 B2
7568945 Chee et al. Aug 2009 B2
7578693 Yoshida et al. Aug 2009 B2
7588454 Nakata et al. Sep 2009 B2
7607942 Van Swearingen Oct 2009 B1
7625227 Henderson et al. Dec 2009 B1
7632143 Islam Dec 2009 B1
7635283 Islam Dec 2009 B1
7651376 Schreier Jan 2010 B2
7674132 Chen Mar 2010 B1
7682177 Berthet Mar 2010 B2
7714229 Burris et al. May 2010 B2
7727011 Montena et al. Jun 2010 B2
7749021 Brodeur Jul 2010 B2
7753705 Montena Jul 2010 B2
7753710 George Jul 2010 B2
7753727 Islam et al. Jul 2010 B1
7758370 Flaherty Jul 2010 B1
7794275 Rodrigues Sep 2010 B2
7806714 Williams et al. Oct 2010 B2
7806725 Chen Oct 2010 B1
7811133 Gray Oct 2010 B2
D626920 Purdy et al. Nov 2010 S
7824216 Purdy Nov 2010 B2
7828595 Mathews Nov 2010 B2
7830154 Gale Nov 2010 B2
7833053 Mathews Nov 2010 B2
7845976 Mathews Dec 2010 B2
7845978 Chen Dec 2010 B1
7845980 Amidon Dec 2010 B1
7850472 Friedrich et al. Dec 2010 B2
7850487 Wei Dec 2010 B1
7857661 Islam Dec 2010 B1
7874870 Chen Jan 2011 B1
7887354 Holliday Feb 2011 B2
7892004 Hertzler et al. Feb 2011 B2
7892005 Haube Feb 2011 B2
7892024 Chen Feb 2011 B1
7914326 Sutter Mar 2011 B2
7918687 Paynter et al. Apr 2011 B2
7927135 Wlos Apr 2011 B1
7934955 Hsia May 2011 B1
7942695 Lu May 2011 B1
7950958 Mathews May 2011 B2
7955126 Bence et al. Jun 2011 B2
7972158 Wild et al. Jul 2011 B2
7972176 Burris et al. Jul 2011 B2
7982005 Ames et al. Jul 2011 B2
8011955 Lu Sep 2011 B1
8025518 Burris et al. Sep 2011 B2
8029315 Purdy et al. Oct 2011 B2
8029316 Snyder et al. Oct 2011 B2
8062044 Montena et al. Nov 2011 B2
8062063 Malloy et al. Nov 2011 B2
8070504 Amidon et al. Dec 2011 B2
8075337 Malloy et al. Dec 2011 B2
8075338 Montena Dec 2011 B1
8079860 Zraik Dec 2011 B1
8087954 Fuchs Jan 2012 B2
8113875 Malloy et al. Feb 2012 B2
8157587 Paynter et al. Apr 2012 B2
8157588 Rodrigues et al. Apr 2012 B1
8167636 Montena May 2012 B1
8172612 Bence et al. May 2012 B2
8177572 Feye-Hohmann May 2012 B2
8192237 Purdy et al. Jun 2012 B2
8206172 Katagiri et al. Jun 2012 B2
D662893 Haberek et al. Jul 2012 S
8231412 Paglia et al. Jul 2012 B2
8262408 Kelly Sep 2012 B1
8272893 Burris et al. Sep 2012 B2
8287320 Purdy et al. Oct 2012 B2
8313345 Purdy Nov 2012 B2
8313353 Purdy et al. Nov 2012 B2
8317539 Stein Nov 2012 B2
8323053 Montena Dec 2012 B2
8323058 Flaherty et al. Dec 2012 B2
8323060 Purdy et al. Dec 2012 B2
8337229 Montena Dec 2012 B2
8376769 Holland et al. Feb 2013 B2
D678844 Haberek Mar 2013 S
8398421 Haberek et al. Mar 2013 B2
8449326 Holland et al. May 2013 B2
8469739 Rodrigues et al. Jun 2013 B2
D686164 Haberek et al. Jul 2013 S
D686576 Haberek et al. Jul 2013 S
8480430 Ehret et al. Jul 2013 B2
8506325 Malloy et al. Aug 2013 B2
8517763 Burris et al. Aug 2013 B2
8517764 Wei et al. Aug 2013 B2
8529279 Montena Sep 2013 B2
8550835 Montena Oct 2013 B2
8568163 Burris et al. Oct 2013 B2
8568165 Wei et al. Oct 2013 B2
8591244 Thomas et al. Nov 2013 B2
8597050 Flaherty et al. Dec 2013 B2
8636529 Stein Jan 2014 B2
8647136 Purdy et al. Feb 2014 B2
8690603 Bence et al. Apr 2014 B2
8721365 Holland May 2014 B2
8727800 Holland et al. May 2014 B2
8777658 Holland et al. Jul 2014 B2
8777661 Holland et al. Jul 2014 B2
8858251 Montena Oct 2014 B2
8888526 Burris Nov 2014 B2
8920192 Montena Dec 2014 B2
20010034143 Annequin Oct 2001 A1
20010046802 Perry et al. Nov 2001 A1
20010051448 Gonzalez Dec 2001 A1
20020013088 Rodrigues et al. Jan 2002 A1
20020019161 Finke et al. Feb 2002 A1
20020038720 Kai et al. Apr 2002 A1
20020146935 Wong Oct 2002 A1
20030110977 Batlaw Jun 2003 A1
20030119358 Henningsen Jun 2003 A1
20030139081 Hall et al. Jul 2003 A1
20030194890 Ferderer et al. Oct 2003 A1
20030214370 Allison et al. Nov 2003 A1
20030224657 Malloy Dec 2003 A1
20040031144 Holland Feb 2004 A1
20040077215 Palinkas et al. Apr 2004 A1
20040102089 Chee May 2004 A1
20040157499 Nania et al. Aug 2004 A1
20040194585 Clark Oct 2004 A1
20040209516 Burris et al. Oct 2004 A1
20040219833 Burris et al. Nov 2004 A1
20040229504 Liu Nov 2004 A1
20050042919 Montena Feb 2005 A1
20050079762 Hsia Apr 2005 A1
20050159045 Huang Jul 2005 A1
20050170692 Montena Aug 2005 A1
20050181652 Montena et al. Aug 2005 A1
20050181668 Montena et al. Aug 2005 A1
20050208827 Burris et al. Sep 2005 A1
20050233636 Rodrigues et al. Oct 2005 A1
20060014425 Montena Jan 2006 A1
20060099853 Sattele et al. May 2006 A1
20060110977 Matthews May 2006 A1
20060154519 Montena Jul 2006 A1
20060166552 Bence et al. Jul 2006 A1
20060178046 Tusini Aug 2006 A1
20060194465 Czikora Aug 2006 A1
20060223355 Hirschmann Oct 2006 A1
20060246774 Buck Nov 2006 A1
20060258209 Hall Nov 2006 A1
20060276079 Chen Dec 2006 A1
20070004276 Stein Jan 2007 A1
20070026734 Bence et al. Feb 2007 A1
20070049113 Rodrigues et al. Mar 2007 A1
20070054535 Hall et al. Mar 2007 A1
20070059968 Ohtaka et al. Mar 2007 A1
20070082533 Currier et al. Apr 2007 A1
20070087613 Schumacher et al. Apr 2007 A1
20070123101 Palinkas May 2007 A1
20070155232 Burris et al. Jul 2007 A1
20070173100 Benham Jul 2007 A1
20070175027 Khemakhem et al. Aug 2007 A1
20070232117 Singer Oct 2007 A1
20070243759 Rodrigues et al. Oct 2007 A1
20070243762 Burke et al. Oct 2007 A1
20070287328 Hart et al. Dec 2007 A1
20080032556 Schreier Feb 2008 A1
20080102696 Montena May 2008 A1
20080171466 Buck et al. Jul 2008 A1
20080200066 Hofling Aug 2008 A1
20080200068 Aguirre Aug 2008 A1
20080214040 Holterhoff et al. Sep 2008 A1
20080289470 Aston Nov 2008 A1
20090029590 Sykes et al. Jan 2009 A1
20090098770 Bence et al. Apr 2009 A1
20090104801 Silva Apr 2009 A1
20090163075 Blew et al. Jun 2009 A1
20090186505 Mathews Jul 2009 A1
20090264003 Hertzler et al. Oct 2009 A1
20090305560 Chen Dec 2009 A1
20100007441 Yagisawa et al. Jan 2010 A1
20100022125 Burris et al. Jan 2010 A1
20100028563 Ota Feb 2010 A1
20100055978 Montena Mar 2010 A1
20100080563 DiFonzo et al. Apr 2010 A1
20100081321 Malloy et al. Apr 2010 A1
20100081322 Malloy et al. Apr 2010 A1
20100087071 DiFonzo et al. Apr 2010 A1
20100105246 Burris et al. Apr 2010 A1
20100124839 Montena May 2010 A1
20100130060 Islam May 2010 A1
20100178799 Lee Jul 2010 A1
20100216339 Burris et al. Aug 2010 A1
20100233901 Wild et al. Sep 2010 A1
20100233902 Youtsey Sep 2010 A1
20100233903 Islam Sep 2010 A1
20100255719 Purdy Oct 2010 A1
20100255721 Purdy et al. Oct 2010 A1
20100279548 Montena et al. Nov 2010 A1
20100297871 Haube Nov 2010 A1
20100297875 Purdy et al. Nov 2010 A1
20100304579 Kisling Dec 2010 A1
20100323541 Amidon et al. Dec 2010 A1
20110021072 Purdy Jan 2011 A1
20110021075 Orner et al. Jan 2011 A1
20110027039 Blair Feb 2011 A1
20110039448 Stein Feb 2011 A1
20110053413 Mathews Mar 2011 A1
20110074388 Bowman Mar 2011 A1
20110080158 Lawrence et al. Apr 2011 A1
20110111623 Burris et al. May 2011 A1
20110111626 Paglia et al. May 2011 A1
20110117774 Malloy et al. May 2011 A1
20110143567 Purdy et al. Jun 2011 A1
20110151714 Flaherty et al. Jun 2011 A1
20110230089 Amidon et al. Sep 2011 A1
20110230091 Krenceski et al. Sep 2011 A1
20110237123 Burris et al. Sep 2011 A1
20110237124 Flaherty et al. Sep 2011 A1
20110250789 Burris et al. Oct 2011 A1
20110318958 Burris et al. Dec 2011 A1
20120021642 Zraik Jan 2012 A1
20120040537 Burris Feb 2012 A1
20120045933 Youtsey Feb 2012 A1
20120064768 Islam et al. Mar 2012 A1
20120094530 Montena Apr 2012 A1
20120100751 Montena Apr 2012 A1
20120108098 Burris et al. May 2012 A1
20120122329 Montena May 2012 A1
20120129387 Holland et al. May 2012 A1
20120171894 Malloy et al. Jul 2012 A1
20120178289 Holliday Jul 2012 A1
20120202378 Krenceski et al. Aug 2012 A1
20120222302 Purdy et al. Sep 2012 A1
20120225581 Amidon et al. Sep 2012 A1
20120315788 Montena Dec 2012 A1
20130065433 Burris Mar 2013 A1
20130072057 Burris Mar 2013 A1
20130178096 Matzen Jul 2013 A1
20140106612 Burris Apr 2014 A1
20140106613 Burris et al. Apr 2014 A1
20140120766 Meister et al. May 2014 A1
20140148051 Bence et al. May 2014 A1
20140322968 Burris Oct 2014 A1
Foreign Referenced Citations (58)
Number Date Country
2096710 Nov 1994 CA
201149936 Nov 2008 CN
201149937 Nov 2008 CN
201178228 Jan 2009 CN
201904508 Jul 2011 CN
47931 Oct 1888 DE
102289 Jul 1897 DE
1117687 Nov 1961 DE
2261973 Jun 1974 DE
3211008 Oct 1983 DE
9001608.4 Apr 1990 DE
4439852 May 1996 DE
19957518 Sep 2001 DE
116157 Aug 1984 EP
167738 Jan 1986 EP
72104 Feb 1986 EP
265276 Apr 1988 EP
428424 May 1991 EP
1191268 Mar 2002 EP
1501159 Jan 2005 EP
1548898 Jun 2005 EP
1603200 Dec 2005 EP
1701410 Sep 2006 EP
2051340 Apr 2009 EP
2232846 Jan 1975 FR
2462798 Feb 1981 FR
2494508 May 1982 FR
589697 Jun 1947 GB
1087228 Oct 1967 GB
1270846 Apr 1972 GB
1332888 Oct 1973 GB
1401373 Jul 1975 GB
1421215 Jan 1976 GB
2019665 Oct 1979 GB
2079549 Jan 1982 GB
2252677 Aug 1992 GB
2264201 Aug 1993 GB
2331634 May 1999 GB
2448595 Oct 2008 GB
2450248 Dec 2008 GB
3280369 Dec 1991 JP
200215823 Jan 2002 JP
4503793 Jul 2010 JP
100622526 Sep 2006 KR
427044 Mar 2001 TW
8700351 Jan 1987 WO
0186756 Nov 2001 WO
02069457 Sep 2002 WO
2004013883 Feb 2004 WO
2006081141 Aug 2006 WO
WO2007062845 Jun 2007 WO
2009066705 May 2009 WO
2010135181 Nov 2010 WO
2011057033 May 2011 WO
2012162431 May 2011 WO
2011128665 Oct 2011 WO
2011128666 Oct 2011 WO
2013126629 Aug 2013 WO
Non-Patent Literature Citations (51)
Entry
Lock Washers, ASME B18.21.1-1999, 1999 American Society of Mechanical Engineers, 28 pages.
Corning Gilbert 2004 OEM Coaxial Products Catalog, Quick Disconnects, 2 pages.
Office Action dated Jun. 12, 2014 pertaining to U.S. Appl. No. 13/795,737.
Office Action dated Aug. 25, 2014 pertaining to U.S. Appl. No. 13/605,481.
Election/Restrictions Requirement dated Jul. 31, 2014 pertaining to U.S. Appl. No. 13/652,969.
Office Action dated Aug. 29, 2014 pertaining to U.S. Appl. No. 13/827,522.
Election/Restrictions Requirement dated Jun. 20, 2014 pertaining to U.S. Appl. No. 13/795,780.
Office Action dated Sep. 19, 2014 pertaining to U.S. Appl. No. 13/795,780.
Office Action dated Oct. 6, 2014 pertaining to U.S. Appl. No. 13/732,679.
Digicon AVL Connector. ARRIS Group Inc. [online] 3 pages. Retrieved from the Internet: <URL: http://www.arrisi.com/special/digiconAVL.asp.
US Office Action, U.S. Appl. No. 10/997,218; Jul. 31, 2006, pp. 1-10.
Society of Cable Telecommunications Engineers, Engineering Committee, Interface Practices Subcommittee; American National Standard; ANSI/SCTE Jan. 2006; Specification for “F” Port, Female, Outdoor. Published Jan. 2006. 9 pages.
U.S. Reexamination Control No. 90/012,300 filed Jun. 29, 2012, regarding U.S. Patent No. 8,172,612 filed May 27, 2011 (Bence et al.).
U.S. Reexamination Control No. 90/012,749 filed Dec. 21, 2012, regarding U.S. Patent No. 7,114,990, filed Jan. 25, 2005 (Bence et al.).
U.S. Reexamination Control No. 90/012,835 filed Apr. 11, 2013, regarding U.S. Patent No. 8,172,612 filed May 27, 2011 (Bence et al.).
Notice of Allowance (Mail Date Mar. 20, 2012) for U.S. Appl. No. 13/117,843.
Search Report dated Jun. 6, 2014 pertaining to International application No. PCT/US2014/023374.
Search Report dated Apr. 9, 2014 pertaining to International application No. PCT/US2014/015934.
Society of Cable Telecommunications Engineers, Engineering Committee, Interface Practices Subcommittee; American National Standard; ANSI/SCTE Feb. 2006; “Specification for “F” Port, Female, Indoor”. Published Feb. 2006. 9 pages.
PPC, “Next Generation Compression Connectors,” pp. 1-6, Retrieved from http://www.tessco.com/yts/partnearnanufacturer list/vendors/ppc/pdf/ppc digitalspread.pdf.
Patent Cooperation Treaty, International Search Report for PCT/US2013/070497, Feb. 11, 2014, 3 pgs.
Patent Cooperation Treaty, International Search Report for PCT/US2013/064515, 10 pgs.
Patent Cooperation Treaty, International Search Report for PCT/US2013/064512, Jan. 21, 2014, 11 pgs.
Huber+Suhner AG, RF Connector Guide: Understanding connector technology, 2007, Retrieved from http://www.ie.itcr.ac.cr/marin/lic/e14515/HUBER+SUENER—RF—CONNECTOR—GUIDE.pdf.
Slade, Paul G,. Electrical Contacts: Principles and Applications, 1999, Retrieved from http://books.google.com/books (table of contents only).
U.S. Reexamination Control No. 95/002,400 filed Sep. 15, 2012, regarding U.S. Patent No. 8,192,237 filed Feb. 23, 2011 (Purdy et al.).
U.S. Reexamination Control No. 90/013,068 filed Nov. 27, 2013, regarding U.S. Patent No. 6,558,194 filed Jul. 21, 2000 (Montena).
U.S. Reexamination Control No. 90/013,069 filed Nov. 27, 2013, regarding U.S. Patent No. 6,848,940 filed Jan. 21, 2003 (Montena).
U.S. Inter Partes Review Case No. 2013-00346 filed Jun. 10, 2013, regarding U.S. Patent No. 8,287,320 filed Dec. 8, 2009, claims 1-8, 10-16, 18-31 (Purdy et al.).
U.S. Inter Partes Review Case No. 2013-00343 filed Jun. 10, 2013, regarding U.S. Patent No. 8,313,353 filed Apr. 30, 2012, claims 1-6 (Purdy et al.).
U.S. Inter Partes Review Case No. 2013-00340 filed Jun. 10, 2013, regarding U.S. Patent No. 8,323,060 filed Jun. 14, claims 1-9 (Purdy et al.).
U.S. Inter Partes Review Case No. 2013-00347 filed Jun. 10, 2013, regarding U.S. Patent No. 8,287,320 filed Dec. 8, 2009, claims 9, 17, 32 (Purdy et al.).
U.S. Inter Partes Review Case No. 2013-00345 filed Jun. 10, 2013, regarding U.S. Patent No. 8,313,353 filed Apr. 30, 2012, claims 7-27 (Purdy et al.).
U.S. Inter Partes Review Case No. 2013-00342 filed Jun. 10, 2013, regarding U.S. Patent No. 8,323,060 filed Jun. 14, 2012, claims 10-25 (Purdy et al.).
U.S. Inter Partes Review Case No. 2014-00441 filed Feb. 18, 2014, regarding U.S. Patent No. 8,562,366 filed Oct. 15, 2012, claims 31,37, 39, 41, 42, 55 56 (Purdy et al.).
U.S. Inter Partes Review Case No. 2014-00440 filed Feb. 18, 2014, regarding U.S. Patent No. 8,597,041 filed Oct. 15, 2012, claims 1, 8, 9, 11, 18-26, 29 (Purdy et al.).
Office Action dated Dec. 31, 2014 pertaining to U.S. Appl. No. 13/605,498.
Office Action dated Dec. 16, 2014 pertaining to U.S. Appl. No. 13/653,095.
Office Action dated Dec. 19, 2014 pertaining to U.S. Appl. No. 13/652,969.
Office Action dated Dec. 29, 2014 pertaining to U.S. Appl. No. 13/833,793.
Corning Cabelcon waterproof CX3 7.0 QuickMount for RG6 cables; Cabelcon Connectors; www.cabelcom.dk; Mar. 15, 2012.
Maury Jr., M.; Microwave Coaxial Connector Technology: A Continuaing Evolution; Maury Microwave Corporation; Dec. 13, 2005; pp. 1-21; Maury Microwave Inc.
“Snap-On/Push-On” SMA Adapter; RF TEC Mfg., Inc.; Mar. 23, 2006; 2 pgs.
RG6 quick mount data sheet; Corning Cabelcon; 2010; 1 pg.; Corning Cabelcon ApS.
RG11 quick mount data sheet; Corning Cabelcon; 2013; 1 pg.; Corning Cabelcon ApS.
Gilbert Engineering Co., Inc.; OEM Coaxial Connectors catalog; Aug. 1993; p. 26.
UltraEase Compression Connectors; “F” Series 59 and 6 Connectors Product Information; May 2005; 4 pgs.
Pomona Electronics Full Line Catelog; vol. 50; 2003; pp. 1-100.
Notice of Allowance dated Feb. 2, 2015 pertaining to U.S. Appl. No. 13/795,737.
Office Action dated Feb. 25, 2015 pertaining to U.S. Appl. No. 13/605,481.
Office Action dated Feb. 18, 2015 pertaining to U.S. Appl. No. 13/827,522.
Related Publications (1)
Number Date Country
20120108098 A1 May 2012 US
Provisional Applications (1)
Number Date Country
61407232 Oct 2010 US