The present invention relates to a security device for attachment to an object, the security device configured to prevent the unwanted removal of the security device from the object. The present invention additionally relates to a key to unlock a security device from an object, the key is configured to apply at least two forces to the security device to allow removal of the security device from the object.
Electronic article surveillance (EAS) systems are often used to deter and detect shoplifting. Typically, an EAS security system includes an EAS tag, a transmitter, a receiver, and an alarm. The EAS tag is attached to a piece of merchandise. The transmitter and the receiver are positioned at the exit of a retail establishment and are configured to establish a detection zone in which a consumer must pass through as he or she exits the retail establishment. The transmitter is configured to send signals through the detection zone. When an EAS tag enters the detection zone, the EAS tag responds and creates a signal or a change or disturbance in the original signal transmitted by the transmitter, which is detectable by the receiver. Upon detection of the EAS tag, the alarm is triggered in order to notify the store personnel that someone is trying to exit the retail establishment with merchandise that has an attached and active EAS tag.
In an EAS system, it is the actual EAS tag that is being detected and not the merchandise itself. Therefore, an EAS system can be circumvented by removing the EAS tag from the merchandise. Security devices have been developed to prevent the unauthorized removal of the EAS tag.
The present invention relates to a security device for attachment to an object, the security device is configured to prevent the unwanted removal of the security device from the object. Without intending to be bound by theory, a security device of the invention comprises at least two security features configured to prevent the unwanted removal of the security device from an object. The present invention also relates to a key to unlock a security device from the object, the key configured to apply at least two forces to the security device to allow removal of the security device from the object.
Various embodiments of the invention are directed to a security device structured for attachment to an object. In one embodiment, the security device comprises a clip that may be moved from a first state, where the clip secures at least a portion of a pin, to a second state, where the pin is released from the clip, and a support member, which is positioned proximate to the clip, the support member defining a cam surface that engages the clip. Rotation of the support member operates to move the clip from the first state to the second state.
In another embodiment of the invention, the clip defines an opening that receives at least a portion of the pin and the support member defines a channel for receiving at least a portion of the pin, the opening of the clip and the channel are positioned in substantially concentric alignment.
In another embodiment of the invention, the clip defines a base, a first arm, and a second arm. The first and second arms define a rest angle relative to the base of the clip when in the first state and a flex angle relative to the base of the clip when in the second state.
In yet another embodiment of the invention, the clip defines an opening having a first size for securing at least a portion of the pin when the clip is in the first state, and a second size, larger than the first size, for releasing the pin when the clip is in the second state.
In another embodiment of the invention, the support member defines a key structure that may receive a reciprocally configured key structure of a key, which may be used to rotate the support member.
In certain embodiments of the invention, the security device may further comprise a lock, the lock is moveable between a lock position—preventing rotation of the support member—and an unlock position—allowing rotation of the support member. In another embodiment of the invention, a magnetic force operates to move the lock from the lock position to the unlock position. In certain embodiments of the invention, the lock may define first and second lock elements that are deflected inwardly upon application of the magnetic force.
In another embodiment of the invention, the security device further comprises a housing, the housing is configured to rotationally constrain the lock in the lock position. The housing may at least partially enclose the lock, the support member, and the clip. In another embodiment of the invention, a housing at least partially encloses the lock and the housing defines an obstruction to rotationally constrain the lock in the lock position. Application of a magnetic force operates to move the lock from the lock position to the unlock position where the lock is free from the obstruction.
The security device may further comprise a security element. In an embodiment of the invention, the security device is an electronic article surveillance tag. In another embodiment of the invention, the security element is a radio frequency identification tag.
Another embodiment of the invention provides a security device that is structured for attachment to an object, the security device comprising a clip that is configured to move between a first state, where the clip secures at least a potion of a pin, and a second state, where the clip releases the pin. The movement of the clip between the first state and the second state is possible only upon the security device receiving application of a first force and a second force.
In another embodiment of the invention, the first force and the second force are applied to the security device by a key. In yet another embodiment of the invention, the first force is a rotational force and the second force is a magnetic force. In certain embodiments, the first force that is a rotational force is applied about an axis of rotation, and the second force that is a magnetic force is operable in a direction generally orthogonal to the axis of rotation.
In another embodiment of the invention, the security device further comprises a support member positioned proximate to the clip, the support member defining a cam surface that engages the clip and the rotation of the support member operates to move the clip from the first state to the second state.
In another embodiment of the invention, the clip has a base and first and second arms that define a rest angle relative to the base when the clip is in the first state and a flex angle relative to the base when the clip is in the second state.
In another embodiment of the invention, the clip may also define an opening having a first size for securing at least a portion of the pin when in the first state and a second size, larger than the first size, for releasing the pin when in the second state. Pursuant to this embodiment, the support member additionally defines a channel for receiving at least a potion of the pin and the channel and the opening of the clip are in substantially concentric alignment.
In another embodiment of the invention, the support member defines a key structure that receives a reciprocally configured key structure of a key that may be used to rotate the support member. The security device may additionally comprise a lock that is moveable between a lock position where it prevents rotation of the support member and an unlock position where it allows rotation of the support member. In certain embodiments of the invention, the lock may have first and second lock elements, which become deflected inwardly upon application of a magnetic force.
In another embodiment of the invention, the security device additionally comprises a housing that is configured to rotationally constrain the lock in the lock position. The housing may also be configured to at least partially enclose the lock, the support member, and the clip.
In yet another embodiment of the invention, the security device comprises a housing that at least partially encloses the lock. Pursuant to this embodiment, the housing defines an obstruction configured to rotationally constrain the lock in the lock position. Application of a magnetic force operates to move the lock from the lock position to the unlock position where the lock becomes free of the obstruction.
According to another embodiment of the invention, a security device structured for attachment to an object is provided, the security device comprising a securing mechanism and a support member. The securing mechanism is configured to be moveable between a first state and a second state, the securing mechanism configured to prevent access to the security device in the first state and further configured to allow access to the security device in the second state. The support member is positioned proximate to the securing mechanism and is configured to engage the securing mechanism. A movement, such as a rotational or axial movement, of the support member operates to drive the securing mechanism from a first state to the second state.
In another embodiment of the invention, the support member defines a key structure that is configured to receive a reciprocally configured key structure of a key that may be used to invoke the movement of the support member.
In another embodiment of the invention, the security device further comprises a lock that is moveable between a lock position and an unlock position. The lock is structured to prevent the movement of the support member in the lock position and to allow the movement of the support member in the unlock position. In certain embodiments of the invention, application of a magnetic force operates to move the lock from the lock position to the unlock position. In another embodiment of the invention, the lock defines first and second lock elements that are deflected inwardly upon application of the magnetic force.
In another embodiment of the invention, the security device further comprises a housing that is configured to constrain the lock in the lock position. In certain embodiments of the invention, the housing is configured to at least partially enclose the lock, the support member, and the securing mechanism.
In another embodiment of the invention, the security device further comprises a housing that at least partially encloses the lock. The housing defines an obstruction to constrain the lock in the lock positions. The application of a magnetic force operates to move the lock from the lock position to the unlock position where the lock is free of the obstruction.
According to another embodiment of the invention, a key that is structured to unlock a security device comprises a body and a head extending form the body, the head comprising a key structure adapted to mechanically engage a reciprocally configured key structure of the security device and a magnetic element that is at least partially supported by the key structure.
In another embodiment of the invention, the head of the key extends from the body generally along an insertion axis and the magnetic element produces a magnetic force that is operable in a direction generally orthogonal to the insertion axis.
According to another embodiment of the invention, a key is provided to allow removal of a security device from an object, the security device having at least two security features configured to prevent unwanted removal of the security device from the object. The key is configured to apply at least two forces, one of the at least two forces respectively corresponding to each of the at least two security features. In an embodiment of the invention, the key comprises a head configured to engage a support member of the security device.
In an embodiment of the invention, one of the at least two forces is applied to the support member of the security device causing the support member to move a clip of the security device from a first state, the first state configured to prevent a release of a pin from the clip, to a second state, the second state configured to allow the release of the pin from the clip. Pursuant to this embodiment of the invention, the force applied to the support member may be a rotational force.
Other aspects and embodiments will become apparent upon review of the following description taken in conjunction the accompanying drawings. The invention, though, is pointed out with particularity by the appended claims.
Reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
a is a perspective view of a security device that includes a tag housing and a pin according to an exemplary embodiment of the present invention;
b is the security device shown in
c is the security device shown in
d is the security device and the key shown in
e is the security device and the key shown in
f is the security device and the key shown in
g is the security device and the key shown in
a is an exploded front view of the security device shown in
b is an exploded right side view of the security device shown in
a is a perspective view of the pin shown in
b is the perspective view of the pin and the clip of
a is a side view of the pin and the clip of
b is a side view of the pin and the clip of
c is a side view of the pin and the clip of
a is a perspective view of the pin and the clip of
b is a perspective view of the pin and the clip of
a is a side view of the pin and the clip of
b is a side view of the pin and the clip of
a is a perspective view of the security device of
b is a partially transparent perspective view of the security device of
c is a perspective cross-sectional view of the security device of
d is a perspective cross-sectional view of the clip and pin shown in
e is a perspective view of the clip shown in
a is a perspective view of the security device of
b is a partially transparent perspective view of
c is a perspective cross-section view of a portion of the housing, the clip, the lock, and a support member according to an exemplary embodiment of the present invention taken along line A-A of
d is a perspective view of the lock shown in
e is a perspective view of a support member of the invention;
a is a top view of the security device of
b is a bottom view of the key shown in
a is an isometric view of the key shown in
b is a perspective view of a head of a key of the invention;
a is an exploded isometric view of the key shown in
b is another exploded isometric view of the key shown in
a is a perspective view of a magnet used in a key structured in accordance with one embodiment of the invention;
b is a top view of the magnet shown in
c is a cross-sectional view of the magnet of
d is a top view of the magnet shown in
a is a sectioned isometric view of an assembled key taken along line D-D of
b is a sectioned right side view of the key taken along line D-D of
c is a right side view of the key as shown in
a is an isometric view of the security device shown in
b is a right side view of the security device shown in
c is a sectioned right side view of the security device I taken along line A-A of
d is a right side view of the security device as shown in
e is a sectioned right side view of the security device taken along line A-A of
f is an exploded right side view of the security device shown in
g is an exploded, sectioned right side view of the security device taken along line A-A of
a is an isometric exploded view of the support member, clip, and lock as shown in
b is an isometric view of the support member, clip, and lock as assembled in the security device shown in
c is an isometric view of the bottom of the support member, clip, and lock as assembled in the security device shown in
a is an isometric view of the support member shown in
b is a sectioned isometric view of the support member taken along line E-E of
a is a perspective view of a key in accordance with one aspect of the invention;
b is a perspective view of the head of the key taken about the 1A line of
a is a bottom view of a key in accordance with one aspect of the invention;
b is a bottom view of the head of the key taken about the 2A line of
The present invention or inventions now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
As used in the specification and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly indicates otherwise. For example, reference to “a key” includes a plurality of such keys.
It will be understood that relative terms, such as “preceding” or “followed by” or the like, may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the elements in addition to the orientation of elements as illustrated in the Figures. It will be understood that such terms can be used to describe the relative positions of the element or elements of the invention and are not intended, unless the context clearly indicates otherwise, to be limiting.
Embodiments of the present invention are described herein with reference to various perspectives, including perspective views that are schematic representations of idealized embodiments of the present invention. As a person having ordinary skill in the art to which this invention belongs would appreciate, variations from or modifications to the shapes as illustrated in the Figures are to be expected in practicing the invention. Such variations and/or modifications can be the result of manufacturing techniques, design considerations, and the like, and such variations are intended to be included herein within the scope of the present invention and as further set forth in the claims that follow. The articles of the present invention and their respective components illustrated in the Figures are not intended to illustrate the precise shape of the component of an article and are not intended to limit the scope of the present invention.
Embodiments of the present invention provide a security device (in the figures the security device is also referred to simply as a “tag”). The security device may be configured to secure to merchandise or other objects and to prevent the unauthorized removal or tampering of the security device. In general, the security device includes a securing mechanism that is configured to prevent access to the security device in a first state and allow access to the security device in a second state. The security device also generally includes a support member that engages the securing mechanism and is configured such that a movement of the support member operates to drive the securing mechanism form the first state to a second state. Without intending to be limiting, the movement of the support member may be a rotational movement, an axial movement, a movement defined by a switch, a movement defined by a ratchet, and any combination thereof.
The securing mechanism may include any number of devices that are configured to prevent unauthorized access but allow authorized access to a security device. For example, the securing mechanism may be a clip as further described herein. In other embodiments of the invention, the securing mechanism may include a lock assembly for securing a tote as that described in U.S. patent application Ser. No. 12/630,372 entitled “Locking Device for Tote Bin” fully incorporated herein by reference. In other embodiments, the securing mechanism may be a lock assembly structured to secure a cable wrap device such as Alpha Security Products' Spider Wrap™ disclosed in U.S. Pat. No. 7,162,899, which is herein incorporated by reference in its entirety. Further, the securing mechanism may be an assembly for locking a cable lock, such as the Alpha Security Products' Cablelok™ device disclosed in U.S. Pat. No. 7,249,401, which is herein incorporated by reference in its entirety. The securing mechanism may also comprise an assembly for locking a keeper, such as that disclosed in U.S. Pat. No. 6,832,498, which is herein incorporated by reference in its entirety. In still other embodiments of the invention, the securing mechanism may comprise a latch moveable between a locked and an unlocked state for securing, for example, an access door or another assembly that functions as part of the security device to secure, for example, an object.
The security device may also include a housing. The housing may be configured to hold an EAS tag or other security element. The housing may further be configured to hold and support various device components including the clip or securing mechanism, the support member, and the lock.
In an embodiment of the invention, the support member defines a key structure that is configured to receive a reciprocally configured key structure of a key. As will be discussed in greater detail below, the reciprocally configured key structures ensure that only specifically configured keys are able to unlock (i.e., rotate the support member) the security device.
The security device may also comprise a lock, the lock that is moveable between a lock position and an unlock position. The lock is configured to prevent movement of the support member in the lock position and to allow movement of the support member in the unlock position. In certain embodiments of the invention, application of a magnetic force operates to move the lock from the lock position to the unlock position.
Certain embodiments of the present invention provide a security device that may be configured to secure to merchandise or other objects and to prevent unauthorized removal or tampering of the security device. In one embodiment, as shown in
More specifically and according to the illustrated embodiment, the security device includes the housing 200, the pin 300, a clip 400, a support member 500, and a lock 600 (as shown in
The support member 500 is configured to rotate and thereby drive movement of the clip 400 between the first and second states. As discussed in greater detail below, the lock 600 is configured to lock the support member 500 such that support member 500 is unable to rotate and move the clip 400 and, thus, prevent the release the pin 300. The support member 500 is configured to be engaged by a specifically shaped key 150. Among other things, the key 150 is configured to move the lock between the unlocked and locked configurations by rotating the support member and applying a magnetic force.
As shown in
As shown in
The clip 400 includes a base 410, a first arm 420, and a second arm 430. The base 410 extends from a first end to a second end. The first arm 420 extends from the first end upwardly and generally perpendicular to the base 410. The second arm 430 extends from the second end upwardly and generally perpendicular to the base 410. The base 410 includes two flap elements 412 that define an opening 414 between the two flap elements 412. The flap elements 412 are moveable. As the flap elements 412 move upwardly, the opening expands. However, the flap elements 412 are biased to a first position, e.g., as shown
The depicted clip 400 is formed from stamped sheet metal such as tempered spring steel. However, in other embodiments, the clip may be formed from other rigid, yet elastically resilient, materials such as plastics.
During operation and as shown in
In another embodiment, as shown in
The support member 500 is configured to move the clip 400 from a first state, referred to as a rest state, e.g., as shown in
For example, in the illustrated embodiment, the support member 500 is rotatably supported within the cavity 222 of the housing 200. The support member 500 may include one or more engaging or camming surfaces 540 (as shown in
Turning for example to
More specifically, the arms 420 & 430 are driven outwardly, e.g., as shown in
Returning to
The support member 500 further includes a top portion 530 that is accessible from outside the housing 200. The top portion 530 is configured to engage with a head 160 of the key 150, e.g., as shown in
In another embodiment, the lock 600 of the illustrated embodiment provides another layer of security. The lock 600 is moveable between a locked position and an unlocked position, e.g., as shown in
In the illustrated embodiment, the lock 600 includes a base 610, a lock element 620, and a second lock element 630. The base 610 extends from a first end to a second end. The first lock element 620 extends from the first end upwardly and generally perpendicular to the base 610. The second lock element 630 extends from the second end upwardly and generally perpendicular to the base 610. The base 610, the first lock element 620, and the second element 630 generally form a U-shape. The base 610 extends across the bottom of the support member 500 and defines an opening such that the lock 600 does not interfere with the insertion of the pin 300. Each lock element 620, 630 extends along a side of the support member 500 and each includes a flange 622, 632 that extends outwardly or perpendicular from the rest of the lock element 620, 630. Of course, in various embodiment, the lock elements 620, 630 must comprise a metal, such as a ferrous metal, that is susceptible to be acted upon by the magnetic force.
The lock 600 and the support member 500 may be rotatably connected, i.e., the rotation of one requires a rotation in the other, for example, by a rotational force that is applied about an axis of rotation. The connection may be formed through various means including opposing flanges, tabs, or ridges, fasteners, adhesives, welds or by inserting at least a portion of the lock through a reciprocally shaped channel or opening in the support member. In the locked position, the lock elements 620, 630 may be positioned to prevent rotation of the lock 600 and, thus, the support member 500 relative to the housing 200. For example, the flanges 622, 632 of the lock elements 620, 630 may engage a groove, channel, or other opening defined in the inner cylindrical wall of the housing 200. The lock elements 620, 630 may be biased in the locked position such that absent another force (i.e., a magnetic force) acting on the lock elements 620, 630, the lock elements 620, 630 remain in their originally biased position and, thus, the lock 600 remains in the locked position.
In another embodiment of the invention, as illustrated by
The key 150 or, more specifically, the head 160 of the key 150 may be configured to move the lock elements 620, 630 from the locked position to the unlocked position. For example, the lock 600 may be made from a magnetic material such as an iron alloy. The head 160 of the key 150 may be configured to create a magnetic field 190 and produce a magnetic force, as illustrated in
a, 12b, and 13 are exploded isometric views of a key 150 structured in accordance with various embodiments of the invention. The key 150 comprises a body 162a, 162b, a plunger 170, a magnet 175, and a retaining sleeve 180. The retaining sleeve 180 is captured within the body 162 of the key 150 and combines with the magnet 175 and the plunger 170 to define the head 160 of the key 150. The depicted retaining sleeve 180 is captured and retained in the body by the lip 185 of the retaining sleeve 180.
Returning for definitional purposes to the key insertion illustration of
a is a perspective view of a magnet 175 structured for use in a key 150 in accordance with one embodiment of the invention. The depicted magnet 175 defines opposing flats or dimples 177 for locating the poles of the magnet 175 during mounting within the head 160 of the key 150. In one embodiment, as illustrated in
In various embodiments of the invention, the magnet 175 is mounted within the head such that its north N and south S poles are positioned generally proximate the lock elements of the lock upon insertion of the head into the security device. As will be apparent to one of ordinary skill in the art, the reciprocal key structures of the head and the support member may also be structured to achieve this magnetic pole/lock element alignment. In this regard, magnets used in keys structured in accordance with various embodiments of the invention, are designed and structured to inwardly retract the lock elements from the locked position to the unlocked position.
In another embodiment of the invention, the axis of insertion A may also define an axis of rotation around which the key is configured to rotate. In this regard, a user need not re-position the key after insertion in order to rotate the key (and support member) to cam open the clip as discussed above.
As will be apparent to one of ordinary skill in the art in view of this disclosure, security devices structured in accordance with various embodiments of the invention provide at least two layers of security or at least two security features configured to prevent unwanted removal of the security device. The first layer is in the specific and uncommon shape of the top portion 530 (i.e., key structure) of the support member 500. In order to rotate the support member 500, one has to find a key 150 or other device that has a specific shape (i.e., reciprocally shaped key structure) that is configured to mate with the top portion 530. The second layer is the use of the lock 600 and the requirement to disengage the lock 600 (i.e., move lock elements 620, 630 inwardly) with a force, such as a magnetic force. The second layer is further enhanced by requiring that the force be produced by a ring magnet structured to produce a diametrically aligned, rather than an axially aligned, magnetic field.
A further depiction of the exemplary embodiment of the key 150 described above is illustrated in
The security device of the exemplary embodiments described above is further illustrated in
a is a perspective view of a key 150 according to an embodiment of the invention.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the disclosed embodiments and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
The present application is a national stage entry of International Application No. PCT/US10/30538, filed Apr. 9, 2010. The present application also claims the benefit of U.S. Provisional Patent Application Ser. No. 61/168,850, filed Apr. 13, 2009 and U.S. Provisional Patent Application No. 61/168,462 filed Apr. 10, 2009, the entireties of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/030538 | 4/9/2010 | WO | 00 | 10/10/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/118318 | 10/14/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4177656 | Davis | Dec 1979 | A |
4984698 | Stuckey | Jan 1991 | A |
5426419 | Nguyen et al. | Jun 1995 | A |
6711787 | Jungkind et al. | Mar 2004 | B2 |
7073236 | Xue et al. | Jul 2006 | B2 |
7190272 | Yang et al. | Mar 2007 | B2 |
7215250 | Hansen et al. | May 2007 | B2 |
7400254 | Yang et al. | Jul 2008 | B2 |
7474222 | Yang et al. | Jan 2009 | B2 |
7624889 | Tharp et al. | Dec 2009 | B2 |
7652574 | Sayegh | Jan 2010 | B2 |
8344891 | Appalucci et al. | Jan 2013 | B2 |
20050091809 | Xue et al. | May 2005 | A1 |
20070067971 | Nguyen et al. | Mar 2007 | A1 |
20070080806 | Lax et al. | Apr 2007 | A1 |
20070096925 | Yang et al. | May 2007 | A1 |
20070169524 | Tharp et al. | Jul 2007 | A1 |
20070256715 | Oppel et al. | Nov 2007 | A1 |
20100225485 | Appalucci et al. | Sep 2010 | A1 |
20120032805 | Brodzik et al. | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
10 2005 062414 | Jun 2007 | DE |
0 021 849 | Jan 1981 | EP |
1 091 063 | Apr 2011 | EP |
WO 2008031325 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20120031153 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61168850 | Apr 2009 | US | |
61168462 | Apr 2009 | US |