1. Field of the Invention
The present invention relates to non-volatile memory cells. More particularly, the present invention relates to push-pull non-volatile memory cells and to arrays of such memory cells.
2. The Prior Art
Push-pull non-volatile memory cells are known in the art.
The memory cell shown in
The memory cell shown in
In the case of flash non-volatile memory transistors, the p-channel non-volatile transistor is programmed by placing a negative voltage, such as −4v, on the source of the p-channel non-volatile transistor, placing a positive voltage such as 8.5v on its gate, while its bulk is biased at a voltage such as 1.2v. The gate and source of the p-channel non-volatile transistor are biased at 0v during this procedure.
The n-channel flash non-volatile transistor is programmed by placing a voltage such as 8.5v, on its gate, and placing a voltage such as 4.5v on its source. The gate of the p-channel non-volatile transistor is biased at a voltage such as −3.3v and its source is biased at a voltage such as 0v during this procedure.
Persons of ordinary skill in the art will realize that the following description of the present invention is illustrative only and not in any way limiting. Other embodiments of the invention will readily suggest themselves to such skilled persons.
Referring now to
To program p-channel flash transistor 12, a voltage such as 8.5v is applied to its control gate, a negative voltage such as −4v is applied to its source, and a voltage such as 1.2v is applied to the n-well in which p-channel flash transistor 12 is formed. Ground potential (0v) is applied to the control gate of n-channel flash transistor 14 and to the gate of n-channel assist transistor 18. The drain of n-channel flash transistor 14 may be left floating. The p-channel flash transistor is programmed using band-to-band (BTB) programming.
To program n-channel flash transistor 14, a voltage such as 8.5v is applied to its control gate, and a voltage such as 4.5v is applied to its source. Ground potential (0v) is applied to the source of the p-channel flash transistor 12 and a negative voltage such as −3.3v is applied to its control gate. A voltage such as 3.3v is applied to the gate of n-channel assist transistor 18. The n-channel flash transistor 14 is programmed using hot carrier injection (HCl) programming. The n-channel assist transistor 18 in the memory cell 10 is employed to pass HCl programming current for programming the n-channel flash transistor 14 in the cell. The programming voltages suggested for programming transistors 12 and 14 may scale depending on feature size and/or the memory technology employed. Persons of ordinary skill in the art will readily appreciate what voltages to employ to program memory transistors 12 and 14 in any given non-volatile memory technology.
Referring now to
The control gates of p-channel flash transistors 12-1 and 12-2 in memory cells 10-1 and 10-2 in the first row of the array are connected together to a p-channel row line 22. The control gates of n-channel flash transistors 14-1 and 14-2 in memory cells 10-1 and 10-2 are connected together to an n-channel row line 24. The gates of n-channel assist transistors 18-1 and 18-2 in memory cells 10-1 and 10-2 are connected to a row line 26. The control gates of p-channel flash transistors 12-3 and 12-4 in memory cells 10-3 and 10-4 in the second row of the array are connected together to a p-channel row line 28. The control gates of n-channel flash transistors 14-3 and 14-4 in memory cells 10-3 and 10-4 are connected together to an n-channel row line 30. The gates of n-channel assist transistors 18-3 and 18-4 in memory cells 10-3 and 10-4 are connected to a row line 32.
The sources of p-channel flash transistors 12-1 and 12-3 in memory cells 10-1 and 10-3 in the first column of the array are connected together to a p-channel column line 34. The sources of n-channel flash transistors 14-1 and 14-3 in memory cells 10-1 and 10-3 are connected together to an n-channel column line 36. The sources of p-channel flash transistors 12-2 and 12-4 in memory cells 10-2 and 10-4 in the second column of the array are connected together to a p-channel column line 38. The sources of n-channel flash transistors 14-2 and 14-3 in memory cells 10-2 and 10-4 are connected together to an n-channel column line 40.
When programming the p-channel flash transistors in the array, the p-channel row lines containing cells that are unselected are driven to 0v. The p-channel and n-channel column lines containing cells that are unselected are driven to a voltage that will minimize gate disturb of the memory cells on the unselected column lines, such as about 2-5 volts. When programming the n-channel flash transistors in the array, the n-channel row lines containing cells that are unselected are driven to 0v. The p-channel and n-channel column lines containing cells that are unselected are driven to a voltage that will minimize gate disturb of the memory cells on the unselected column lines, such as about 2-5 volts.
To simultaneously erase both the p-channel and n-channel flash transistors in all of memory cells 10-1 through 10-4, a negative voltage such as −8.5 volts is applied to all of row lines 22, 24, 26, 28, 30, and 32, p-channel and n-channel column lines 34, 36, 38, and 40 are allowed to float, and a voltage such as 1.2v is applied to the sources and drains of switch transistors 16-1 through 16-4.
The erase mechanism of the memory cells of the present invention is Fowler-Nordheim tunneling (FN). Because of this, the p-channel and n-channel flash transistors 12 and 14 need coupling ratios that are about 10% better than normal flash cells because the p-well/n-well bias can not be more than the switch transistor oxide tolerance level. The p-channel and re-channel flash transistor size is independent when programming using HCl because the majority program current is passed from the n-channel assist transistors 18.
The memory cell of
Referring now to
One advantage of the memory cell 50 of
Referring now to
The portion 60 of the memory cell array shown in
The control gates of p-channel flash transistors 12-1 and 12-2 in memory cells 50-1 and 50-2 in the first row of the array are connected together to a row line 22. The control gates of n-channel flash transistors 14-1 and 14-2 in memory cells 10-1 and 10-2 are also connected together to p-channel row line 22. Separate row lines for the control gates of each of the p-channel and n-channel flash transistors seen in the embodiment of
The sources of p-channel flash transistors 12-1 and 12-3 in memory cells 10-1 and 10-3 in the first column of the array are connected together to a p-channel column line 34. The sources of n-channel flash transistors 14-1 and 14-3 in memory cells 10-1 and 10-3 are connected together to an n-channel column line 36. The sources of p-channel flash transistors 12-2 and 12-4 in memory cells 10-2 and 10-4 in the second column of the array are connected together to a p-channel column line 38. The sources of n-channel flash transistors 14-2 and 14-3 in memory cells 10-2 and 10-4 are connected together to an n-channel column line 40.
To program memory cells in the array of
In order to simultaneously erase all of the memory cells in array 50, all of the column lines 34, 36, 38, and 40 are allowed to float. A voltage such as 7v is applied to the wells containing the n-channel and p-channel flash transistors. A negative voltage such as −8.5v is applied to the control gates of the n-channel and p-channel flash transistors on row lines 22 and 26. A voltage such as 1.2v is applied to the sources and drains of the switch transistors, and a voltage such as 3.3v is applied to the gates of the n-channel assist transistors on row lines 30 and 32.
During normal operation, 0v is applied to the gates of the n-channel assist transistors 18-1 through 18-4 to turn them off. A voltage such as 3.3v is applied to p-channel column lines 34 and 38, and 0v is applied to n-channel column lines 36 and 40. A voltage such as 3.3v is applied to the control gates of the n-channel and p-channel flash transistors on row lines 22 and 26.
While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.
This application is a continuation of co-pending U.S. patent application Ser. No. 12/334,059, filed Dec. 12, 2008, the entirety of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 12334059 | Dec 2008 | US |
Child | 12903493 | US |