The present invention relates to a latch bolt mechanism for a hinged door, and in particular, a door latch mechanism actuated by push pull spindles.
Latch bolt mechanisms are utilized to retain a door in a closed position until intentionally opened. These latch bolt mechanisms frequently utilize cams to extend and retract the bolt, although the cam may be actuated by rotary, lift, push, pull or trigger actuators. Cam operated latch bolt mechanisms can be complex, bulky and expensive to manufacture. Push or pull actuated latch bolt mechanisms are generally surface mounted to the interior side of a storm door, adjacent a main entrance door. As a result, the latch bolt mechanism hardware extends inward from the storm door and can interfere with the operation and/or closure of the main entrance door. These latches can also be somewhat unsightly. They may require a strike plate which would be visible even when the door is in a closed position. The strike plate may also interfere, or catch, a person as they exit or enter through the doorway.
Some prior art latch bolt mechanisms have utilized a lock mechanism that slideably engages an inclined surface of the bolt so that when the latch bolt is locked in its extended position, a force applied inward on the bolt, the inclined surfaces of the bolt engage the inclined surface of the lock and cause the lock mechanism to slide to its unlocked position, allowing retraction of the bolt. This defeats the purpose of a dead bolt lock and makes the latch mechanism less secure.
There is a need for a latch bolt mechanism that is: inexpensive to construct, compact in size with limited lateral projection to accommodate all door thickness applications and storm door use, simple in construction and flexible in use with all types of actuators. There is also a need for a push pull lock that functions as a true deadbolt lock and as a mortise push pull latch bolt mechanism that is symmetrical for use on both right and left handed doors without installer modification.
The present invention relates to a latch bolt mechanism for a hinged door that utilizes push pull spindles rather than a cam to move the latch bolt. A latch bolt is slideably mounted within a housing. A spring or springs are mounted between the bolt and one end of the housing to bias the bolt in an extended position (extended outward from the housing), while permitting retraction of the bolt within the housing when an inward directed force is applied to the bolt. At least one spindle extends through the housing and bolt, transverse to the line of travel of the bolt. It may be desirable to accommodate two spindles, one from each side, in certain applications. The spindles have angled surfaces designed to engage corresponding inclined surfaces defined by the bolt. An inward force (“push”) is applied to a spindle, causing the inclined surface of the spindle to engage the inclined surface of the bolt. The energy from movement of the spindle is translated to the bolt, causing the bolt to overcome the force of the spring bias and move from the extended position to a retracted position within the housing. Upon release of the force on the spindle, the force of the spring causes the bolt and spindle to return to their original positions. It is also possible to arrange the spindles so that an outward force (“pull”) applied to the spindle will cause an inclined surface of the spindle to engage an inclined surface of the bolt to move the bolt to its retracted position.
The push pull latch bolt mechanism can be used with various types of external actuators, including without limitation, trigger, rotary, push, pull and lift. A lock mechanism may be slideably mounted to the housing for movement in a direction transverse that of the line of travel of the latch bolt. The bolt slides back and forth past the lock until such time as the lock is pushed into a recess in the bolt, securing the bolt in a locked position. The bolt cannot be retracted by applying a force to the bolt; the bolt can only be retracted upon movement of the lock back to its unlocked position. This arrangement creates a true deadbolt, a bolt incapable of being unlocked unless the lock itself is intentionally released.
The present invention of a simple bolt mechanism will be described as it applies to its preferred embodiment. It is not intended that the present invention be limited to the described embodiment. It is intended that the invention cover all modifications, equivalents and alternatives which may be included within the spirit and scope of the invention.
Referring now to the drawings, wherein like reference numerals and letters indicate corresponding structure throughout the several views, and referring in particular to
The general components of a preferred embodiment of the present invention are generally disclosed in FIG. 2. The push pull latch bolt mechanism 10 is comprised of a bolt 20, at least one push pull spindle 30, a housing 40 with a cover 50, an optional lock 60 and at least one spring 70. The bolt 20 is slideably mounted within the housing 40 for linear movement between an extended position (illustrated in
The cover 50 (
The housing 40 (
The lock guide 42 and support 41 maintain the cover 50 in proper position with respect to the housing 40. When the housing 40 and cover 50 are secured together, the spindle receptacle 52 of cover 50 and the spindle opening 44 of the housing 40 are aligned for receiving and maintaining the spindles 30 in the proper orientation. The bolt 20 is slideably mounted between the housing 40 and cover 50.
The housing 40 includes side plates 14 and an end plate 16 for securing the bolt 20 within the housing 40. End plate 16 supports one end of springs 70 to bias the bolt 20 in its extended position, as shown in
Referring to
The spindles 30 include an interface surface 38, a semi-spherical free end 34 (other shapes are possible), a support surface 36 opposite that of interface 38, a orientation slot 31 that is aligned with the comer obstruction 39 of housing 40 or comer obstruction 58 of cover 50, and an inclined surface 32. When the housing 40, cover 50 and bolt 20 are assembled, spindle openings are created by the alignment of the housing spindle opening 44, the cover spindle receptacle 52 and the bolt spindle openings 18. The spindles 30 are inserted into the housing 40 from opposite sides of the housing 40, such that the inclined surfaces 32 of the spindles 30 are in contact with the actuation inclines 24 and 15 of bolt 20 and the semi-spherical ends 38 of the spindles 30 extend outwardly from the housing 40 for engagement with a handle (not shown). This is the normal or “home” position of the spindles.
The spindles 30 are mounted one on top of the other, facing in opposite directions, such that interface surfaces 38 of the spindles 30 are in contact with each other. The support surfaces 36 of spindles 30 are supported by the bolt 20 as it is moved between its retracted and extended positions. When an inward directed force is applied to a spindle 30 (directed towards the housing 40, left spindle 30 in FIG. 15), the spindle 30 (mounted from the side of the housing 40) is pushed into the housing 40, the inclined surfaces 32 of spindle 30 engages the inclined surface 15 of the bolt 20. When an inward directed force is applied to a spindle 30 mounted from the side of the cover 50 (right spindle 30 in FIG. 15), the spindle 30 is pushed into the cover 50 and the inclined surface 32 of spindle 30 engages the inclined surfaces 24 of the bolt 20. Movement of the inclined surfaces 32 of the spindles 30, transverse to the line of travel of the bolt 20, against the inclined surfaces 15 or 24 of the bolt 20, translates energy to the bolt 20 to cause retraction of the bolt 20 into the housing 40. The force asserted by the spindle 30 on bolt 20 overcomes the bias of springs 70 and translates to angular (generally perpendicular) movement of the bolt 20 from its (biased) extended position to its retracted position as shown in FIG. 17. The spindle interface surfaces 38, the spindle receptacle 52 in cover 50 and spindle opening 44 in housing 40 confine the translation of the spindles 30 to be angular to the movement of the bolt 20. When the force on the spindle 30 is released, the force of the springs 70 causes the bolt 20 to return to its extended position, and the spindle 30 to return to its home position. The spindles 30 are also independently operable, so that the door latch bolt mechanism can be opened from either side of the door.
Referring to
Referring to
Bolt 20 is slideably mounted with respect to housing 40 and lock 60. A lock guide channel is defined in bolt 20 (
The bolt 20 may be locked in its extended position by pushing the lock 60 inward along the longitudinal axis of the lock guide 42, so that the lock placement stops 66 are positioned within a locking recess 29 defined in bolt 20, in engagement with lock stop surfaces 23 of bolt 20. This constitutes the locked position of lock 60 and bolt 20. Engagement of the bearing surface 61 of lock 60 with the flat surface 43 of the housing support 41 helps guide the lock 60 when moved between its locked and unlocked position.
In the locked position, bolt 20 is prevented from retracting by the engagement of the lock tabs 66 with lock contact surface 21 of the bolt 20. In the locked position, a door can be secured in a closed orientation and spindles 30 become inoperable. The latch bolt mechanism 10 may be constructed with or without incorporation of the lock 60 as preferred.
The bolt 20 and lock 60 can also be designed with a catch mechanism to better securing the lock 60 in either the locked or unlocked orientation. On possible embodiment is illustrated in
Other methods may be employed to create a catch mechanism for the present invention. By way of example and not limitation, instead of catch channels, a raised area could be designed in the bolt (approximately midway between the location of where the catch channels were positioned), which would need to be overcome to permit movement between the locked and unlocked positions. Other catch mechanisms are anticipated.
Operation of the push pull latch bolt mechanism 10 is illustrated in
An alternative single spindle version of the latch mechanism is illustrated in
It is also anticipated that the latch bolt mechanism could be modified so that the detail in the bolt 20 for receiving the lock 60 could be carried in the cover 50 or housing 40 and the lock 60 could be mounted on and carried with the bolt 20 for both movement with and movement transverse to the line of travel of the bolt 20. Movement of the lock between its locked and unlocked positions could be by mechanical means, such as inclusion of an additional longitudinal slot in the housing 40 or cover 50, aligned with the line of travel of the bolt 20, or by other means (magnetic, etc.).
The present invention is symmetrical for use on both right and left handed doors without installer modification and is compact enough to be used on virtually any door. Further, the slide actuation method allows push pull actuation in a mortise application. Actuation members can be oriented in many different ways to translate the spindle, allowing for virtually any type of external actuation method to be secured to the latch bolt mechanism 10, including push, pull, lift, trigger, and rotational external actuators.
Number | Name | Date | Kind |
---|---|---|---|
980630 | Granger | Jan 1911 | A |
2124099 | Zagrzejewski | Jul 1938 | A |
2939737 | Nygren | Jun 1960 | A |
4007954 | Erickson | Feb 1977 | A |
5157953 | Hung | Oct 1992 | A |
Number | Date | Country | |
---|---|---|---|
20040145190 A1 | Jul 2004 | US |