The present invention relates generally to the field of exercise machines. More particularly, the invention relates to an apparatus for performing a two directional resistance rowing exercise.
U.S. Pat. No. 7,141,008 discloses a rowing machine in which a 3-bar link frame is attached to a flywheel via an upper link. This causes the 3-bar link to move with the flywheel. The central portion upper link moves in an elliptical motion. A seat is attached to the upper link and moves with it. This layout causes the seat to move in an elliptical path where the user's body goes up and down and forward and back following the elliptical seat movement. The row handles are linked to movement of the frame. This rower provides resistance to pushing and pulling movement of the arms and upper body and the legs, against resistance of the flywheel.
A disadvantage of this design is that the rotation momentum of the flywheel is increased with the user body weight when the frame link to the flywheel is going down on one side of the flywheel and decreased when the frame link to the flywheel is going up on the other side. The momentum must be strong enough to carry the user on the up side of the flywheel movement or the pushing or pulling exercise is much harder on the upward movement of the flywheel. Thus, it is harder to keep the rotation momentum of the flywheel going and also harder to keep it going steady. It requires a heavier flywheel and a faster moving flywheel with stepped up speed.
Another disadvantage of this design is that the weight of the upper link causes the upper link to settle at the bottom of flywheel rotation and thus places the handles in a position that is hard to enter and exit the machine when stopping or starting an exercise.
Still another disadvantage of this design is that the ellipse feels better in one direction than the other—there is a forward and backward motion. It is difficult for the user to know which direction they are moving.
Still another disadvantage of this design is that some people tend to get motion sickness from the up and down motion mixed with the forward and back motion. This motion has a tendency towards motion sickness for some people.
U.S. Pat. No. 5,072,929 discloses a rower with two resistance flywheels. One flywheel is attached to a handle by a cord to provide resistance to the handle. The other flywheel is attached to the seat by a cord to provide resistance to the seat. In this design the handle has resistance to pulling with the arms and upper body, but not pushing with the arms and upper body. The seat has resistance to pushing movement of the legs, but not pulling movement of the legs. A disadvantage of this design is that it requires two separate flywheels and does not provide resistance in both directions of movement, thus only working out part of the body of a user.
Disclosed is a rowing machine with resistance to both pushing and pulling motions of both the upper body and lower body. A linear sliding seat that moves in a longitudinal direction is connected to a flywheel to provide resistance to back and forth motion. A handle arm is also connected to the flywheel to provide resistance to back and forth motion. The flywheel creates cyclical back and forth motion of the seat and handles for the user to push and pull with the arms and legs. The handle arm and seat (or carriage) may be linked together, and then one or the other linked to the flywheel, providing synchronization between the handlebar, seat (or carriage) and flywheel. For example, in one embodiment, the handle arm and the seat are linked together by a first link, and the handle arm is linked to the flywheel by a second link. Alternatively, the handle arm and the seat are linked together by the first link, and the seat is linked to the flywheel by a second link.
One of the advantages of this invention over the prior art is that a smaller flywheel and slower flywheel spin can be used because there is no up and down movement with the body causing the flywheel to slow down or speed up through phases of each rotation.
Another advantage is that this rower does not have the user's body weight pushing down on the flywheel, so at the end of exercising the user can stop anywhere along the travel making it easy to exit and enter next time.
Still another advantage is that the rotation direction of the flywheel does not affect the motion or the feel of the exercise. The flywheel can turn either direction to give the same linear effect and feel. The user does not have to try to figure out which direction the flywheel is moving, making it much easier to hop on and start.
Yet another advantage is that this rower does not cause motion sickness because the user experiences a basic back and forth movement.
The above summary does not include an exhaustive list of all aspects of the present invention. It is contemplated that the invention includes all systems and methods that can be practiced from all suitable combinations of the various aspects summarized above, as well as those disclosed in the Detailed Description below and particularly pointed out in the claims filed with the application. Such combinations have particular advantages not specifically recited in the above summary.
The embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and they mean at least one.
In the following description, for purposes of explanation and not limitation, specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be apparent to one skilled in the art that the present invention may be practiced in other embodiments that depart from these specific details. In other instances, detailed descriptions of well-known methods and devices are omitted so as to not obscure the description of the present invention with unnecessary detail.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Spatially relative terms, such as “beneath”, “below”, “lower”, “above”, “upper”, “forward”, “rearward”, “backward” and the like may be used herein for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (e.g., rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
As used herein, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising” specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.
The terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
A row handle comprises a laterally extending handlebar 113 attached to lever 114, which is coupled to frame member 116 at pivot 118. Lever 114 is coupled to flywheel 120 by link 122. The length of link 122 is adjustable (as shown by the arrow) and the position at which link 122 is pivotally coupled to lever 114 are both adjustable to define the operative arc of handlebar 113 relative to rotation of flywheel 120. Moving the coupling position of link 122 up or down along the length dimension of lever 114 (as shown by the arrow) shortens or lengthens, respectively, the arc of handlebar 113. Shortening or lengthening link 122 adjusts the longitudinal position of the arc of handlebar 113, i.e., the start and end positions of the exercise stroke, relative to the apparatus without changing the arc length. Said another way, the length of link 122 or position of link 122 along the length of lever 114 can be adjusted (as shown by the arrows) to modify a range of movement and/or position of the handlebar 113 (or lever 114), which in turn can achieve a shorter or longer stroke, or move the stroke forward or rearward, as desired.
Flywheel 120 is also coupled to carriage 104 by link 124. It should be noted that for ease of illustration, link 122 and link 124 are shown along a same side of flywheel 120, however, in reality, they would be coupled to opposite sides of flywheel 120. The length of link 124 is adjustable (as shown by the arrow) to define the travel path of seat 102 along support member 106 relative to rotation of flywheel 120. The adjustments of links 122 and 124 accommodate the physical proportions of the operator and also, in combination with adjustment of upright member 112, allow the operator to adjust the intensity and muscular focus of the exercise.
In alternative arrangements, the handlebar and carriage can be directly linked together by an optional link 128 and then one or the other linked to the flywheel, providing synchronization between the handlebar, carriage and flywheel. For example, in one alternative embodiment, carriage 104 may be directly coupled to lever 114 of the handlebar 113 by link 128 (shown in dashed lines). Then, lever 114 may be coupled to the flywheel 120 by link 122 (and link 124 omitted), or carriage 104 may be coupled to the flywheel 120 by link 124 (and link 122 omitted).
A foot plate 126 is mounted at the forward end of apparatus 100 and is longitudinally adjustable to accommodate the length of the operator's legs. The outstretched end of motion for the user's legs should be almost straight but with a slight bend at the knee (not fully extended). The proper leg posture may also be achieved by adjusting the length of link 124 which, in turn, adjusts the distance between seat 102 and foot plate 126. Furthermore, the longitudinal position of seat 102 on carriage 104 may be made adjustable for the same purpose.
A laterally extending handlebar 213 is attached to lever 214, which is coupled to frame member 216 at pivot 218. Lever 214 is coupled to flywheel 220 by link 222. Flywheel 220 is also coupled to linkage arm 205 by link 224. As in the previously described embodiment, links 222 and 224 are adjustable along their length dimension (and in some cases along a length of the associated arm 205 or lever 214) as shown by the arrows to accommodate the physical proportions of the operator and also allow the operator to adjust the intensity and muscular focus of the exercise. In addition, although for ease of illustration, link 222 and link 224 are shown along a same side of flywheel 220, in reality, they would be coupled to opposite sides of flywheel 220.
Still further, in one alternative embodiment, the handlebar 213 and seat 202 may be directly linked together by an optional link 228 and then one or the other linked to the flywheel 220, providing synchronization between the handlebar, seat and flywheel. For example, in one alternative embodiment, seat 202 may be directly coupled to lever 214 of the handlebar 213 by link 228 (shown in dashed lines). Then, lever 214 may be coupled to the flywheel 220 by link 222 (and link 224 omitted), or seat 202 may be coupled to the flywheel 220 by link 224 (and link 222 omitted).
A foot plate 226 is mounted at the forward end of apparatus 200 and is longitudinally adjustable to accommodate the length of the operator's legs.
It will be recognized that the above-described invention may be embodied in other specific forms without departing from the spirit or essential characteristics of the disclosure. Thus, it is understood that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.
This application claims the benefit of the earlier filing date of U.S. Provisional Patent Application No. 62/447,843, filed Jan. 18, 2017 and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4743010 | Geraci | May 1988 | A |
5072929 | Peterson | Dec 1991 | A |
5374225 | Wilkinson | Dec 1994 | A |
5382209 | Pasier et al. | Jan 1995 | A |
5419752 | James | May 1995 | A |
5916065 | McBride | Jun 1999 | A |
5928116 | Chiang | Jul 1999 | A |
6042512 | Eschenbach | Mar 2000 | A |
6482133 | Miehlich | Nov 2002 | B1 |
7104933 | Liao | Sep 2006 | B1 |
7141008 | Krull et al. | Nov 2006 | B2 |
7651446 | Eschenbach | Jan 2010 | B1 |
7815551 | Merli | Oct 2010 | B2 |
7862484 | Coffey | Jan 2011 | B1 |
8113997 | Fernandez | Feb 2012 | B2 |
8491506 | Smyrk et al. | Jul 2013 | B2 |
8562491 | Merli | Oct 2013 | B2 |
8888661 | Ellis | Nov 2014 | B2 |
9005086 | O'Neil | Apr 2015 | B1 |
9289647 | Merli | Mar 2016 | B2 |
9457223 | Eschenbach | Oct 2016 | B2 |
10086227 | Merli | Oct 2018 | B2 |
20030060337 | Yu | Mar 2003 | A1 |
20050187073 | Krull | Aug 2005 | A1 |
20060223678 | MacLean | Oct 2006 | A1 |
20120100965 | Dreissigacker | Apr 2012 | A1 |
20150151158 | Ellis | Jun 2015 | A1 |
20150367173 | Ellis | Dec 2015 | A1 |
20160287933 | Lin | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
202654614 | Jan 2013 | CN |
204233672 | Apr 2015 | CN |
Entry |
---|
“Caraleen Enterprises Pty., LLC v. Health In Motion LLC; Case No. 5:20-cv-00821; Complaint for Patent Infringement: Demand for Jury Trial” Filed Apr. 17, 2020 in the United States District Court Central District of California. |
Number | Date | Country | |
---|---|---|---|
62447843 | Jan 2017 | US |